/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include "Allocator.h"
#include "HeapWalker.h"
#include "LeakFolding.h"
#include "Tarjan.h"
#include "log.h"
namespace android {
// Converts possibly cyclic graph of leaks to a DAG by combining
// strongly-connected components into a object, stored in the scc pointer
// of each node in the component.
void LeakFolding::ComputeDAG() {
SCCList<LeakInfo> scc_list{allocator_};
Tarjan(leak_graph_, scc_list);
Allocator<SCCInfo> scc_allocator = allocator_;
for (auto& scc_nodes : scc_list) {
Allocator<SCCInfo>::unique_ptr leak_scc;
leak_scc = scc_allocator.make_unique(scc_allocator);
for (auto& node : scc_nodes) {
node->ptr->scc = leak_scc.get();
leak_scc->count++;
leak_scc->size += node->ptr->range.size();
}
leak_scc_.emplace_back(std::move(leak_scc));
}
for (auto& it : leak_map_) {
LeakInfo& leak = it.second;
for (auto& ref : leak.node.references_out) {
if (leak.scc != ref->ptr->scc) {
leak.scc->node.Edge(&ref->ptr->scc->node);
}
}
}
}
void LeakFolding::AccumulateLeaks(SCCInfo* dominator) {
std::function<void(SCCInfo*)> walk([&](SCCInfo* scc) {
if (scc->accumulator != dominator) {
scc->accumulator = dominator;
dominator->cuumulative_size += scc->size;
dominator->cuumulative_count += scc->count;
scc->node.Foreach([&](SCCInfo* ref) { walk(ref); });
}
});
walk(dominator);
}
bool LeakFolding::FoldLeaks() {
Allocator<LeakInfo> leak_allocator = allocator_;
// Find all leaked allocations insert them into leak_map_ and leak_graph_
heap_walker_.ForEachAllocation([&](const Range& range, HeapWalker::AllocationInfo& allocation) {
if (!allocation.referenced_from_root) {
auto it = leak_map_.emplace(std::piecewise_construct, std::forward_as_tuple(range),
std::forward_as_tuple(range, allocator_));
LeakInfo& leak = it.first->second;
leak_graph_.push_back(&leak.node);
}
});
// Find references between leaked allocations and connect them in leak_graph_
for (auto& it : leak_map_) {
LeakInfo& leak = it.second;
heap_walker_.ForEachPtrInRange(leak.range,
[&](Range& ptr_range, HeapWalker::AllocationInfo* ptr_info) {
if (!ptr_info->referenced_from_root) {
LeakInfo* ptr_leak = &leak_map_.at(ptr_range);
leak.node.Edge(&ptr_leak->node);
}
});
}
// Convert the cyclic graph to a DAG by grouping strongly connected components
ComputeDAG();
// Compute dominators and cuumulative sizes
for (auto& scc : leak_scc_) {
if (scc->node.references_in.size() == 0) {
scc->dominator = true;
AccumulateLeaks(scc.get());
}
}
return true;
}
bool LeakFolding::Leaked(allocator::vector<LeakFolding::Leak>& leaked, size_t* num_leaks_out,
size_t* leak_bytes_out) {
size_t num_leaks = 0;
size_t leak_bytes = 0;
for (auto& it : leak_map_) {
const LeakInfo& leak = it.second;
num_leaks++;
leak_bytes += leak.range.size();
}
for (auto& it : leak_map_) {
const LeakInfo& leak = it.second;
if (leak.scc->dominator) {
leaked.emplace_back(Leak{leak.range, leak.scc->cuumulative_count - 1,
leak.scc->cuumulative_size - leak.range.size()});
}
}
if (num_leaks_out) {
*num_leaks_out = num_leaks;
}
if (leak_bytes_out) {
*leak_bytes_out = leak_bytes;
}
return true;
}
} // namespace android