/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <inttypes.h> #include "Allocator.h" #include "HeapWalker.h" #include "LeakFolding.h" #include "Tarjan.h" #include "log.h" namespace android { // Converts possibly cyclic graph of leaks to a DAG by combining // strongly-connected components into a object, stored in the scc pointer // of each node in the component. void LeakFolding::ComputeDAG() { SCCList<LeakInfo> scc_list{allocator_}; Tarjan(leak_graph_, scc_list); Allocator<SCCInfo> scc_allocator = allocator_; for (auto& scc_nodes : scc_list) { Allocator<SCCInfo>::unique_ptr leak_scc; leak_scc = scc_allocator.make_unique(scc_allocator); for (auto& node : scc_nodes) { node->ptr->scc = leak_scc.get(); leak_scc->count++; leak_scc->size += node->ptr->range.size(); } leak_scc_.emplace_back(std::move(leak_scc)); } for (auto& it : leak_map_) { LeakInfo& leak = it.second; for (auto& ref : leak.node.references_out) { if (leak.scc != ref->ptr->scc) { leak.scc->node.Edge(&ref->ptr->scc->node); } } } } void LeakFolding::AccumulateLeaks(SCCInfo* dominator) { std::function<void(SCCInfo*)> walk([&](SCCInfo* scc) { if (scc->accumulator != dominator) { scc->accumulator = dominator; dominator->cuumulative_size += scc->size; dominator->cuumulative_count += scc->count; scc->node.Foreach([&](SCCInfo* ref) { walk(ref); }); } }); walk(dominator); } bool LeakFolding::FoldLeaks() { Allocator<LeakInfo> leak_allocator = allocator_; // Find all leaked allocations insert them into leak_map_ and leak_graph_ heap_walker_.ForEachAllocation([&](const Range& range, HeapWalker::AllocationInfo& allocation) { if (!allocation.referenced_from_root) { auto it = leak_map_.emplace(std::piecewise_construct, std::forward_as_tuple(range), std::forward_as_tuple(range, allocator_)); LeakInfo& leak = it.first->second; leak_graph_.push_back(&leak.node); } }); // Find references between leaked allocations and connect them in leak_graph_ for (auto& it : leak_map_) { LeakInfo& leak = it.second; heap_walker_.ForEachPtrInRange(leak.range, [&](Range& ptr_range, HeapWalker::AllocationInfo* ptr_info) { if (!ptr_info->referenced_from_root) { LeakInfo* ptr_leak = &leak_map_.at(ptr_range); leak.node.Edge(&ptr_leak->node); } }); } // Convert the cyclic graph to a DAG by grouping strongly connected components ComputeDAG(); // Compute dominators and cuumulative sizes for (auto& scc : leak_scc_) { if (scc->node.references_in.size() == 0) { scc->dominator = true; AccumulateLeaks(scc.get()); } } return true; } bool LeakFolding::Leaked(allocator::vector<LeakFolding::Leak>& leaked, size_t* num_leaks_out, size_t* leak_bytes_out) { size_t num_leaks = 0; size_t leak_bytes = 0; for (auto& it : leak_map_) { const LeakInfo& leak = it.second; num_leaks++; leak_bytes += leak.range.size(); } for (auto& it : leak_map_) { const LeakInfo& leak = it.second; if (leak.scc->dominator) { leaked.emplace_back(Leak{leak.range, leak.scc->cuumulative_count - 1, leak.scc->cuumulative_size - leak.range.size()}); } } if (num_leaks_out) { *num_leaks_out = num_leaks; } if (leak_bytes_out) { *leak_bytes_out = leak_bytes; } return true; } } // namespace android