// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Test - The Google C++ Testing Framework
//
// This file tests the universal value printer.
#include "gtest/gtest-printers.h"
#include <ctype.h>
#include <limits.h>
#include <string.h>
#include <algorithm>
#include <deque>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "gtest/gtest.h"
// hash_map and hash_set are available under Visual C++, or on Linux.
#if GTEST_HAS_UNORDERED_MAP_
# include <unordered_map> // NOLINT
#elif GTEST_HAS_HASH_MAP_
# include <hash_map> // NOLINT
#endif // GTEST_HAS_HASH_MAP_
#if GTEST_HAS_UNORDERED_SET_
# include <unordered_set> // NOLINT
#elif GTEST_HAS_HASH_SET_
# include <hash_set> // NOLINT
#endif // GTEST_HAS_HASH_SET_
#if GTEST_HAS_STD_FORWARD_LIST_
# include <forward_list> // NOLINT
#endif // GTEST_HAS_STD_FORWARD_LIST_
// Some user-defined types for testing the universal value printer.
// An anonymous enum type.
enum AnonymousEnum {
kAE1 = -1,
kAE2 = 1
};
// An enum without a user-defined printer.
enum EnumWithoutPrinter {
kEWP1 = -2,
kEWP2 = 42
};
// An enum with a << operator.
enum EnumWithStreaming {
kEWS1 = 10
};
std::ostream& operator<<(std::ostream& os, EnumWithStreaming e) {
return os << (e == kEWS1 ? "kEWS1" : "invalid");
}
// An enum with a PrintTo() function.
enum EnumWithPrintTo {
kEWPT1 = 1
};
void PrintTo(EnumWithPrintTo e, std::ostream* os) {
*os << (e == kEWPT1 ? "kEWPT1" : "invalid");
}
// A class implicitly convertible to BiggestInt.
class BiggestIntConvertible {
public:
operator ::testing::internal::BiggestInt() const { return 42; }
};
// A user-defined unprintable class template in the global namespace.
template <typename T>
class UnprintableTemplateInGlobal {
public:
UnprintableTemplateInGlobal() : value_() {}
private:
T value_;
};
// A user-defined streamable type in the global namespace.
class StreamableInGlobal {
public:
virtual ~StreamableInGlobal() {}
};
inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) {
os << "StreamableInGlobal";
}
void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) {
os << "StreamableInGlobal*";
}
namespace foo {
// A user-defined unprintable type in a user namespace.
class UnprintableInFoo {
public:
UnprintableInFoo() : z_(0) { memcpy(xy_, "\xEF\x12\x0\x0\x34\xAB\x0\x0", 8); }
double z() const { return z_; }
private:
char xy_[8];
double z_;
};
// A user-defined printable type in a user-chosen namespace.
struct PrintableViaPrintTo {
PrintableViaPrintTo() : value() {}
int value;
};
void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) {
*os << "PrintableViaPrintTo: " << x.value;
}
// A type with a user-defined << for printing its pointer.
struct PointerPrintable {
};
::std::ostream& operator<<(::std::ostream& os,
const PointerPrintable* /* x */) {
return os << "PointerPrintable*";
}
// A user-defined printable class template in a user-chosen namespace.
template <typename T>
class PrintableViaPrintToTemplate {
public:
explicit PrintableViaPrintToTemplate(const T& a_value) : value_(a_value) {}
const T& value() const { return value_; }
private:
T value_;
};
template <typename T>
void PrintTo(const PrintableViaPrintToTemplate<T>& x, ::std::ostream* os) {
*os << "PrintableViaPrintToTemplate: " << x.value();
}
// A user-defined streamable class template in a user namespace.
template <typename T>
class StreamableTemplateInFoo {
public:
StreamableTemplateInFoo() : value_() {}
const T& value() const { return value_; }
private:
T value_;
};
template <typename T>
inline ::std::ostream& operator<<(::std::ostream& os,
const StreamableTemplateInFoo<T>& x) {
return os << "StreamableTemplateInFoo: " << x.value();
}
// A user-defined streamable but recursivly-defined container type in
// a user namespace, it mimics therefore std::filesystem::path or
// boost::filesystem::path.
class PathLike {
public:
struct iterator
{
typedef PathLike value_type;
};
typedef iterator const_iterator;
PathLike() {}
iterator begin() const { return iterator(); }
iterator end() const { return iterator(); }
friend
::std::ostream& operator<<(::std::ostream& os, const PathLike&)
{
return os << "Streamable-PathLike";
}
};
} // namespace foo
namespace testing {
namespace gtest_printers_test {
using ::std::deque;
using ::std::list;
using ::std::make_pair;
using ::std::map;
using ::std::multimap;
using ::std::multiset;
using ::std::pair;
using ::std::set;
using ::std::vector;
using ::testing::PrintToString;
using ::testing::internal::FormatForComparisonFailureMessage;
using ::testing::internal::ImplicitCast_;
using ::testing::internal::NativeArray;
using ::testing::internal::RE;
using ::testing::internal::RelationToSourceReference;
using ::testing::internal::Strings;
using ::testing::internal::UniversalPrint;
using ::testing::internal::UniversalPrinter;
using ::testing::internal::UniversalTersePrint;
#if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_
using ::testing::internal::UniversalTersePrintTupleFieldsToStrings;
#endif
using ::testing::internal::string;
// The hash_* classes are not part of the C++ standard. STLport
// defines them in namespace std. MSVC defines them in ::stdext. GCC
// defines them in ::.
#if GTEST_HAS_UNORDERED_MAP_
#define GTEST_HAS_HASH_MAP_ 1
template<class Key, class T>
using hash_map = ::std::unordered_map<Key, T>;
template<class Key, class T>
using hash_multimap = ::std::unordered_multimap<Key, T>;
#elif GTEST_HAS_HASH_MAP_
#ifdef _STLP_HASH_MAP // We got <hash_map> from STLport.
using ::std::hash_map;
using ::std::hash_multimap;
#elif _MSC_VER
using ::stdext::hash_map;
using ::stdext::hash_multimap;
#endif
#endif
#if GTEST_HAS_UNORDERED_SET_
#define GTEST_HAS_HASH_SET_ 1
template<class Key>
using hash_set = ::std::unordered_set<Key>;
template<class Key>
using hash_multiset = ::std::unordered_multiset<Key>;
#elif GTEST_HAS_HASH_SET_
#ifdef _STLP_HASH_MAP // We got <hash_map> from STLport.
using ::std::hash_set;
using ::std::hash_multiset;
#elif _MSC_VER
using ::stdext::hash_set;
using ::stdext::hash_multiset;
#endif
#endif
// Prints a value to a string using the universal value printer. This
// is a helper for testing UniversalPrinter<T>::Print() for various types.
template <typename T>
std::string Print(const T& value) {
::std::stringstream ss;
UniversalPrinter<T>::Print(value, &ss);
return ss.str();
}
// Prints a value passed by reference to a string, using the universal
// value printer. This is a helper for testing
// UniversalPrinter<T&>::Print() for various types.
template <typename T>
std::string PrintByRef(const T& value) {
::std::stringstream ss;
UniversalPrinter<T&>::Print(value, &ss);
return ss.str();
}
// Tests printing various enum types.
TEST(PrintEnumTest, AnonymousEnum) {
EXPECT_EQ("-1", Print(kAE1));
EXPECT_EQ("1", Print(kAE2));
}
TEST(PrintEnumTest, EnumWithoutPrinter) {
EXPECT_EQ("-2", Print(kEWP1));
EXPECT_EQ("42", Print(kEWP2));
}
TEST(PrintEnumTest, EnumWithStreaming) {
EXPECT_EQ("kEWS1", Print(kEWS1));
EXPECT_EQ("invalid", Print(static_cast<EnumWithStreaming>(0)));
}
TEST(PrintEnumTest, EnumWithPrintTo) {
EXPECT_EQ("kEWPT1", Print(kEWPT1));
EXPECT_EQ("invalid", Print(static_cast<EnumWithPrintTo>(0)));
}
// Tests printing a class implicitly convertible to BiggestInt.
TEST(PrintClassTest, BiggestIntConvertible) {
EXPECT_EQ("42", Print(BiggestIntConvertible()));
}
// Tests printing various char types.
// char.
TEST(PrintCharTest, PlainChar) {
EXPECT_EQ("'\\0'", Print('\0'));
EXPECT_EQ("'\\'' (39, 0x27)", Print('\''));
EXPECT_EQ("'\"' (34, 0x22)", Print('"'));
EXPECT_EQ("'?' (63, 0x3F)", Print('?'));
EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\'));
EXPECT_EQ("'\\a' (7)", Print('\a'));
EXPECT_EQ("'\\b' (8)", Print('\b'));
EXPECT_EQ("'\\f' (12, 0xC)", Print('\f'));
EXPECT_EQ("'\\n' (10, 0xA)", Print('\n'));
EXPECT_EQ("'\\r' (13, 0xD)", Print('\r'));
EXPECT_EQ("'\\t' (9)", Print('\t'));
EXPECT_EQ("'\\v' (11, 0xB)", Print('\v'));
EXPECT_EQ("'\\x7F' (127)", Print('\x7F'));
EXPECT_EQ("'\\xFF' (255)", Print('\xFF'));
EXPECT_EQ("' ' (32, 0x20)", Print(' '));
EXPECT_EQ("'a' (97, 0x61)", Print('a'));
}
// signed char.
TEST(PrintCharTest, SignedChar) {
EXPECT_EQ("'\\0'", Print(static_cast<signed char>('\0')));
EXPECT_EQ("'\\xCE' (-50)",
Print(static_cast<signed char>(-50)));
}
// unsigned char.
TEST(PrintCharTest, UnsignedChar) {
EXPECT_EQ("'\\0'", Print(static_cast<unsigned char>('\0')));
EXPECT_EQ("'b' (98, 0x62)",
Print(static_cast<unsigned char>('b')));
}
// Tests printing other simple, built-in types.
// bool.
TEST(PrintBuiltInTypeTest, Bool) {
EXPECT_EQ("false", Print(false));
EXPECT_EQ("true", Print(true));
}
// wchar_t.
TEST(PrintBuiltInTypeTest, Wchar_t) {
EXPECT_EQ("L'\\0'", Print(L'\0'));
EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\''));
EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"'));
EXPECT_EQ("L'?' (63, 0x3F)", Print(L'?'));
EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\'));
EXPECT_EQ("L'\\a' (7)", Print(L'\a'));
EXPECT_EQ("L'\\b' (8)", Print(L'\b'));
EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f'));
EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n'));
EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r'));
EXPECT_EQ("L'\\t' (9)", Print(L'\t'));
EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v'));
EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F'));
EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF'));
EXPECT_EQ("L' ' (32, 0x20)", Print(L' '));
EXPECT_EQ("L'a' (97, 0x61)", Print(L'a'));
EXPECT_EQ("L'\\x576' (1398)", Print(static_cast<wchar_t>(0x576)));
EXPECT_EQ("L'\\xC74D' (51021)", Print(static_cast<wchar_t>(0xC74D)));
}
// Test that Int64 provides more storage than wchar_t.
TEST(PrintTypeSizeTest, Wchar_t) {
EXPECT_LT(sizeof(wchar_t), sizeof(testing::internal::Int64));
}
// Various integer types.
TEST(PrintBuiltInTypeTest, Integer) {
EXPECT_EQ("'\\xFF' (255)", Print(static_cast<unsigned char>(255))); // uint8
EXPECT_EQ("'\\x80' (-128)", Print(static_cast<signed char>(-128))); // int8
EXPECT_EQ("65535", Print(USHRT_MAX)); // uint16
EXPECT_EQ("-32768", Print(SHRT_MIN)); // int16
EXPECT_EQ("4294967295", Print(UINT_MAX)); // uint32
EXPECT_EQ("-2147483648", Print(INT_MIN)); // int32
EXPECT_EQ("18446744073709551615",
Print(static_cast<testing::internal::UInt64>(-1))); // uint64
EXPECT_EQ("-9223372036854775808",
Print(static_cast<testing::internal::Int64>(1) << 63)); // int64
}
// Size types.
TEST(PrintBuiltInTypeTest, Size_t) {
EXPECT_EQ("1", Print(sizeof('a'))); // size_t.
#if !GTEST_OS_WINDOWS
// Windows has no ssize_t type.
EXPECT_EQ("-2", Print(static_cast<ssize_t>(-2))); // ssize_t.
#endif // !GTEST_OS_WINDOWS
}
// Floating-points.
TEST(PrintBuiltInTypeTest, FloatingPoints) {
EXPECT_EQ("1.5", Print(1.5f)); // float
EXPECT_EQ("-2.5", Print(-2.5)); // double
}
// Since ::std::stringstream::operator<<(const void *) formats the pointer
// output differently with different compilers, we have to create the expected
// output first and use it as our expectation.
static std::string PrintPointer(const void* p) {
::std::stringstream expected_result_stream;
expected_result_stream << p;
return expected_result_stream.str();
}
// Tests printing C strings.
// const char*.
TEST(PrintCStringTest, Const) {
const char* p = "World";
EXPECT_EQ(PrintPointer(p) + " pointing to \"World\"", Print(p));
}
// char*.
TEST(PrintCStringTest, NonConst) {
char p[] = "Hi";
EXPECT_EQ(PrintPointer(p) + " pointing to \"Hi\"",
Print(static_cast<char*>(p)));
}
// NULL C string.
TEST(PrintCStringTest, Null) {
const char* p = NULL;
EXPECT_EQ("NULL", Print(p));
}
// Tests that C strings are escaped properly.
TEST(PrintCStringTest, EscapesProperly) {
const char* p = "'\"?\\\a\b\f\n\r\t\v\x7F\xFF a";
EXPECT_EQ(PrintPointer(p) + " pointing to \"'\\\"?\\\\\\a\\b\\f"
"\\n\\r\\t\\v\\x7F\\xFF a\"",
Print(p));
}
// MSVC compiler can be configured to define whar_t as a typedef
// of unsigned short. Defining an overload for const wchar_t* in that case
// would cause pointers to unsigned shorts be printed as wide strings,
// possibly accessing more memory than intended and causing invalid
// memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when
// wchar_t is implemented as a native type.
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
// const wchar_t*.
TEST(PrintWideCStringTest, Const) {
const wchar_t* p = L"World";
EXPECT_EQ(PrintPointer(p) + " pointing to L\"World\"", Print(p));
}
// wchar_t*.
TEST(PrintWideCStringTest, NonConst) {
wchar_t p[] = L"Hi";
EXPECT_EQ(PrintPointer(p) + " pointing to L\"Hi\"",
Print(static_cast<wchar_t*>(p)));
}
// NULL wide C string.
TEST(PrintWideCStringTest, Null) {
const wchar_t* p = NULL;
EXPECT_EQ("NULL", Print(p));
}
// Tests that wide C strings are escaped properly.
TEST(PrintWideCStringTest, EscapesProperly) {
const wchar_t s[] = {'\'', '"', '?', '\\', '\a', '\b', '\f', '\n', '\r',
'\t', '\v', 0xD3, 0x576, 0x8D3, 0xC74D, ' ', 'a', '\0'};
EXPECT_EQ(PrintPointer(s) + " pointing to L\"'\\\"?\\\\\\a\\b\\f"
"\\n\\r\\t\\v\\xD3\\x576\\x8D3\\xC74D a\"",
Print(static_cast<const wchar_t*>(s)));
}
#endif // native wchar_t
// Tests printing pointers to other char types.
// signed char*.
TEST(PrintCharPointerTest, SignedChar) {
signed char* p = reinterpret_cast<signed char*>(0x1234);
EXPECT_EQ(PrintPointer(p), Print(p));
p = NULL;
EXPECT_EQ("NULL", Print(p));
}
// const signed char*.
TEST(PrintCharPointerTest, ConstSignedChar) {
signed char* p = reinterpret_cast<signed char*>(0x1234);
EXPECT_EQ(PrintPointer(p), Print(p));
p = NULL;
EXPECT_EQ("NULL", Print(p));
}
// unsigned char*.
TEST(PrintCharPointerTest, UnsignedChar) {
unsigned char* p = reinterpret_cast<unsigned char*>(0x1234);
EXPECT_EQ(PrintPointer(p), Print(p));
p = NULL;
EXPECT_EQ("NULL", Print(p));
}
// const unsigned char*.
TEST(PrintCharPointerTest, ConstUnsignedChar) {
const unsigned char* p = reinterpret_cast<const unsigned char*>(0x1234);
EXPECT_EQ(PrintPointer(p), Print(p));
p = NULL;
EXPECT_EQ("NULL", Print(p));
}
// Tests printing pointers to simple, built-in types.
// bool*.
TEST(PrintPointerToBuiltInTypeTest, Bool) {
bool* p = reinterpret_cast<bool*>(0xABCD);
EXPECT_EQ(PrintPointer(p), Print(p));
p = NULL;
EXPECT_EQ("NULL", Print(p));
}
// void*.
TEST(PrintPointerToBuiltInTypeTest, Void) {
void* p = reinterpret_cast<void*>(0xABCD);
EXPECT_EQ(PrintPointer(p), Print(p));
p = NULL;
EXPECT_EQ("NULL", Print(p));
}
// const void*.
TEST(PrintPointerToBuiltInTypeTest, ConstVoid) {
const void* p = reinterpret_cast<const void*>(0xABCD);
EXPECT_EQ(PrintPointer(p), Print(p));
p = NULL;
EXPECT_EQ("NULL", Print(p));
}
// Tests printing pointers to pointers.
TEST(PrintPointerToPointerTest, IntPointerPointer) {
int** p = reinterpret_cast<int**>(0xABCD);
EXPECT_EQ(PrintPointer(p), Print(p));
p = NULL;
EXPECT_EQ("NULL", Print(p));
}
// Tests printing (non-member) function pointers.
void MyFunction(int /* n */) {}
TEST(PrintPointerTest, NonMemberFunctionPointer) {
// We cannot directly cast &MyFunction to const void* because the
// standard disallows casting between pointers to functions and
// pointers to objects, and some compilers (e.g. GCC 3.4) enforce
// this limitation.
EXPECT_EQ(
PrintPointer(reinterpret_cast<const void*>(
reinterpret_cast<internal::BiggestInt>(&MyFunction))),
Print(&MyFunction));
int (*p)(bool) = NULL; // NOLINT
EXPECT_EQ("NULL", Print(p));
}
// An assertion predicate determining whether a one string is a prefix for
// another.
template <typename StringType>
AssertionResult HasPrefix(const StringType& str, const StringType& prefix) {
if (str.find(prefix, 0) == 0)
return AssertionSuccess();
const bool is_wide_string = sizeof(prefix[0]) > 1;
const char* const begin_string_quote = is_wide_string ? "L\"" : "\"";
return AssertionFailure()
<< begin_string_quote << prefix << "\" is not a prefix of "
<< begin_string_quote << str << "\"\n";
}
// Tests printing member variable pointers. Although they are called
// pointers, they don't point to a location in the address space.
// Their representation is implementation-defined. Thus they will be
// printed as raw bytes.
struct Foo {
public:
virtual ~Foo() {}
int MyMethod(char x) { return x + 1; }
virtual char MyVirtualMethod(int /* n */) { return 'a'; }
int value;
};
TEST(PrintPointerTest, MemberVariablePointer) {
EXPECT_TRUE(HasPrefix(Print(&Foo::value),
Print(sizeof(&Foo::value)) + "-byte object "));
int (Foo::*p) = NULL; // NOLINT
EXPECT_TRUE(HasPrefix(Print(p),
Print(sizeof(p)) + "-byte object "));
}
// Tests printing member function pointers. Although they are called
// pointers, they don't point to a location in the address space.
// Their representation is implementation-defined. Thus they will be
// printed as raw bytes.
TEST(PrintPointerTest, MemberFunctionPointer) {
EXPECT_TRUE(HasPrefix(Print(&Foo::MyMethod),
Print(sizeof(&Foo::MyMethod)) + "-byte object "));
EXPECT_TRUE(
HasPrefix(Print(&Foo::MyVirtualMethod),
Print(sizeof((&Foo::MyVirtualMethod))) + "-byte object "));
int (Foo::*p)(char) = NULL; // NOLINT
EXPECT_TRUE(HasPrefix(Print(p),
Print(sizeof(p)) + "-byte object "));
}
// Tests printing C arrays.
// The difference between this and Print() is that it ensures that the
// argument is a reference to an array.
template <typename T, size_t N>
std::string PrintArrayHelper(T (&a)[N]) {
return Print(a);
}
// One-dimensional array.
TEST(PrintArrayTest, OneDimensionalArray) {
int a[5] = { 1, 2, 3, 4, 5 };
EXPECT_EQ("{ 1, 2, 3, 4, 5 }", PrintArrayHelper(a));
}
// Two-dimensional array.
TEST(PrintArrayTest, TwoDimensionalArray) {
int a[2][5] = {
{ 1, 2, 3, 4, 5 },
{ 6, 7, 8, 9, 0 }
};
EXPECT_EQ("{ { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }", PrintArrayHelper(a));
}
// Array of const elements.
TEST(PrintArrayTest, ConstArray) {
const bool a[1] = { false };
EXPECT_EQ("{ false }", PrintArrayHelper(a));
}
// char array without terminating NUL.
TEST(PrintArrayTest, CharArrayWithNoTerminatingNul) {
// Array a contains '\0' in the middle and doesn't end with '\0'.
char a[] = { 'H', '\0', 'i' };
EXPECT_EQ("\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
}
// const char array with terminating NUL.
TEST(PrintArrayTest, ConstCharArrayWithTerminatingNul) {
const char a[] = "\0Hi";
EXPECT_EQ("\"\\0Hi\"", PrintArrayHelper(a));
}
// const wchar_t array without terminating NUL.
TEST(PrintArrayTest, WCharArrayWithNoTerminatingNul) {
// Array a contains '\0' in the middle and doesn't end with '\0'.
const wchar_t a[] = { L'H', L'\0', L'i' };
EXPECT_EQ("L\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
}
// wchar_t array with terminating NUL.
TEST(PrintArrayTest, WConstCharArrayWithTerminatingNul) {
const wchar_t a[] = L"\0Hi";
EXPECT_EQ("L\"\\0Hi\"", PrintArrayHelper(a));
}
// Array of objects.
TEST(PrintArrayTest, ObjectArray) {
std::string a[3] = {"Hi", "Hello", "Ni hao"};
EXPECT_EQ("{ \"Hi\", \"Hello\", \"Ni hao\" }", PrintArrayHelper(a));
}
// Array with many elements.
TEST(PrintArrayTest, BigArray) {
int a[100] = { 1, 2, 3 };
EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0 }",
PrintArrayHelper(a));
}
// Tests printing ::string and ::std::string.
#if GTEST_HAS_GLOBAL_STRING
// ::string.
TEST(PrintStringTest, StringInGlobalNamespace) {
const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
const ::string str(s, sizeof(s));
EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
Print(str));
}
#endif // GTEST_HAS_GLOBAL_STRING
// ::std::string.
TEST(PrintStringTest, StringInStdNamespace) {
const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
const ::std::string str(s, sizeof(s));
EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
Print(str));
}
TEST(PrintStringTest, StringAmbiguousHex) {
// "\x6BANANA" is ambiguous, it can be interpreted as starting with either of:
// '\x6', '\x6B', or '\x6BA'.
// a hex escaping sequence following by a decimal digit
EXPECT_EQ("\"0\\x12\" \"3\"", Print(::std::string("0\x12" "3")));
// a hex escaping sequence following by a hex digit (lower-case)
EXPECT_EQ("\"mm\\x6\" \"bananas\"", Print(::std::string("mm\x6" "bananas")));
// a hex escaping sequence following by a hex digit (upper-case)
EXPECT_EQ("\"NOM\\x6\" \"BANANA\"", Print(::std::string("NOM\x6" "BANANA")));
// a hex escaping sequence following by a non-xdigit
EXPECT_EQ("\"!\\x5-!\"", Print(::std::string("!\x5-!")));
}
// Tests printing ::wstring and ::std::wstring.
#if GTEST_HAS_GLOBAL_WSTRING
// ::wstring.
TEST(PrintWideStringTest, StringInGlobalNamespace) {
const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
const ::wstring str(s, sizeof(s)/sizeof(wchar_t));
EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
"\\xD3\\x576\\x8D3\\xC74D a\\0\"",
Print(str));
}
#endif // GTEST_HAS_GLOBAL_WSTRING
#if GTEST_HAS_STD_WSTRING
// ::std::wstring.
TEST(PrintWideStringTest, StringInStdNamespace) {
const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
const ::std::wstring str(s, sizeof(s)/sizeof(wchar_t));
EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
"\\xD3\\x576\\x8D3\\xC74D a\\0\"",
Print(str));
}
TEST(PrintWideStringTest, StringAmbiguousHex) {
// same for wide strings.
EXPECT_EQ("L\"0\\x12\" L\"3\"", Print(::std::wstring(L"0\x12" L"3")));
EXPECT_EQ("L\"mm\\x6\" L\"bananas\"",
Print(::std::wstring(L"mm\x6" L"bananas")));
EXPECT_EQ("L\"NOM\\x6\" L\"BANANA\"",
Print(::std::wstring(L"NOM\x6" L"BANANA")));
EXPECT_EQ("L\"!\\x5-!\"", Print(::std::wstring(L"!\x5-!")));
}
#endif // GTEST_HAS_STD_WSTRING
// Tests printing types that support generic streaming (i.e. streaming
// to std::basic_ostream<Char, CharTraits> for any valid Char and
// CharTraits types).
// Tests printing a non-template type that supports generic streaming.
class AllowsGenericStreaming {};
template <typename Char, typename CharTraits>
std::basic_ostream<Char, CharTraits>& operator<<(
std::basic_ostream<Char, CharTraits>& os,
const AllowsGenericStreaming& /* a */) {
return os << "AllowsGenericStreaming";
}
TEST(PrintTypeWithGenericStreamingTest, NonTemplateType) {
AllowsGenericStreaming a;
EXPECT_EQ("AllowsGenericStreaming", Print(a));
}
// Tests printing a template type that supports generic streaming.
template <typename T>
class AllowsGenericStreamingTemplate {};
template <typename Char, typename CharTraits, typename T>
std::basic_ostream<Char, CharTraits>& operator<<(
std::basic_ostream<Char, CharTraits>& os,
const AllowsGenericStreamingTemplate<T>& /* a */) {
return os << "AllowsGenericStreamingTemplate";
}
TEST(PrintTypeWithGenericStreamingTest, TemplateType) {
AllowsGenericStreamingTemplate<int> a;
EXPECT_EQ("AllowsGenericStreamingTemplate", Print(a));
}
// Tests printing a type that supports generic streaming and can be
// implicitly converted to another printable type.
template <typename T>
class AllowsGenericStreamingAndImplicitConversionTemplate {
public:
operator bool() const { return false; }
};
template <typename Char, typename CharTraits, typename T>
std::basic_ostream<Char, CharTraits>& operator<<(
std::basic_ostream<Char, CharTraits>& os,
const AllowsGenericStreamingAndImplicitConversionTemplate<T>& /* a */) {
return os << "AllowsGenericStreamingAndImplicitConversionTemplate";
}
TEST(PrintTypeWithGenericStreamingTest, TypeImplicitlyConvertible) {
AllowsGenericStreamingAndImplicitConversionTemplate<int> a;
EXPECT_EQ("AllowsGenericStreamingAndImplicitConversionTemplate", Print(a));
}
#if GTEST_HAS_STRING_PIECE_
// Tests printing StringPiece.
TEST(PrintStringPieceTest, SimpleStringPiece) {
const StringPiece sp = "Hello";
EXPECT_EQ("\"Hello\"", Print(sp));
}
TEST(PrintStringPieceTest, UnprintableCharacters) {
const char str[] = "NUL (\0) and \r\t";
const StringPiece sp(str, sizeof(str) - 1);
EXPECT_EQ("\"NUL (\\0) and \\r\\t\"", Print(sp));
}
#endif // GTEST_HAS_STRING_PIECE_
// Tests printing STL containers.
TEST(PrintStlContainerTest, EmptyDeque) {
deque<char> empty;
EXPECT_EQ("{}", Print(empty));
}
TEST(PrintStlContainerTest, NonEmptyDeque) {
deque<int> non_empty;
non_empty.push_back(1);
non_empty.push_back(3);
EXPECT_EQ("{ 1, 3 }", Print(non_empty));
}
#if GTEST_HAS_HASH_MAP_
TEST(PrintStlContainerTest, OneElementHashMap) {
hash_map<int, char> map1;
map1[1] = 'a';
EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1));
}
TEST(PrintStlContainerTest, HashMultiMap) {
hash_multimap<int, bool> map1;
map1.insert(make_pair(5, true));
map1.insert(make_pair(5, false));
// Elements of hash_multimap can be printed in any order.
const std::string result = Print(map1);
EXPECT_TRUE(result == "{ (5, true), (5, false) }" ||
result == "{ (5, false), (5, true) }")
<< " where Print(map1) returns \"" << result << "\".";
}
#endif // GTEST_HAS_HASH_MAP_
#if GTEST_HAS_HASH_SET_
TEST(PrintStlContainerTest, HashSet) {
hash_set<int> set1;
set1.insert(1);
EXPECT_EQ("{ 1 }", Print(set1));
}
TEST(PrintStlContainerTest, HashMultiSet) {
const int kSize = 5;
int a[kSize] = { 1, 1, 2, 5, 1 };
hash_multiset<int> set1(a, a + kSize);
// Elements of hash_multiset can be printed in any order.
const std::string result = Print(set1);
const std::string expected_pattern = "{ d, d, d, d, d }"; // d means a digit.
// Verifies the result matches the expected pattern; also extracts
// the numbers in the result.
ASSERT_EQ(expected_pattern.length(), result.length());
std::vector<int> numbers;
for (size_t i = 0; i != result.length(); i++) {
if (expected_pattern[i] == 'd') {
ASSERT_NE(isdigit(static_cast<unsigned char>(result[i])), 0);
numbers.push_back(result[i] - '0');
} else {
EXPECT_EQ(expected_pattern[i], result[i]) << " where result is "
<< result;
}
}
// Makes sure the result contains the right numbers.
std::sort(numbers.begin(), numbers.end());
std::sort(a, a + kSize);
EXPECT_TRUE(std::equal(a, a + kSize, numbers.begin()));
}
#endif // GTEST_HAS_HASH_SET_
TEST(PrintStlContainerTest, List) {
const std::string a[] = {"hello", "world"};
const list<std::string> strings(a, a + 2);
EXPECT_EQ("{ \"hello\", \"world\" }", Print(strings));
}
TEST(PrintStlContainerTest, Map) {
map<int, bool> map1;
map1[1] = true;
map1[5] = false;
map1[3] = true;
EXPECT_EQ("{ (1, true), (3, true), (5, false) }", Print(map1));
}
TEST(PrintStlContainerTest, MultiMap) {
multimap<bool, int> map1;
// The make_pair template function would deduce the type as
// pair<bool, int> here, and since the key part in a multimap has to
// be constant, without a templated ctor in the pair class (as in
// libCstd on Solaris), make_pair call would fail to compile as no
// implicit conversion is found. Thus explicit typename is used
// here instead.
map1.insert(pair<const bool, int>(true, 0));
map1.insert(pair<const bool, int>(true, 1));
map1.insert(pair<const bool, int>(false, 2));
EXPECT_EQ("{ (false, 2), (true, 0), (true, 1) }", Print(map1));
}
TEST(PrintStlContainerTest, Set) {
const unsigned int a[] = { 3, 0, 5 };
set<unsigned int> set1(a, a + 3);
EXPECT_EQ("{ 0, 3, 5 }", Print(set1));
}
TEST(PrintStlContainerTest, MultiSet) {
const int a[] = { 1, 1, 2, 5, 1 };
multiset<int> set1(a, a + 5);
EXPECT_EQ("{ 1, 1, 1, 2, 5 }", Print(set1));
}
#if GTEST_HAS_STD_FORWARD_LIST_
// <slist> is available on Linux in the google3 mode, but not on
// Windows or Mac OS X.
TEST(PrintStlContainerTest, SinglyLinkedList) {
int a[] = { 9, 2, 8 };
const std::forward_list<int> ints(a, a + 3);
EXPECT_EQ("{ 9, 2, 8 }", Print(ints));
}
#endif // GTEST_HAS_STD_FORWARD_LIST_
TEST(PrintStlContainerTest, Pair) {
pair<const bool, int> p(true, 5);
EXPECT_EQ("(true, 5)", Print(p));
}
TEST(PrintStlContainerTest, Vector) {
vector<int> v;
v.push_back(1);
v.push_back(2);
EXPECT_EQ("{ 1, 2 }", Print(v));
}
TEST(PrintStlContainerTest, LongSequence) {
const int a[100] = { 1, 2, 3 };
const vector<int> v(a, a + 100);
EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "
"0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... }", Print(v));
}
TEST(PrintStlContainerTest, NestedContainer) {
const int a1[] = { 1, 2 };
const int a2[] = { 3, 4, 5 };
const list<int> l1(a1, a1 + 2);
const list<int> l2(a2, a2 + 3);
vector<list<int> > v;
v.push_back(l1);
v.push_back(l2);
EXPECT_EQ("{ { 1, 2 }, { 3, 4, 5 } }", Print(v));
}
TEST(PrintStlContainerTest, OneDimensionalNativeArray) {
const int a[3] = { 1, 2, 3 };
NativeArray<int> b(a, 3, RelationToSourceReference());
EXPECT_EQ("{ 1, 2, 3 }", Print(b));
}
TEST(PrintStlContainerTest, TwoDimensionalNativeArray) {
const int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
NativeArray<int[3]> b(a, 2, RelationToSourceReference());
EXPECT_EQ("{ { 1, 2, 3 }, { 4, 5, 6 } }", Print(b));
}
// Tests that a class named iterator isn't treated as a container.
struct iterator {
char x;
};
TEST(PrintStlContainerTest, Iterator) {
iterator it = {};
EXPECT_EQ("1-byte object <00>", Print(it));
}
// Tests that a class named const_iterator isn't treated as a container.
struct const_iterator {
char x;
};
TEST(PrintStlContainerTest, ConstIterator) {
const_iterator it = {};
EXPECT_EQ("1-byte object <00>", Print(it));
}
#if GTEST_HAS_TR1_TUPLE
// Tests printing ::std::tr1::tuples.
// Tuples of various arities.
TEST(PrintTr1TupleTest, VariousSizes) {
::std::tr1::tuple<> t0;
EXPECT_EQ("()", Print(t0));
::std::tr1::tuple<int> t1(5);
EXPECT_EQ("(5)", Print(t1));
::std::tr1::tuple<char, bool> t2('a', true);
EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
::std::tr1::tuple<bool, int, int> t3(false, 2, 3);
EXPECT_EQ("(false, 2, 3)", Print(t3));
::std::tr1::tuple<bool, int, int, int> t4(false, 2, 3, 4);
EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
::std::tr1::tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true);
EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5));
::std::tr1::tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6);
EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6));
::std::tr1::tuple<bool, int, int, int, bool, int, int> t7(
false, 2, 3, 4, true, 6, 7);
EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7));
::std::tr1::tuple<bool, int, int, int, bool, int, int, bool> t8(
false, 2, 3, 4, true, 6, 7, true);
EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8));
::std::tr1::tuple<bool, int, int, int, bool, int, int, bool, int> t9(
false, 2, 3, 4, true, 6, 7, true, 9);
EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9));
const char* const str = "8";
// VC++ 2010's implementation of tuple of C++0x is deficient, requiring
// an explicit type cast of NULL to be used.
::std::tr1::tuple<bool, char, short, testing::internal::Int32, // NOLINT
testing::internal::Int64, float, double, const char*, void*,
std::string>
t10(false, 'a', static_cast<short>(3), 4, 5, 1.5F, -2.5, str,
ImplicitCast_<void*>(NULL), "10");
EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
" pointing to \"8\", NULL, \"10\")",
Print(t10));
}
// Nested tuples.
TEST(PrintTr1TupleTest, NestedTuple) {
::std::tr1::tuple< ::std::tr1::tuple<int, bool>, char> nested(
::std::tr1::make_tuple(5, true), 'a');
EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
}
#endif // GTEST_HAS_TR1_TUPLE
#if GTEST_HAS_STD_TUPLE_
// Tests printing ::std::tuples.
// Tuples of various arities.
TEST(PrintStdTupleTest, VariousSizes) {
::std::tuple<> t0;
EXPECT_EQ("()", Print(t0));
::std::tuple<int> t1(5);
EXPECT_EQ("(5)", Print(t1));
::std::tuple<char, bool> t2('a', true);
EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
::std::tuple<bool, int, int> t3(false, 2, 3);
EXPECT_EQ("(false, 2, 3)", Print(t3));
::std::tuple<bool, int, int, int> t4(false, 2, 3, 4);
EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
::std::tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true);
EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5));
::std::tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6);
EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6));
::std::tuple<bool, int, int, int, bool, int, int> t7(
false, 2, 3, 4, true, 6, 7);
EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7));
::std::tuple<bool, int, int, int, bool, int, int, bool> t8(
false, 2, 3, 4, true, 6, 7, true);
EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8));
::std::tuple<bool, int, int, int, bool, int, int, bool, int> t9(
false, 2, 3, 4, true, 6, 7, true, 9);
EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9));
const char* const str = "8";
// VC++ 2010's implementation of tuple of C++0x is deficient, requiring
// an explicit type cast of NULL to be used.
::std::tuple<bool, char, short, testing::internal::Int32, // NOLINT
testing::internal::Int64, float, double, const char*, void*,
std::string>
t10(false, 'a', static_cast<short>(3), 4, 5, 1.5F, -2.5, str,
ImplicitCast_<void*>(NULL), "10");
EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
" pointing to \"8\", NULL, \"10\")",
Print(t10));
}
// Nested tuples.
TEST(PrintStdTupleTest, NestedTuple) {
::std::tuple< ::std::tuple<int, bool>, char> nested(
::std::make_tuple(5, true), 'a');
EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
}
#endif // GTEST_LANG_CXX11
// Tests printing user-defined unprintable types.
// Unprintable types in the global namespace.
TEST(PrintUnprintableTypeTest, InGlobalNamespace) {
EXPECT_EQ("1-byte object <00>",
Print(UnprintableTemplateInGlobal<char>()));
}
// Unprintable types in a user namespace.
TEST(PrintUnprintableTypeTest, InUserNamespace) {
EXPECT_EQ("16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
Print(::foo::UnprintableInFoo()));
}
// Unprintable types are that too big to be printed completely.
struct Big {
Big() { memset(array, 0, sizeof(array)); }
char array[257];
};
TEST(PrintUnpritableTypeTest, BigObject) {
EXPECT_EQ("257-byte object <00-00 00-00 00-00 00-00 00-00 00-00 "
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
"00-00 00-00 00-00 00-00 00-00 00-00 ... 00-00 00-00 00-00 "
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00>",
Print(Big()));
}
// Tests printing user-defined streamable types.
// Streamable types in the global namespace.
TEST(PrintStreamableTypeTest, InGlobalNamespace) {
StreamableInGlobal x;
EXPECT_EQ("StreamableInGlobal", Print(x));
EXPECT_EQ("StreamableInGlobal*", Print(&x));
}
// Printable template types in a user namespace.
TEST(PrintStreamableTypeTest, TemplateTypeInUserNamespace) {
EXPECT_EQ("StreamableTemplateInFoo: 0",
Print(::foo::StreamableTemplateInFoo<int>()));
}
// Tests printing a user-defined recursive container type that has a <<
// operator.
TEST(PrintStreamableTypeTest, PathLikeInUserNamespace) {
::foo::PathLike x;
EXPECT_EQ("Streamable-PathLike", Print(x));
const ::foo::PathLike cx;
EXPECT_EQ("Streamable-PathLike", Print(cx));
}
// Tests printing user-defined types that have a PrintTo() function.
TEST(PrintPrintableTypeTest, InUserNamespace) {
EXPECT_EQ("PrintableViaPrintTo: 0",
Print(::foo::PrintableViaPrintTo()));
}
// Tests printing a pointer to a user-defined type that has a <<
// operator for its pointer.
TEST(PrintPrintableTypeTest, PointerInUserNamespace) {
::foo::PointerPrintable x;
EXPECT_EQ("PointerPrintable*", Print(&x));
}
// Tests printing user-defined class template that have a PrintTo() function.
TEST(PrintPrintableTypeTest, TemplateInUserNamespace) {
EXPECT_EQ("PrintableViaPrintToTemplate: 5",
Print(::foo::PrintableViaPrintToTemplate<int>(5)));
}
// Tests that the universal printer prints both the address and the
// value of a reference.
TEST(PrintReferenceTest, PrintsAddressAndValue) {
int n = 5;
EXPECT_EQ("@" + PrintPointer(&n) + " 5", PrintByRef(n));
int a[2][3] = {
{ 0, 1, 2 },
{ 3, 4, 5 }
};
EXPECT_EQ("@" + PrintPointer(a) + " { { 0, 1, 2 }, { 3, 4, 5 } }",
PrintByRef(a));
const ::foo::UnprintableInFoo x;
EXPECT_EQ("@" + PrintPointer(&x) + " 16-byte object "
"<EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
PrintByRef(x));
}
// Tests that the universal printer prints a function pointer passed by
// reference.
TEST(PrintReferenceTest, HandlesFunctionPointer) {
void (*fp)(int n) = &MyFunction;
const std::string fp_pointer_string =
PrintPointer(reinterpret_cast<const void*>(&fp));
// We cannot directly cast &MyFunction to const void* because the
// standard disallows casting between pointers to functions and
// pointers to objects, and some compilers (e.g. GCC 3.4) enforce
// this limitation.
const std::string fp_string = PrintPointer(reinterpret_cast<const void*>(
reinterpret_cast<internal::BiggestInt>(fp)));
EXPECT_EQ("@" + fp_pointer_string + " " + fp_string,
PrintByRef(fp));
}
// Tests that the universal printer prints a member function pointer
// passed by reference.
TEST(PrintReferenceTest, HandlesMemberFunctionPointer) {
int (Foo::*p)(char ch) = &Foo::MyMethod;
EXPECT_TRUE(HasPrefix(
PrintByRef(p),
"@" + PrintPointer(reinterpret_cast<const void*>(&p)) + " " +
Print(sizeof(p)) + "-byte object "));
char (Foo::*p2)(int n) = &Foo::MyVirtualMethod;
EXPECT_TRUE(HasPrefix(
PrintByRef(p2),
"@" + PrintPointer(reinterpret_cast<const void*>(&p2)) + " " +
Print(sizeof(p2)) + "-byte object "));
}
// Tests that the universal printer prints a member variable pointer
// passed by reference.
TEST(PrintReferenceTest, HandlesMemberVariablePointer) {
int (Foo::*p) = &Foo::value; // NOLINT
EXPECT_TRUE(HasPrefix(
PrintByRef(p),
"@" + PrintPointer(&p) + " " + Print(sizeof(p)) + "-byte object "));
}
// Tests that FormatForComparisonFailureMessage(), which is used to print
// an operand in a comparison assertion (e.g. ASSERT_EQ) when the assertion
// fails, formats the operand in the desired way.
// scalar
TEST(FormatForComparisonFailureMessageTest, WorksForScalar) {
EXPECT_STREQ("123",
FormatForComparisonFailureMessage(123, 124).c_str());
}
// non-char pointer
TEST(FormatForComparisonFailureMessageTest, WorksForNonCharPointer) {
int n = 0;
EXPECT_EQ(PrintPointer(&n),
FormatForComparisonFailureMessage(&n, &n).c_str());
}
// non-char array
TEST(FormatForComparisonFailureMessageTest, FormatsNonCharArrayAsPointer) {
// In expression 'array == x', 'array' is compared by pointer.
// Therefore we want to print an array operand as a pointer.
int n[] = { 1, 2, 3 };
EXPECT_EQ(PrintPointer(n),
FormatForComparisonFailureMessage(n, n).c_str());
}
// Tests formatting a char pointer when it's compared with another pointer.
// In this case we want to print it as a raw pointer, as the comparision is by
// pointer.
// char pointer vs pointer
TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsPointer) {
// In expression 'p == x', where 'p' and 'x' are (const or not) char
// pointers, the operands are compared by pointer. Therefore we
// want to print 'p' as a pointer instead of a C string (we don't
// even know if it's supposed to point to a valid C string).
// const char*
const char* s = "hello";
EXPECT_EQ(PrintPointer(s),
FormatForComparisonFailureMessage(s, s).c_str());
// char*
char ch = 'a';
EXPECT_EQ(PrintPointer(&ch),
FormatForComparisonFailureMessage(&ch, &ch).c_str());
}
// wchar_t pointer vs pointer
TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsPointer) {
// In expression 'p == x', where 'p' and 'x' are (const or not) char
// pointers, the operands are compared by pointer. Therefore we
// want to print 'p' as a pointer instead of a wide C string (we don't
// even know if it's supposed to point to a valid wide C string).
// const wchar_t*
const wchar_t* s = L"hello";
EXPECT_EQ(PrintPointer(s),
FormatForComparisonFailureMessage(s, s).c_str());
// wchar_t*
wchar_t ch = L'a';
EXPECT_EQ(PrintPointer(&ch),
FormatForComparisonFailureMessage(&ch, &ch).c_str());
}
// Tests formatting a char pointer when it's compared to a string object.
// In this case we want to print the char pointer as a C string.
#if GTEST_HAS_GLOBAL_STRING
// char pointer vs ::string
TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsString) {
const char* s = "hello \"world";
EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped.
FormatForComparisonFailureMessage(s, ::string()).c_str());
// char*
char str[] = "hi\1";
char* p = str;
EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped.
FormatForComparisonFailureMessage(p, ::string()).c_str());
}
#endif
// char pointer vs std::string
TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsStdString) {
const char* s = "hello \"world";
EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped.
FormatForComparisonFailureMessage(s, ::std::string()).c_str());
// char*
char str[] = "hi\1";
char* p = str;
EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped.
FormatForComparisonFailureMessage(p, ::std::string()).c_str());
}
#if GTEST_HAS_GLOBAL_WSTRING
// wchar_t pointer vs ::wstring
TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsWString) {
const wchar_t* s = L"hi \"world";
EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped.
FormatForComparisonFailureMessage(s, ::wstring()).c_str());
// wchar_t*
wchar_t str[] = L"hi\1";
wchar_t* p = str;
EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped.
FormatForComparisonFailureMessage(p, ::wstring()).c_str());
}
#endif
#if GTEST_HAS_STD_WSTRING
// wchar_t pointer vs std::wstring
TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsStdWString) {
const wchar_t* s = L"hi \"world";
EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped.
FormatForComparisonFailureMessage(s, ::std::wstring()).c_str());
// wchar_t*
wchar_t str[] = L"hi\1";
wchar_t* p = str;
EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped.
FormatForComparisonFailureMessage(p, ::std::wstring()).c_str());
}
#endif
// Tests formatting a char array when it's compared with a pointer or array.
// In this case we want to print the array as a row pointer, as the comparison
// is by pointer.
// char array vs pointer
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsPointer) {
char str[] = "hi \"world\"";
char* p = NULL;
EXPECT_EQ(PrintPointer(str),
FormatForComparisonFailureMessage(str, p).c_str());
}
// char array vs char array
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsCharArray) {
const char str[] = "hi \"world\"";
EXPECT_EQ(PrintPointer(str),
FormatForComparisonFailureMessage(str, str).c_str());
}
// wchar_t array vs pointer
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsPointer) {
wchar_t str[] = L"hi \"world\"";
wchar_t* p = NULL;
EXPECT_EQ(PrintPointer(str),
FormatForComparisonFailureMessage(str, p).c_str());
}
// wchar_t array vs wchar_t array
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWCharArray) {
const wchar_t str[] = L"hi \"world\"";
EXPECT_EQ(PrintPointer(str),
FormatForComparisonFailureMessage(str, str).c_str());
}
// Tests formatting a char array when it's compared with a string object.
// In this case we want to print the array as a C string.
#if GTEST_HAS_GLOBAL_STRING
// char array vs string
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsString) {
const char str[] = "hi \"w\0rld\"";
EXPECT_STREQ("\"hi \\\"w\"", // The content should be escaped.
// Embedded NUL terminates the string.
FormatForComparisonFailureMessage(str, ::string()).c_str());
}
#endif
// char array vs std::string
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsStdString) {
const char str[] = "hi \"world\"";
EXPECT_STREQ("\"hi \\\"world\\\"\"", // The content should be escaped.
FormatForComparisonFailureMessage(str, ::std::string()).c_str());
}
#if GTEST_HAS_GLOBAL_WSTRING
// wchar_t array vs wstring
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWString) {
const wchar_t str[] = L"hi \"world\"";
EXPECT_STREQ("L\"hi \\\"world\\\"\"", // The content should be escaped.
FormatForComparisonFailureMessage(str, ::wstring()).c_str());
}
#endif
#if GTEST_HAS_STD_WSTRING
// wchar_t array vs std::wstring
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsStdWString) {
const wchar_t str[] = L"hi \"w\0rld\"";
EXPECT_STREQ(
"L\"hi \\\"w\"", // The content should be escaped.
// Embedded NUL terminates the string.
FormatForComparisonFailureMessage(str, ::std::wstring()).c_str());
}
#endif
// Useful for testing PrintToString(). We cannot use EXPECT_EQ()
// there as its implementation uses PrintToString(). The caller must
// ensure that 'value' has no side effect.
#define EXPECT_PRINT_TO_STRING_(value, expected_string) \
EXPECT_TRUE(PrintToString(value) == (expected_string)) \
<< " where " #value " prints as " << (PrintToString(value))
TEST(PrintToStringTest, WorksForScalar) {
EXPECT_PRINT_TO_STRING_(123, "123");
}
TEST(PrintToStringTest, WorksForPointerToConstChar) {
const char* p = "hello";
EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
}
TEST(PrintToStringTest, WorksForPointerToNonConstChar) {
char s[] = "hello";
char* p = s;
EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
}
TEST(PrintToStringTest, EscapesForPointerToConstChar) {
const char* p = "hello\n";
EXPECT_PRINT_TO_STRING_(p, "\"hello\\n\"");
}
TEST(PrintToStringTest, EscapesForPointerToNonConstChar) {
char s[] = "hello\1";
char* p = s;
EXPECT_PRINT_TO_STRING_(p, "\"hello\\x1\"");
}
TEST(PrintToStringTest, WorksForArray) {
int n[3] = { 1, 2, 3 };
EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }");
}
TEST(PrintToStringTest, WorksForCharArray) {
char s[] = "hello";
EXPECT_PRINT_TO_STRING_(s, "\"hello\"");
}
TEST(PrintToStringTest, WorksForCharArrayWithEmbeddedNul) {
const char str_with_nul[] = "hello\0 world";
EXPECT_PRINT_TO_STRING_(str_with_nul, "\"hello\\0 world\"");
char mutable_str_with_nul[] = "hello\0 world";
EXPECT_PRINT_TO_STRING_(mutable_str_with_nul, "\"hello\\0 world\"");
}
#undef EXPECT_PRINT_TO_STRING_
TEST(UniversalTersePrintTest, WorksForNonReference) {
::std::stringstream ss;
UniversalTersePrint(123, &ss);
EXPECT_EQ("123", ss.str());
}
TEST(UniversalTersePrintTest, WorksForReference) {
const int& n = 123;
::std::stringstream ss;
UniversalTersePrint(n, &ss);
EXPECT_EQ("123", ss.str());
}
TEST(UniversalTersePrintTest, WorksForCString) {
const char* s1 = "abc";
::std::stringstream ss1;
UniversalTersePrint(s1, &ss1);
EXPECT_EQ("\"abc\"", ss1.str());
char* s2 = const_cast<char*>(s1);
::std::stringstream ss2;
UniversalTersePrint(s2, &ss2);
EXPECT_EQ("\"abc\"", ss2.str());
const char* s3 = NULL;
::std::stringstream ss3;
UniversalTersePrint(s3, &ss3);
EXPECT_EQ("NULL", ss3.str());
}
TEST(UniversalPrintTest, WorksForNonReference) {
::std::stringstream ss;
UniversalPrint(123, &ss);
EXPECT_EQ("123", ss.str());
}
TEST(UniversalPrintTest, WorksForReference) {
const int& n = 123;
::std::stringstream ss;
UniversalPrint(n, &ss);
EXPECT_EQ("123", ss.str());
}
TEST(UniversalPrintTest, WorksForCString) {
const char* s1 = "abc";
::std::stringstream ss1;
UniversalPrint(s1, &ss1);
EXPECT_EQ(PrintPointer(s1) + " pointing to \"abc\"", std::string(ss1.str()));
char* s2 = const_cast<char*>(s1);
::std::stringstream ss2;
UniversalPrint(s2, &ss2);
EXPECT_EQ(PrintPointer(s2) + " pointing to \"abc\"", std::string(ss2.str()));
const char* s3 = NULL;
::std::stringstream ss3;
UniversalPrint(s3, &ss3);
EXPECT_EQ("NULL", ss3.str());
}
TEST(UniversalPrintTest, WorksForCharArray) {
const char str[] = "\"Line\0 1\"\nLine 2";
::std::stringstream ss1;
UniversalPrint(str, &ss1);
EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss1.str());
const char mutable_str[] = "\"Line\0 1\"\nLine 2";
::std::stringstream ss2;
UniversalPrint(mutable_str, &ss2);
EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss2.str());
}
#if GTEST_HAS_TR1_TUPLE
TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsEmptyTuple) {
Strings result = UniversalTersePrintTupleFieldsToStrings(
::std::tr1::make_tuple());
EXPECT_EQ(0u, result.size());
}
TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsOneTuple) {
Strings result = UniversalTersePrintTupleFieldsToStrings(
::std::tr1::make_tuple(1));
ASSERT_EQ(1u, result.size());
EXPECT_EQ("1", result[0]);
}
TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsTwoTuple) {
Strings result = UniversalTersePrintTupleFieldsToStrings(
::std::tr1::make_tuple(1, 'a'));
ASSERT_EQ(2u, result.size());
EXPECT_EQ("1", result[0]);
EXPECT_EQ("'a' (97, 0x61)", result[1]);
}
TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsTersely) {
const int n = 1;
Strings result = UniversalTersePrintTupleFieldsToStrings(
::std::tr1::tuple<const int&, const char*>(n, "a"));
ASSERT_EQ(2u, result.size());
EXPECT_EQ("1", result[0]);
EXPECT_EQ("\"a\"", result[1]);
}
#endif // GTEST_HAS_TR1_TUPLE
#if GTEST_HAS_STD_TUPLE_
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsEmptyTuple) {
Strings result = UniversalTersePrintTupleFieldsToStrings(::std::make_tuple());
EXPECT_EQ(0u, result.size());
}
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsOneTuple) {
Strings result = UniversalTersePrintTupleFieldsToStrings(
::std::make_tuple(1));
ASSERT_EQ(1u, result.size());
EXPECT_EQ("1", result[0]);
}
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTwoTuple) {
Strings result = UniversalTersePrintTupleFieldsToStrings(
::std::make_tuple(1, 'a'));
ASSERT_EQ(2u, result.size());
EXPECT_EQ("1", result[0]);
EXPECT_EQ("'a' (97, 0x61)", result[1]);
}
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTersely) {
const int n = 1;
Strings result = UniversalTersePrintTupleFieldsToStrings(
::std::tuple<const int&, const char*>(n, "a"));
ASSERT_EQ(2u, result.size());
EXPECT_EQ("1", result[0]);
EXPECT_EQ("\"a\"", result[1]);
}
#endif // GTEST_HAS_STD_TUPLE_
} // namespace gtest_printers_test
} // namespace testing