// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Test - The Google C++ Testing Framework // // This file tests the universal value printer. #include "gtest/gtest-printers.h" #include <ctype.h> #include <limits.h> #include <string.h> #include <algorithm> #include <deque> #include <list> #include <map> #include <set> #include <sstream> #include <string> #include <utility> #include <vector> #include "gtest/gtest.h" // hash_map and hash_set are available under Visual C++, or on Linux. #if GTEST_HAS_UNORDERED_MAP_ # include <unordered_map> // NOLINT #elif GTEST_HAS_HASH_MAP_ # include <hash_map> // NOLINT #endif // GTEST_HAS_HASH_MAP_ #if GTEST_HAS_UNORDERED_SET_ # include <unordered_set> // NOLINT #elif GTEST_HAS_HASH_SET_ # include <hash_set> // NOLINT #endif // GTEST_HAS_HASH_SET_ #if GTEST_HAS_STD_FORWARD_LIST_ # include <forward_list> // NOLINT #endif // GTEST_HAS_STD_FORWARD_LIST_ // Some user-defined types for testing the universal value printer. // An anonymous enum type. enum AnonymousEnum { kAE1 = -1, kAE2 = 1 }; // An enum without a user-defined printer. enum EnumWithoutPrinter { kEWP1 = -2, kEWP2 = 42 }; // An enum with a << operator. enum EnumWithStreaming { kEWS1 = 10 }; std::ostream& operator<<(std::ostream& os, EnumWithStreaming e) { return os << (e == kEWS1 ? "kEWS1" : "invalid"); } // An enum with a PrintTo() function. enum EnumWithPrintTo { kEWPT1 = 1 }; void PrintTo(EnumWithPrintTo e, std::ostream* os) { *os << (e == kEWPT1 ? "kEWPT1" : "invalid"); } // A class implicitly convertible to BiggestInt. class BiggestIntConvertible { public: operator ::testing::internal::BiggestInt() const { return 42; } }; // A user-defined unprintable class template in the global namespace. template <typename T> class UnprintableTemplateInGlobal { public: UnprintableTemplateInGlobal() : value_() {} private: T value_; }; // A user-defined streamable type in the global namespace. class StreamableInGlobal { public: virtual ~StreamableInGlobal() {} }; inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) { os << "StreamableInGlobal"; } void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) { os << "StreamableInGlobal*"; } namespace foo { // A user-defined unprintable type in a user namespace. class UnprintableInFoo { public: UnprintableInFoo() : z_(0) { memcpy(xy_, "\xEF\x12\x0\x0\x34\xAB\x0\x0", 8); } double z() const { return z_; } private: char xy_[8]; double z_; }; // A user-defined printable type in a user-chosen namespace. struct PrintableViaPrintTo { PrintableViaPrintTo() : value() {} int value; }; void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) { *os << "PrintableViaPrintTo: " << x.value; } // A type with a user-defined << for printing its pointer. struct PointerPrintable { }; ::std::ostream& operator<<(::std::ostream& os, const PointerPrintable* /* x */) { return os << "PointerPrintable*"; } // A user-defined printable class template in a user-chosen namespace. template <typename T> class PrintableViaPrintToTemplate { public: explicit PrintableViaPrintToTemplate(const T& a_value) : value_(a_value) {} const T& value() const { return value_; } private: T value_; }; template <typename T> void PrintTo(const PrintableViaPrintToTemplate<T>& x, ::std::ostream* os) { *os << "PrintableViaPrintToTemplate: " << x.value(); } // A user-defined streamable class template in a user namespace. template <typename T> class StreamableTemplateInFoo { public: StreamableTemplateInFoo() : value_() {} const T& value() const { return value_; } private: T value_; }; template <typename T> inline ::std::ostream& operator<<(::std::ostream& os, const StreamableTemplateInFoo<T>& x) { return os << "StreamableTemplateInFoo: " << x.value(); } // A user-defined streamable but recursivly-defined container type in // a user namespace, it mimics therefore std::filesystem::path or // boost::filesystem::path. class PathLike { public: struct iterator { typedef PathLike value_type; }; typedef iterator const_iterator; PathLike() {} iterator begin() const { return iterator(); } iterator end() const { return iterator(); } friend ::std::ostream& operator<<(::std::ostream& os, const PathLike&) { return os << "Streamable-PathLike"; } }; } // namespace foo namespace testing { namespace gtest_printers_test { using ::std::deque; using ::std::list; using ::std::make_pair; using ::std::map; using ::std::multimap; using ::std::multiset; using ::std::pair; using ::std::set; using ::std::vector; using ::testing::PrintToString; using ::testing::internal::FormatForComparisonFailureMessage; using ::testing::internal::ImplicitCast_; using ::testing::internal::NativeArray; using ::testing::internal::RE; using ::testing::internal::RelationToSourceReference; using ::testing::internal::Strings; using ::testing::internal::UniversalPrint; using ::testing::internal::UniversalPrinter; using ::testing::internal::UniversalTersePrint; #if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ using ::testing::internal::UniversalTersePrintTupleFieldsToStrings; #endif using ::testing::internal::string; // The hash_* classes are not part of the C++ standard. STLport // defines them in namespace std. MSVC defines them in ::stdext. GCC // defines them in ::. #if GTEST_HAS_UNORDERED_MAP_ #define GTEST_HAS_HASH_MAP_ 1 template<class Key, class T> using hash_map = ::std::unordered_map<Key, T>; template<class Key, class T> using hash_multimap = ::std::unordered_multimap<Key, T>; #elif GTEST_HAS_HASH_MAP_ #ifdef _STLP_HASH_MAP // We got <hash_map> from STLport. using ::std::hash_map; using ::std::hash_multimap; #elif _MSC_VER using ::stdext::hash_map; using ::stdext::hash_multimap; #endif #endif #if GTEST_HAS_UNORDERED_SET_ #define GTEST_HAS_HASH_SET_ 1 template<class Key> using hash_set = ::std::unordered_set<Key>; template<class Key> using hash_multiset = ::std::unordered_multiset<Key>; #elif GTEST_HAS_HASH_SET_ #ifdef _STLP_HASH_MAP // We got <hash_map> from STLport. using ::std::hash_set; using ::std::hash_multiset; #elif _MSC_VER using ::stdext::hash_set; using ::stdext::hash_multiset; #endif #endif // Prints a value to a string using the universal value printer. This // is a helper for testing UniversalPrinter<T>::Print() for various types. template <typename T> std::string Print(const T& value) { ::std::stringstream ss; UniversalPrinter<T>::Print(value, &ss); return ss.str(); } // Prints a value passed by reference to a string, using the universal // value printer. This is a helper for testing // UniversalPrinter<T&>::Print() for various types. template <typename T> std::string PrintByRef(const T& value) { ::std::stringstream ss; UniversalPrinter<T&>::Print(value, &ss); return ss.str(); } // Tests printing various enum types. TEST(PrintEnumTest, AnonymousEnum) { EXPECT_EQ("-1", Print(kAE1)); EXPECT_EQ("1", Print(kAE2)); } TEST(PrintEnumTest, EnumWithoutPrinter) { EXPECT_EQ("-2", Print(kEWP1)); EXPECT_EQ("42", Print(kEWP2)); } TEST(PrintEnumTest, EnumWithStreaming) { EXPECT_EQ("kEWS1", Print(kEWS1)); EXPECT_EQ("invalid", Print(static_cast<EnumWithStreaming>(0))); } TEST(PrintEnumTest, EnumWithPrintTo) { EXPECT_EQ("kEWPT1", Print(kEWPT1)); EXPECT_EQ("invalid", Print(static_cast<EnumWithPrintTo>(0))); } // Tests printing a class implicitly convertible to BiggestInt. TEST(PrintClassTest, BiggestIntConvertible) { EXPECT_EQ("42", Print(BiggestIntConvertible())); } // Tests printing various char types. // char. TEST(PrintCharTest, PlainChar) { EXPECT_EQ("'\\0'", Print('\0')); EXPECT_EQ("'\\'' (39, 0x27)", Print('\'')); EXPECT_EQ("'\"' (34, 0x22)", Print('"')); EXPECT_EQ("'?' (63, 0x3F)", Print('?')); EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\')); EXPECT_EQ("'\\a' (7)", Print('\a')); EXPECT_EQ("'\\b' (8)", Print('\b')); EXPECT_EQ("'\\f' (12, 0xC)", Print('\f')); EXPECT_EQ("'\\n' (10, 0xA)", Print('\n')); EXPECT_EQ("'\\r' (13, 0xD)", Print('\r')); EXPECT_EQ("'\\t' (9)", Print('\t')); EXPECT_EQ("'\\v' (11, 0xB)", Print('\v')); EXPECT_EQ("'\\x7F' (127)", Print('\x7F')); EXPECT_EQ("'\\xFF' (255)", Print('\xFF')); EXPECT_EQ("' ' (32, 0x20)", Print(' ')); EXPECT_EQ("'a' (97, 0x61)", Print('a')); } // signed char. TEST(PrintCharTest, SignedChar) { EXPECT_EQ("'\\0'", Print(static_cast<signed char>('\0'))); EXPECT_EQ("'\\xCE' (-50)", Print(static_cast<signed char>(-50))); } // unsigned char. TEST(PrintCharTest, UnsignedChar) { EXPECT_EQ("'\\0'", Print(static_cast<unsigned char>('\0'))); EXPECT_EQ("'b' (98, 0x62)", Print(static_cast<unsigned char>('b'))); } // Tests printing other simple, built-in types. // bool. TEST(PrintBuiltInTypeTest, Bool) { EXPECT_EQ("false", Print(false)); EXPECT_EQ("true", Print(true)); } // wchar_t. TEST(PrintBuiltInTypeTest, Wchar_t) { EXPECT_EQ("L'\\0'", Print(L'\0')); EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\'')); EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"')); EXPECT_EQ("L'?' (63, 0x3F)", Print(L'?')); EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\')); EXPECT_EQ("L'\\a' (7)", Print(L'\a')); EXPECT_EQ("L'\\b' (8)", Print(L'\b')); EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f')); EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n')); EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r')); EXPECT_EQ("L'\\t' (9)", Print(L'\t')); EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v')); EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F')); EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF')); EXPECT_EQ("L' ' (32, 0x20)", Print(L' ')); EXPECT_EQ("L'a' (97, 0x61)", Print(L'a')); EXPECT_EQ("L'\\x576' (1398)", Print(static_cast<wchar_t>(0x576))); EXPECT_EQ("L'\\xC74D' (51021)", Print(static_cast<wchar_t>(0xC74D))); } // Test that Int64 provides more storage than wchar_t. TEST(PrintTypeSizeTest, Wchar_t) { EXPECT_LT(sizeof(wchar_t), sizeof(testing::internal::Int64)); } // Various integer types. TEST(PrintBuiltInTypeTest, Integer) { EXPECT_EQ("'\\xFF' (255)", Print(static_cast<unsigned char>(255))); // uint8 EXPECT_EQ("'\\x80' (-128)", Print(static_cast<signed char>(-128))); // int8 EXPECT_EQ("65535", Print(USHRT_MAX)); // uint16 EXPECT_EQ("-32768", Print(SHRT_MIN)); // int16 EXPECT_EQ("4294967295", Print(UINT_MAX)); // uint32 EXPECT_EQ("-2147483648", Print(INT_MIN)); // int32 EXPECT_EQ("18446744073709551615", Print(static_cast<testing::internal::UInt64>(-1))); // uint64 EXPECT_EQ("-9223372036854775808", Print(static_cast<testing::internal::Int64>(1) << 63)); // int64 } // Size types. TEST(PrintBuiltInTypeTest, Size_t) { EXPECT_EQ("1", Print(sizeof('a'))); // size_t. #if !GTEST_OS_WINDOWS // Windows has no ssize_t type. EXPECT_EQ("-2", Print(static_cast<ssize_t>(-2))); // ssize_t. #endif // !GTEST_OS_WINDOWS } // Floating-points. TEST(PrintBuiltInTypeTest, FloatingPoints) { EXPECT_EQ("1.5", Print(1.5f)); // float EXPECT_EQ("-2.5", Print(-2.5)); // double } // Since ::std::stringstream::operator<<(const void *) formats the pointer // output differently with different compilers, we have to create the expected // output first and use it as our expectation. static std::string PrintPointer(const void* p) { ::std::stringstream expected_result_stream; expected_result_stream << p; return expected_result_stream.str(); } // Tests printing C strings. // const char*. TEST(PrintCStringTest, Const) { const char* p = "World"; EXPECT_EQ(PrintPointer(p) + " pointing to \"World\"", Print(p)); } // char*. TEST(PrintCStringTest, NonConst) { char p[] = "Hi"; EXPECT_EQ(PrintPointer(p) + " pointing to \"Hi\"", Print(static_cast<char*>(p))); } // NULL C string. TEST(PrintCStringTest, Null) { const char* p = NULL; EXPECT_EQ("NULL", Print(p)); } // Tests that C strings are escaped properly. TEST(PrintCStringTest, EscapesProperly) { const char* p = "'\"?\\\a\b\f\n\r\t\v\x7F\xFF a"; EXPECT_EQ(PrintPointer(p) + " pointing to \"'\\\"?\\\\\\a\\b\\f" "\\n\\r\\t\\v\\x7F\\xFF a\"", Print(p)); } // MSVC compiler can be configured to define whar_t as a typedef // of unsigned short. Defining an overload for const wchar_t* in that case // would cause pointers to unsigned shorts be printed as wide strings, // possibly accessing more memory than intended and causing invalid // memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when // wchar_t is implemented as a native type. #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) // const wchar_t*. TEST(PrintWideCStringTest, Const) { const wchar_t* p = L"World"; EXPECT_EQ(PrintPointer(p) + " pointing to L\"World\"", Print(p)); } // wchar_t*. TEST(PrintWideCStringTest, NonConst) { wchar_t p[] = L"Hi"; EXPECT_EQ(PrintPointer(p) + " pointing to L\"Hi\"", Print(static_cast<wchar_t*>(p))); } // NULL wide C string. TEST(PrintWideCStringTest, Null) { const wchar_t* p = NULL; EXPECT_EQ("NULL", Print(p)); } // Tests that wide C strings are escaped properly. TEST(PrintWideCStringTest, EscapesProperly) { const wchar_t s[] = {'\'', '"', '?', '\\', '\a', '\b', '\f', '\n', '\r', '\t', '\v', 0xD3, 0x576, 0x8D3, 0xC74D, ' ', 'a', '\0'}; EXPECT_EQ(PrintPointer(s) + " pointing to L\"'\\\"?\\\\\\a\\b\\f" "\\n\\r\\t\\v\\xD3\\x576\\x8D3\\xC74D a\"", Print(static_cast<const wchar_t*>(s))); } #endif // native wchar_t // Tests printing pointers to other char types. // signed char*. TEST(PrintCharPointerTest, SignedChar) { signed char* p = reinterpret_cast<signed char*>(0x1234); EXPECT_EQ(PrintPointer(p), Print(p)); p = NULL; EXPECT_EQ("NULL", Print(p)); } // const signed char*. TEST(PrintCharPointerTest, ConstSignedChar) { signed char* p = reinterpret_cast<signed char*>(0x1234); EXPECT_EQ(PrintPointer(p), Print(p)); p = NULL; EXPECT_EQ("NULL", Print(p)); } // unsigned char*. TEST(PrintCharPointerTest, UnsignedChar) { unsigned char* p = reinterpret_cast<unsigned char*>(0x1234); EXPECT_EQ(PrintPointer(p), Print(p)); p = NULL; EXPECT_EQ("NULL", Print(p)); } // const unsigned char*. TEST(PrintCharPointerTest, ConstUnsignedChar) { const unsigned char* p = reinterpret_cast<const unsigned char*>(0x1234); EXPECT_EQ(PrintPointer(p), Print(p)); p = NULL; EXPECT_EQ("NULL", Print(p)); } // Tests printing pointers to simple, built-in types. // bool*. TEST(PrintPointerToBuiltInTypeTest, Bool) { bool* p = reinterpret_cast<bool*>(0xABCD); EXPECT_EQ(PrintPointer(p), Print(p)); p = NULL; EXPECT_EQ("NULL", Print(p)); } // void*. TEST(PrintPointerToBuiltInTypeTest, Void) { void* p = reinterpret_cast<void*>(0xABCD); EXPECT_EQ(PrintPointer(p), Print(p)); p = NULL; EXPECT_EQ("NULL", Print(p)); } // const void*. TEST(PrintPointerToBuiltInTypeTest, ConstVoid) { const void* p = reinterpret_cast<const void*>(0xABCD); EXPECT_EQ(PrintPointer(p), Print(p)); p = NULL; EXPECT_EQ("NULL", Print(p)); } // Tests printing pointers to pointers. TEST(PrintPointerToPointerTest, IntPointerPointer) { int** p = reinterpret_cast<int**>(0xABCD); EXPECT_EQ(PrintPointer(p), Print(p)); p = NULL; EXPECT_EQ("NULL", Print(p)); } // Tests printing (non-member) function pointers. void MyFunction(int /* n */) {} TEST(PrintPointerTest, NonMemberFunctionPointer) { // We cannot directly cast &MyFunction to const void* because the // standard disallows casting between pointers to functions and // pointers to objects, and some compilers (e.g. GCC 3.4) enforce // this limitation. EXPECT_EQ( PrintPointer(reinterpret_cast<const void*>( reinterpret_cast<internal::BiggestInt>(&MyFunction))), Print(&MyFunction)); int (*p)(bool) = NULL; // NOLINT EXPECT_EQ("NULL", Print(p)); } // An assertion predicate determining whether a one string is a prefix for // another. template <typename StringType> AssertionResult HasPrefix(const StringType& str, const StringType& prefix) { if (str.find(prefix, 0) == 0) return AssertionSuccess(); const bool is_wide_string = sizeof(prefix[0]) > 1; const char* const begin_string_quote = is_wide_string ? "L\"" : "\""; return AssertionFailure() << begin_string_quote << prefix << "\" is not a prefix of " << begin_string_quote << str << "\"\n"; } // Tests printing member variable pointers. Although they are called // pointers, they don't point to a location in the address space. // Their representation is implementation-defined. Thus they will be // printed as raw bytes. struct Foo { public: virtual ~Foo() {} int MyMethod(char x) { return x + 1; } virtual char MyVirtualMethod(int /* n */) { return 'a'; } int value; }; TEST(PrintPointerTest, MemberVariablePointer) { EXPECT_TRUE(HasPrefix(Print(&Foo::value), Print(sizeof(&Foo::value)) + "-byte object ")); int (Foo::*p) = NULL; // NOLINT EXPECT_TRUE(HasPrefix(Print(p), Print(sizeof(p)) + "-byte object ")); } // Tests printing member function pointers. Although they are called // pointers, they don't point to a location in the address space. // Their representation is implementation-defined. Thus they will be // printed as raw bytes. TEST(PrintPointerTest, MemberFunctionPointer) { EXPECT_TRUE(HasPrefix(Print(&Foo::MyMethod), Print(sizeof(&Foo::MyMethod)) + "-byte object ")); EXPECT_TRUE( HasPrefix(Print(&Foo::MyVirtualMethod), Print(sizeof((&Foo::MyVirtualMethod))) + "-byte object ")); int (Foo::*p)(char) = NULL; // NOLINT EXPECT_TRUE(HasPrefix(Print(p), Print(sizeof(p)) + "-byte object ")); } // Tests printing C arrays. // The difference between this and Print() is that it ensures that the // argument is a reference to an array. template <typename T, size_t N> std::string PrintArrayHelper(T (&a)[N]) { return Print(a); } // One-dimensional array. TEST(PrintArrayTest, OneDimensionalArray) { int a[5] = { 1, 2, 3, 4, 5 }; EXPECT_EQ("{ 1, 2, 3, 4, 5 }", PrintArrayHelper(a)); } // Two-dimensional array. TEST(PrintArrayTest, TwoDimensionalArray) { int a[2][5] = { { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }; EXPECT_EQ("{ { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }", PrintArrayHelper(a)); } // Array of const elements. TEST(PrintArrayTest, ConstArray) { const bool a[1] = { false }; EXPECT_EQ("{ false }", PrintArrayHelper(a)); } // char array without terminating NUL. TEST(PrintArrayTest, CharArrayWithNoTerminatingNul) { // Array a contains '\0' in the middle and doesn't end with '\0'. char a[] = { 'H', '\0', 'i' }; EXPECT_EQ("\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a)); } // const char array with terminating NUL. TEST(PrintArrayTest, ConstCharArrayWithTerminatingNul) { const char a[] = "\0Hi"; EXPECT_EQ("\"\\0Hi\"", PrintArrayHelper(a)); } // const wchar_t array without terminating NUL. TEST(PrintArrayTest, WCharArrayWithNoTerminatingNul) { // Array a contains '\0' in the middle and doesn't end with '\0'. const wchar_t a[] = { L'H', L'\0', L'i' }; EXPECT_EQ("L\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a)); } // wchar_t array with terminating NUL. TEST(PrintArrayTest, WConstCharArrayWithTerminatingNul) { const wchar_t a[] = L"\0Hi"; EXPECT_EQ("L\"\\0Hi\"", PrintArrayHelper(a)); } // Array of objects. TEST(PrintArrayTest, ObjectArray) { std::string a[3] = {"Hi", "Hello", "Ni hao"}; EXPECT_EQ("{ \"Hi\", \"Hello\", \"Ni hao\" }", PrintArrayHelper(a)); } // Array with many elements. TEST(PrintArrayTest, BigArray) { int a[100] = { 1, 2, 3 }; EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0 }", PrintArrayHelper(a)); } // Tests printing ::string and ::std::string. #if GTEST_HAS_GLOBAL_STRING // ::string. TEST(PrintStringTest, StringInGlobalNamespace) { const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a"; const ::string str(s, sizeof(s)); EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"", Print(str)); } #endif // GTEST_HAS_GLOBAL_STRING // ::std::string. TEST(PrintStringTest, StringInStdNamespace) { const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a"; const ::std::string str(s, sizeof(s)); EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"", Print(str)); } TEST(PrintStringTest, StringAmbiguousHex) { // "\x6BANANA" is ambiguous, it can be interpreted as starting with either of: // '\x6', '\x6B', or '\x6BA'. // a hex escaping sequence following by a decimal digit EXPECT_EQ("\"0\\x12\" \"3\"", Print(::std::string("0\x12" "3"))); // a hex escaping sequence following by a hex digit (lower-case) EXPECT_EQ("\"mm\\x6\" \"bananas\"", Print(::std::string("mm\x6" "bananas"))); // a hex escaping sequence following by a hex digit (upper-case) EXPECT_EQ("\"NOM\\x6\" \"BANANA\"", Print(::std::string("NOM\x6" "BANANA"))); // a hex escaping sequence following by a non-xdigit EXPECT_EQ("\"!\\x5-!\"", Print(::std::string("!\x5-!"))); } // Tests printing ::wstring and ::std::wstring. #if GTEST_HAS_GLOBAL_WSTRING // ::wstring. TEST(PrintWideStringTest, StringInGlobalNamespace) { const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a"; const ::wstring str(s, sizeof(s)/sizeof(wchar_t)); EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v" "\\xD3\\x576\\x8D3\\xC74D a\\0\"", Print(str)); } #endif // GTEST_HAS_GLOBAL_WSTRING #if GTEST_HAS_STD_WSTRING // ::std::wstring. TEST(PrintWideStringTest, StringInStdNamespace) { const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a"; const ::std::wstring str(s, sizeof(s)/sizeof(wchar_t)); EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v" "\\xD3\\x576\\x8D3\\xC74D a\\0\"", Print(str)); } TEST(PrintWideStringTest, StringAmbiguousHex) { // same for wide strings. EXPECT_EQ("L\"0\\x12\" L\"3\"", Print(::std::wstring(L"0\x12" L"3"))); EXPECT_EQ("L\"mm\\x6\" L\"bananas\"", Print(::std::wstring(L"mm\x6" L"bananas"))); EXPECT_EQ("L\"NOM\\x6\" L\"BANANA\"", Print(::std::wstring(L"NOM\x6" L"BANANA"))); EXPECT_EQ("L\"!\\x5-!\"", Print(::std::wstring(L"!\x5-!"))); } #endif // GTEST_HAS_STD_WSTRING // Tests printing types that support generic streaming (i.e. streaming // to std::basic_ostream<Char, CharTraits> for any valid Char and // CharTraits types). // Tests printing a non-template type that supports generic streaming. class AllowsGenericStreaming {}; template <typename Char, typename CharTraits> std::basic_ostream<Char, CharTraits>& operator<<( std::basic_ostream<Char, CharTraits>& os, const AllowsGenericStreaming& /* a */) { return os << "AllowsGenericStreaming"; } TEST(PrintTypeWithGenericStreamingTest, NonTemplateType) { AllowsGenericStreaming a; EXPECT_EQ("AllowsGenericStreaming", Print(a)); } // Tests printing a template type that supports generic streaming. template <typename T> class AllowsGenericStreamingTemplate {}; template <typename Char, typename CharTraits, typename T> std::basic_ostream<Char, CharTraits>& operator<<( std::basic_ostream<Char, CharTraits>& os, const AllowsGenericStreamingTemplate<T>& /* a */) { return os << "AllowsGenericStreamingTemplate"; } TEST(PrintTypeWithGenericStreamingTest, TemplateType) { AllowsGenericStreamingTemplate<int> a; EXPECT_EQ("AllowsGenericStreamingTemplate", Print(a)); } // Tests printing a type that supports generic streaming and can be // implicitly converted to another printable type. template <typename T> class AllowsGenericStreamingAndImplicitConversionTemplate { public: operator bool() const { return false; } }; template <typename Char, typename CharTraits, typename T> std::basic_ostream<Char, CharTraits>& operator<<( std::basic_ostream<Char, CharTraits>& os, const AllowsGenericStreamingAndImplicitConversionTemplate<T>& /* a */) { return os << "AllowsGenericStreamingAndImplicitConversionTemplate"; } TEST(PrintTypeWithGenericStreamingTest, TypeImplicitlyConvertible) { AllowsGenericStreamingAndImplicitConversionTemplate<int> a; EXPECT_EQ("AllowsGenericStreamingAndImplicitConversionTemplate", Print(a)); } #if GTEST_HAS_STRING_PIECE_ // Tests printing StringPiece. TEST(PrintStringPieceTest, SimpleStringPiece) { const StringPiece sp = "Hello"; EXPECT_EQ("\"Hello\"", Print(sp)); } TEST(PrintStringPieceTest, UnprintableCharacters) { const char str[] = "NUL (\0) and \r\t"; const StringPiece sp(str, sizeof(str) - 1); EXPECT_EQ("\"NUL (\\0) and \\r\\t\"", Print(sp)); } #endif // GTEST_HAS_STRING_PIECE_ // Tests printing STL containers. TEST(PrintStlContainerTest, EmptyDeque) { deque<char> empty; EXPECT_EQ("{}", Print(empty)); } TEST(PrintStlContainerTest, NonEmptyDeque) { deque<int> non_empty; non_empty.push_back(1); non_empty.push_back(3); EXPECT_EQ("{ 1, 3 }", Print(non_empty)); } #if GTEST_HAS_HASH_MAP_ TEST(PrintStlContainerTest, OneElementHashMap) { hash_map<int, char> map1; map1[1] = 'a'; EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1)); } TEST(PrintStlContainerTest, HashMultiMap) { hash_multimap<int, bool> map1; map1.insert(make_pair(5, true)); map1.insert(make_pair(5, false)); // Elements of hash_multimap can be printed in any order. const std::string result = Print(map1); EXPECT_TRUE(result == "{ (5, true), (5, false) }" || result == "{ (5, false), (5, true) }") << " where Print(map1) returns \"" << result << "\"."; } #endif // GTEST_HAS_HASH_MAP_ #if GTEST_HAS_HASH_SET_ TEST(PrintStlContainerTest, HashSet) { hash_set<int> set1; set1.insert(1); EXPECT_EQ("{ 1 }", Print(set1)); } TEST(PrintStlContainerTest, HashMultiSet) { const int kSize = 5; int a[kSize] = { 1, 1, 2, 5, 1 }; hash_multiset<int> set1(a, a + kSize); // Elements of hash_multiset can be printed in any order. const std::string result = Print(set1); const std::string expected_pattern = "{ d, d, d, d, d }"; // d means a digit. // Verifies the result matches the expected pattern; also extracts // the numbers in the result. ASSERT_EQ(expected_pattern.length(), result.length()); std::vector<int> numbers; for (size_t i = 0; i != result.length(); i++) { if (expected_pattern[i] == 'd') { ASSERT_NE(isdigit(static_cast<unsigned char>(result[i])), 0); numbers.push_back(result[i] - '0'); } else { EXPECT_EQ(expected_pattern[i], result[i]) << " where result is " << result; } } // Makes sure the result contains the right numbers. std::sort(numbers.begin(), numbers.end()); std::sort(a, a + kSize); EXPECT_TRUE(std::equal(a, a + kSize, numbers.begin())); } #endif // GTEST_HAS_HASH_SET_ TEST(PrintStlContainerTest, List) { const std::string a[] = {"hello", "world"}; const list<std::string> strings(a, a + 2); EXPECT_EQ("{ \"hello\", \"world\" }", Print(strings)); } TEST(PrintStlContainerTest, Map) { map<int, bool> map1; map1[1] = true; map1[5] = false; map1[3] = true; EXPECT_EQ("{ (1, true), (3, true), (5, false) }", Print(map1)); } TEST(PrintStlContainerTest, MultiMap) { multimap<bool, int> map1; // The make_pair template function would deduce the type as // pair<bool, int> here, and since the key part in a multimap has to // be constant, without a templated ctor in the pair class (as in // libCstd on Solaris), make_pair call would fail to compile as no // implicit conversion is found. Thus explicit typename is used // here instead. map1.insert(pair<const bool, int>(true, 0)); map1.insert(pair<const bool, int>(true, 1)); map1.insert(pair<const bool, int>(false, 2)); EXPECT_EQ("{ (false, 2), (true, 0), (true, 1) }", Print(map1)); } TEST(PrintStlContainerTest, Set) { const unsigned int a[] = { 3, 0, 5 }; set<unsigned int> set1(a, a + 3); EXPECT_EQ("{ 0, 3, 5 }", Print(set1)); } TEST(PrintStlContainerTest, MultiSet) { const int a[] = { 1, 1, 2, 5, 1 }; multiset<int> set1(a, a + 5); EXPECT_EQ("{ 1, 1, 1, 2, 5 }", Print(set1)); } #if GTEST_HAS_STD_FORWARD_LIST_ // <slist> is available on Linux in the google3 mode, but not on // Windows or Mac OS X. TEST(PrintStlContainerTest, SinglyLinkedList) { int a[] = { 9, 2, 8 }; const std::forward_list<int> ints(a, a + 3); EXPECT_EQ("{ 9, 2, 8 }", Print(ints)); } #endif // GTEST_HAS_STD_FORWARD_LIST_ TEST(PrintStlContainerTest, Pair) { pair<const bool, int> p(true, 5); EXPECT_EQ("(true, 5)", Print(p)); } TEST(PrintStlContainerTest, Vector) { vector<int> v; v.push_back(1); v.push_back(2); EXPECT_EQ("{ 1, 2 }", Print(v)); } TEST(PrintStlContainerTest, LongSequence) { const int a[100] = { 1, 2, 3 }; const vector<int> v(a, a + 100); EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, " "0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... }", Print(v)); } TEST(PrintStlContainerTest, NestedContainer) { const int a1[] = { 1, 2 }; const int a2[] = { 3, 4, 5 }; const list<int> l1(a1, a1 + 2); const list<int> l2(a2, a2 + 3); vector<list<int> > v; v.push_back(l1); v.push_back(l2); EXPECT_EQ("{ { 1, 2 }, { 3, 4, 5 } }", Print(v)); } TEST(PrintStlContainerTest, OneDimensionalNativeArray) { const int a[3] = { 1, 2, 3 }; NativeArray<int> b(a, 3, RelationToSourceReference()); EXPECT_EQ("{ 1, 2, 3 }", Print(b)); } TEST(PrintStlContainerTest, TwoDimensionalNativeArray) { const int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } }; NativeArray<int[3]> b(a, 2, RelationToSourceReference()); EXPECT_EQ("{ { 1, 2, 3 }, { 4, 5, 6 } }", Print(b)); } // Tests that a class named iterator isn't treated as a container. struct iterator { char x; }; TEST(PrintStlContainerTest, Iterator) { iterator it = {}; EXPECT_EQ("1-byte object <00>", Print(it)); } // Tests that a class named const_iterator isn't treated as a container. struct const_iterator { char x; }; TEST(PrintStlContainerTest, ConstIterator) { const_iterator it = {}; EXPECT_EQ("1-byte object <00>", Print(it)); } #if GTEST_HAS_TR1_TUPLE // Tests printing ::std::tr1::tuples. // Tuples of various arities. TEST(PrintTr1TupleTest, VariousSizes) { ::std::tr1::tuple<> t0; EXPECT_EQ("()", Print(t0)); ::std::tr1::tuple<int> t1(5); EXPECT_EQ("(5)", Print(t1)); ::std::tr1::tuple<char, bool> t2('a', true); EXPECT_EQ("('a' (97, 0x61), true)", Print(t2)); ::std::tr1::tuple<bool, int, int> t3(false, 2, 3); EXPECT_EQ("(false, 2, 3)", Print(t3)); ::std::tr1::tuple<bool, int, int, int> t4(false, 2, 3, 4); EXPECT_EQ("(false, 2, 3, 4)", Print(t4)); ::std::tr1::tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true); EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5)); ::std::tr1::tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6); EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6)); ::std::tr1::tuple<bool, int, int, int, bool, int, int> t7( false, 2, 3, 4, true, 6, 7); EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7)); ::std::tr1::tuple<bool, int, int, int, bool, int, int, bool> t8( false, 2, 3, 4, true, 6, 7, true); EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8)); ::std::tr1::tuple<bool, int, int, int, bool, int, int, bool, int> t9( false, 2, 3, 4, true, 6, 7, true, 9); EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9)); const char* const str = "8"; // VC++ 2010's implementation of tuple of C++0x is deficient, requiring // an explicit type cast of NULL to be used. ::std::tr1::tuple<bool, char, short, testing::internal::Int32, // NOLINT testing::internal::Int64, float, double, const char*, void*, std::string> t10(false, 'a', static_cast<short>(3), 4, 5, 1.5F, -2.5, str, ImplicitCast_<void*>(NULL), "10"); EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) + " pointing to \"8\", NULL, \"10\")", Print(t10)); } // Nested tuples. TEST(PrintTr1TupleTest, NestedTuple) { ::std::tr1::tuple< ::std::tr1::tuple<int, bool>, char> nested( ::std::tr1::make_tuple(5, true), 'a'); EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested)); } #endif // GTEST_HAS_TR1_TUPLE #if GTEST_HAS_STD_TUPLE_ // Tests printing ::std::tuples. // Tuples of various arities. TEST(PrintStdTupleTest, VariousSizes) { ::std::tuple<> t0; EXPECT_EQ("()", Print(t0)); ::std::tuple<int> t1(5); EXPECT_EQ("(5)", Print(t1)); ::std::tuple<char, bool> t2('a', true); EXPECT_EQ("('a' (97, 0x61), true)", Print(t2)); ::std::tuple<bool, int, int> t3(false, 2, 3); EXPECT_EQ("(false, 2, 3)", Print(t3)); ::std::tuple<bool, int, int, int> t4(false, 2, 3, 4); EXPECT_EQ("(false, 2, 3, 4)", Print(t4)); ::std::tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true); EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5)); ::std::tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6); EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6)); ::std::tuple<bool, int, int, int, bool, int, int> t7( false, 2, 3, 4, true, 6, 7); EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7)); ::std::tuple<bool, int, int, int, bool, int, int, bool> t8( false, 2, 3, 4, true, 6, 7, true); EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8)); ::std::tuple<bool, int, int, int, bool, int, int, bool, int> t9( false, 2, 3, 4, true, 6, 7, true, 9); EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9)); const char* const str = "8"; // VC++ 2010's implementation of tuple of C++0x is deficient, requiring // an explicit type cast of NULL to be used. ::std::tuple<bool, char, short, testing::internal::Int32, // NOLINT testing::internal::Int64, float, double, const char*, void*, std::string> t10(false, 'a', static_cast<short>(3), 4, 5, 1.5F, -2.5, str, ImplicitCast_<void*>(NULL), "10"); EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) + " pointing to \"8\", NULL, \"10\")", Print(t10)); } // Nested tuples. TEST(PrintStdTupleTest, NestedTuple) { ::std::tuple< ::std::tuple<int, bool>, char> nested( ::std::make_tuple(5, true), 'a'); EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested)); } #endif // GTEST_LANG_CXX11 // Tests printing user-defined unprintable types. // Unprintable types in the global namespace. TEST(PrintUnprintableTypeTest, InGlobalNamespace) { EXPECT_EQ("1-byte object <00>", Print(UnprintableTemplateInGlobal<char>())); } // Unprintable types in a user namespace. TEST(PrintUnprintableTypeTest, InUserNamespace) { EXPECT_EQ("16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>", Print(::foo::UnprintableInFoo())); } // Unprintable types are that too big to be printed completely. struct Big { Big() { memset(array, 0, sizeof(array)); } char array[257]; }; TEST(PrintUnpritableTypeTest, BigObject) { EXPECT_EQ("257-byte object <00-00 00-00 00-00 00-00 00-00 00-00 " "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " "00-00 00-00 00-00 00-00 00-00 00-00 ... 00-00 00-00 00-00 " "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00>", Print(Big())); } // Tests printing user-defined streamable types. // Streamable types in the global namespace. TEST(PrintStreamableTypeTest, InGlobalNamespace) { StreamableInGlobal x; EXPECT_EQ("StreamableInGlobal", Print(x)); EXPECT_EQ("StreamableInGlobal*", Print(&x)); } // Printable template types in a user namespace. TEST(PrintStreamableTypeTest, TemplateTypeInUserNamespace) { EXPECT_EQ("StreamableTemplateInFoo: 0", Print(::foo::StreamableTemplateInFoo<int>())); } // Tests printing a user-defined recursive container type that has a << // operator. TEST(PrintStreamableTypeTest, PathLikeInUserNamespace) { ::foo::PathLike x; EXPECT_EQ("Streamable-PathLike", Print(x)); const ::foo::PathLike cx; EXPECT_EQ("Streamable-PathLike", Print(cx)); } // Tests printing user-defined types that have a PrintTo() function. TEST(PrintPrintableTypeTest, InUserNamespace) { EXPECT_EQ("PrintableViaPrintTo: 0", Print(::foo::PrintableViaPrintTo())); } // Tests printing a pointer to a user-defined type that has a << // operator for its pointer. TEST(PrintPrintableTypeTest, PointerInUserNamespace) { ::foo::PointerPrintable x; EXPECT_EQ("PointerPrintable*", Print(&x)); } // Tests printing user-defined class template that have a PrintTo() function. TEST(PrintPrintableTypeTest, TemplateInUserNamespace) { EXPECT_EQ("PrintableViaPrintToTemplate: 5", Print(::foo::PrintableViaPrintToTemplate<int>(5))); } // Tests that the universal printer prints both the address and the // value of a reference. TEST(PrintReferenceTest, PrintsAddressAndValue) { int n = 5; EXPECT_EQ("@" + PrintPointer(&n) + " 5", PrintByRef(n)); int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } }; EXPECT_EQ("@" + PrintPointer(a) + " { { 0, 1, 2 }, { 3, 4, 5 } }", PrintByRef(a)); const ::foo::UnprintableInFoo x; EXPECT_EQ("@" + PrintPointer(&x) + " 16-byte object " "<EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>", PrintByRef(x)); } // Tests that the universal printer prints a function pointer passed by // reference. TEST(PrintReferenceTest, HandlesFunctionPointer) { void (*fp)(int n) = &MyFunction; const std::string fp_pointer_string = PrintPointer(reinterpret_cast<const void*>(&fp)); // We cannot directly cast &MyFunction to const void* because the // standard disallows casting between pointers to functions and // pointers to objects, and some compilers (e.g. GCC 3.4) enforce // this limitation. const std::string fp_string = PrintPointer(reinterpret_cast<const void*>( reinterpret_cast<internal::BiggestInt>(fp))); EXPECT_EQ("@" + fp_pointer_string + " " + fp_string, PrintByRef(fp)); } // Tests that the universal printer prints a member function pointer // passed by reference. TEST(PrintReferenceTest, HandlesMemberFunctionPointer) { int (Foo::*p)(char ch) = &Foo::MyMethod; EXPECT_TRUE(HasPrefix( PrintByRef(p), "@" + PrintPointer(reinterpret_cast<const void*>(&p)) + " " + Print(sizeof(p)) + "-byte object ")); char (Foo::*p2)(int n) = &Foo::MyVirtualMethod; EXPECT_TRUE(HasPrefix( PrintByRef(p2), "@" + PrintPointer(reinterpret_cast<const void*>(&p2)) + " " + Print(sizeof(p2)) + "-byte object ")); } // Tests that the universal printer prints a member variable pointer // passed by reference. TEST(PrintReferenceTest, HandlesMemberVariablePointer) { int (Foo::*p) = &Foo::value; // NOLINT EXPECT_TRUE(HasPrefix( PrintByRef(p), "@" + PrintPointer(&p) + " " + Print(sizeof(p)) + "-byte object ")); } // Tests that FormatForComparisonFailureMessage(), which is used to print // an operand in a comparison assertion (e.g. ASSERT_EQ) when the assertion // fails, formats the operand in the desired way. // scalar TEST(FormatForComparisonFailureMessageTest, WorksForScalar) { EXPECT_STREQ("123", FormatForComparisonFailureMessage(123, 124).c_str()); } // non-char pointer TEST(FormatForComparisonFailureMessageTest, WorksForNonCharPointer) { int n = 0; EXPECT_EQ(PrintPointer(&n), FormatForComparisonFailureMessage(&n, &n).c_str()); } // non-char array TEST(FormatForComparisonFailureMessageTest, FormatsNonCharArrayAsPointer) { // In expression 'array == x', 'array' is compared by pointer. // Therefore we want to print an array operand as a pointer. int n[] = { 1, 2, 3 }; EXPECT_EQ(PrintPointer(n), FormatForComparisonFailureMessage(n, n).c_str()); } // Tests formatting a char pointer when it's compared with another pointer. // In this case we want to print it as a raw pointer, as the comparision is by // pointer. // char pointer vs pointer TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsPointer) { // In expression 'p == x', where 'p' and 'x' are (const or not) char // pointers, the operands are compared by pointer. Therefore we // want to print 'p' as a pointer instead of a C string (we don't // even know if it's supposed to point to a valid C string). // const char* const char* s = "hello"; EXPECT_EQ(PrintPointer(s), FormatForComparisonFailureMessage(s, s).c_str()); // char* char ch = 'a'; EXPECT_EQ(PrintPointer(&ch), FormatForComparisonFailureMessage(&ch, &ch).c_str()); } // wchar_t pointer vs pointer TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsPointer) { // In expression 'p == x', where 'p' and 'x' are (const or not) char // pointers, the operands are compared by pointer. Therefore we // want to print 'p' as a pointer instead of a wide C string (we don't // even know if it's supposed to point to a valid wide C string). // const wchar_t* const wchar_t* s = L"hello"; EXPECT_EQ(PrintPointer(s), FormatForComparisonFailureMessage(s, s).c_str()); // wchar_t* wchar_t ch = L'a'; EXPECT_EQ(PrintPointer(&ch), FormatForComparisonFailureMessage(&ch, &ch).c_str()); } // Tests formatting a char pointer when it's compared to a string object. // In this case we want to print the char pointer as a C string. #if GTEST_HAS_GLOBAL_STRING // char pointer vs ::string TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsString) { const char* s = "hello \"world"; EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped. FormatForComparisonFailureMessage(s, ::string()).c_str()); // char* char str[] = "hi\1"; char* p = str; EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped. FormatForComparisonFailureMessage(p, ::string()).c_str()); } #endif // char pointer vs std::string TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsStdString) { const char* s = "hello \"world"; EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped. FormatForComparisonFailureMessage(s, ::std::string()).c_str()); // char* char str[] = "hi\1"; char* p = str; EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped. FormatForComparisonFailureMessage(p, ::std::string()).c_str()); } #if GTEST_HAS_GLOBAL_WSTRING // wchar_t pointer vs ::wstring TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsWString) { const wchar_t* s = L"hi \"world"; EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped. FormatForComparisonFailureMessage(s, ::wstring()).c_str()); // wchar_t* wchar_t str[] = L"hi\1"; wchar_t* p = str; EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped. FormatForComparisonFailureMessage(p, ::wstring()).c_str()); } #endif #if GTEST_HAS_STD_WSTRING // wchar_t pointer vs std::wstring TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsStdWString) { const wchar_t* s = L"hi \"world"; EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped. FormatForComparisonFailureMessage(s, ::std::wstring()).c_str()); // wchar_t* wchar_t str[] = L"hi\1"; wchar_t* p = str; EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped. FormatForComparisonFailureMessage(p, ::std::wstring()).c_str()); } #endif // Tests formatting a char array when it's compared with a pointer or array. // In this case we want to print the array as a row pointer, as the comparison // is by pointer. // char array vs pointer TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsPointer) { char str[] = "hi \"world\""; char* p = NULL; EXPECT_EQ(PrintPointer(str), FormatForComparisonFailureMessage(str, p).c_str()); } // char array vs char array TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsCharArray) { const char str[] = "hi \"world\""; EXPECT_EQ(PrintPointer(str), FormatForComparisonFailureMessage(str, str).c_str()); } // wchar_t array vs pointer TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsPointer) { wchar_t str[] = L"hi \"world\""; wchar_t* p = NULL; EXPECT_EQ(PrintPointer(str), FormatForComparisonFailureMessage(str, p).c_str()); } // wchar_t array vs wchar_t array TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWCharArray) { const wchar_t str[] = L"hi \"world\""; EXPECT_EQ(PrintPointer(str), FormatForComparisonFailureMessage(str, str).c_str()); } // Tests formatting a char array when it's compared with a string object. // In this case we want to print the array as a C string. #if GTEST_HAS_GLOBAL_STRING // char array vs string TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsString) { const char str[] = "hi \"w\0rld\""; EXPECT_STREQ("\"hi \\\"w\"", // The content should be escaped. // Embedded NUL terminates the string. FormatForComparisonFailureMessage(str, ::string()).c_str()); } #endif // char array vs std::string TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsStdString) { const char str[] = "hi \"world\""; EXPECT_STREQ("\"hi \\\"world\\\"\"", // The content should be escaped. FormatForComparisonFailureMessage(str, ::std::string()).c_str()); } #if GTEST_HAS_GLOBAL_WSTRING // wchar_t array vs wstring TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWString) { const wchar_t str[] = L"hi \"world\""; EXPECT_STREQ("L\"hi \\\"world\\\"\"", // The content should be escaped. FormatForComparisonFailureMessage(str, ::wstring()).c_str()); } #endif #if GTEST_HAS_STD_WSTRING // wchar_t array vs std::wstring TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsStdWString) { const wchar_t str[] = L"hi \"w\0rld\""; EXPECT_STREQ( "L\"hi \\\"w\"", // The content should be escaped. // Embedded NUL terminates the string. FormatForComparisonFailureMessage(str, ::std::wstring()).c_str()); } #endif // Useful for testing PrintToString(). We cannot use EXPECT_EQ() // there as its implementation uses PrintToString(). The caller must // ensure that 'value' has no side effect. #define EXPECT_PRINT_TO_STRING_(value, expected_string) \ EXPECT_TRUE(PrintToString(value) == (expected_string)) \ << " where " #value " prints as " << (PrintToString(value)) TEST(PrintToStringTest, WorksForScalar) { EXPECT_PRINT_TO_STRING_(123, "123"); } TEST(PrintToStringTest, WorksForPointerToConstChar) { const char* p = "hello"; EXPECT_PRINT_TO_STRING_(p, "\"hello\""); } TEST(PrintToStringTest, WorksForPointerToNonConstChar) { char s[] = "hello"; char* p = s; EXPECT_PRINT_TO_STRING_(p, "\"hello\""); } TEST(PrintToStringTest, EscapesForPointerToConstChar) { const char* p = "hello\n"; EXPECT_PRINT_TO_STRING_(p, "\"hello\\n\""); } TEST(PrintToStringTest, EscapesForPointerToNonConstChar) { char s[] = "hello\1"; char* p = s; EXPECT_PRINT_TO_STRING_(p, "\"hello\\x1\""); } TEST(PrintToStringTest, WorksForArray) { int n[3] = { 1, 2, 3 }; EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }"); } TEST(PrintToStringTest, WorksForCharArray) { char s[] = "hello"; EXPECT_PRINT_TO_STRING_(s, "\"hello\""); } TEST(PrintToStringTest, WorksForCharArrayWithEmbeddedNul) { const char str_with_nul[] = "hello\0 world"; EXPECT_PRINT_TO_STRING_(str_with_nul, "\"hello\\0 world\""); char mutable_str_with_nul[] = "hello\0 world"; EXPECT_PRINT_TO_STRING_(mutable_str_with_nul, "\"hello\\0 world\""); } #undef EXPECT_PRINT_TO_STRING_ TEST(UniversalTersePrintTest, WorksForNonReference) { ::std::stringstream ss; UniversalTersePrint(123, &ss); EXPECT_EQ("123", ss.str()); } TEST(UniversalTersePrintTest, WorksForReference) { const int& n = 123; ::std::stringstream ss; UniversalTersePrint(n, &ss); EXPECT_EQ("123", ss.str()); } TEST(UniversalTersePrintTest, WorksForCString) { const char* s1 = "abc"; ::std::stringstream ss1; UniversalTersePrint(s1, &ss1); EXPECT_EQ("\"abc\"", ss1.str()); char* s2 = const_cast<char*>(s1); ::std::stringstream ss2; UniversalTersePrint(s2, &ss2); EXPECT_EQ("\"abc\"", ss2.str()); const char* s3 = NULL; ::std::stringstream ss3; UniversalTersePrint(s3, &ss3); EXPECT_EQ("NULL", ss3.str()); } TEST(UniversalPrintTest, WorksForNonReference) { ::std::stringstream ss; UniversalPrint(123, &ss); EXPECT_EQ("123", ss.str()); } TEST(UniversalPrintTest, WorksForReference) { const int& n = 123; ::std::stringstream ss; UniversalPrint(n, &ss); EXPECT_EQ("123", ss.str()); } TEST(UniversalPrintTest, WorksForCString) { const char* s1 = "abc"; ::std::stringstream ss1; UniversalPrint(s1, &ss1); EXPECT_EQ(PrintPointer(s1) + " pointing to \"abc\"", std::string(ss1.str())); char* s2 = const_cast<char*>(s1); ::std::stringstream ss2; UniversalPrint(s2, &ss2); EXPECT_EQ(PrintPointer(s2) + " pointing to \"abc\"", std::string(ss2.str())); const char* s3 = NULL; ::std::stringstream ss3; UniversalPrint(s3, &ss3); EXPECT_EQ("NULL", ss3.str()); } TEST(UniversalPrintTest, WorksForCharArray) { const char str[] = "\"Line\0 1\"\nLine 2"; ::std::stringstream ss1; UniversalPrint(str, &ss1); EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss1.str()); const char mutable_str[] = "\"Line\0 1\"\nLine 2"; ::std::stringstream ss2; UniversalPrint(mutable_str, &ss2); EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss2.str()); } #if GTEST_HAS_TR1_TUPLE TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsEmptyTuple) { Strings result = UniversalTersePrintTupleFieldsToStrings( ::std::tr1::make_tuple()); EXPECT_EQ(0u, result.size()); } TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsOneTuple) { Strings result = UniversalTersePrintTupleFieldsToStrings( ::std::tr1::make_tuple(1)); ASSERT_EQ(1u, result.size()); EXPECT_EQ("1", result[0]); } TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsTwoTuple) { Strings result = UniversalTersePrintTupleFieldsToStrings( ::std::tr1::make_tuple(1, 'a')); ASSERT_EQ(2u, result.size()); EXPECT_EQ("1", result[0]); EXPECT_EQ("'a' (97, 0x61)", result[1]); } TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsTersely) { const int n = 1; Strings result = UniversalTersePrintTupleFieldsToStrings( ::std::tr1::tuple<const int&, const char*>(n, "a")); ASSERT_EQ(2u, result.size()); EXPECT_EQ("1", result[0]); EXPECT_EQ("\"a\"", result[1]); } #endif // GTEST_HAS_TR1_TUPLE #if GTEST_HAS_STD_TUPLE_ TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsEmptyTuple) { Strings result = UniversalTersePrintTupleFieldsToStrings(::std::make_tuple()); EXPECT_EQ(0u, result.size()); } TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsOneTuple) { Strings result = UniversalTersePrintTupleFieldsToStrings( ::std::make_tuple(1)); ASSERT_EQ(1u, result.size()); EXPECT_EQ("1", result[0]); } TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTwoTuple) { Strings result = UniversalTersePrintTupleFieldsToStrings( ::std::make_tuple(1, 'a')); ASSERT_EQ(2u, result.size()); EXPECT_EQ("1", result[0]); EXPECT_EQ("'a' (97, 0x61)", result[1]); } TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTersely) { const int n = 1; Strings result = UniversalTersePrintTupleFieldsToStrings( ::std::tuple<const int&, const char*>(n, "a")); ASSERT_EQ(2u, result.size()); EXPECT_EQ("1", result[0]); EXPECT_EQ("\"a\"", result[1]); } #endif // GTEST_HAS_STD_TUPLE_ } // namespace gtest_printers_test } // namespace testing