/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rsovAllocation.h"
#include "rsAllocation.h"
#include "rsContext.h"
#include "rsCppUtils.h"
#include "rsElement.h"
#include "rsType.h"
#include "rsovContext.h"
#include "rsovCore.h"
namespace android {
namespace renderscript {
namespace rsov {
namespace {
size_t DeriveYUVLayout(int yuv, Allocation::Hal::DrvState *state) {
// For the flexible YCbCr format, layout is initialized during call to
// Allocation::ioReceive. Return early and avoid clobberring any
// pre-existing layout.
if (yuv == HAL_PIXEL_FORMAT_YCbCr_420_888) {
return 0;
}
// YUV only supports basic 2d
// so we can stash the plane pointers in the mipmap levels.
size_t uvSize = 0;
state->lod[1].dimX = state->lod[0].dimX / 2;
state->lod[1].dimY = state->lod[0].dimY / 2;
state->lod[2].dimX = state->lod[0].dimX / 2;
state->lod[2].dimY = state->lod[0].dimY / 2;
state->yuv.shift = 1;
state->yuv.step = 1;
state->lodCount = 3;
switch (yuv) {
case HAL_PIXEL_FORMAT_YV12:
state->lod[2].stride = rsRound(state->lod[0].stride >> 1, 16);
state->lod[2].mallocPtr = ((uint8_t *)state->lod[0].mallocPtr) +
(state->lod[0].stride * state->lod[0].dimY);
uvSize += state->lod[2].stride * state->lod[2].dimY;
state->lod[1].stride = state->lod[2].stride;
state->lod[1].mallocPtr = ((uint8_t *)state->lod[2].mallocPtr) +
(state->lod[2].stride * state->lod[2].dimY);
uvSize += state->lod[1].stride * state->lod[2].dimY;
break;
case HAL_PIXEL_FORMAT_YCrCb_420_SP: // NV21
// state->lod[1].dimX = state->lod[0].dimX;
state->lod[1].stride = state->lod[0].stride;
state->lod[2].stride = state->lod[0].stride;
state->lod[2].mallocPtr = ((uint8_t *)state->lod[0].mallocPtr) +
(state->lod[0].stride * state->lod[0].dimY);
state->lod[1].mallocPtr = ((uint8_t *)state->lod[2].mallocPtr) + 1;
uvSize += state->lod[1].stride * state->lod[1].dimY;
state->yuv.step = 2;
break;
default:
rsAssert(0);
}
return uvSize;
}
// TODO: Dedup this with the same code under frameworks/rs/driver
size_t AllocationBuildPointerTable(const Context *rsc, const Allocation *alloc,
const Type *type, uint8_t *ptr,
size_t requiredAlignment) {
alloc->mHal.drvState.lod[0].dimX = type->getDimX();
alloc->mHal.drvState.lod[0].dimY = type->getDimY();
alloc->mHal.drvState.lod[0].dimZ = type->getDimZ();
alloc->mHal.drvState.lod[0].mallocPtr = 0;
// Stride needs to be aligned to a boundary defined by requiredAlignment!
size_t stride =
alloc->mHal.drvState.lod[0].dimX * type->getElementSizeBytes();
alloc->mHal.drvState.lod[0].stride = rsRound(stride, requiredAlignment);
alloc->mHal.drvState.lodCount = type->getLODCount();
alloc->mHal.drvState.faceCount = type->getDimFaces();
size_t offsets[Allocation::MAX_LOD];
memset(offsets, 0, sizeof(offsets));
size_t o = alloc->mHal.drvState.lod[0].stride *
rsMax(alloc->mHal.drvState.lod[0].dimY, 1u) *
rsMax(alloc->mHal.drvState.lod[0].dimZ, 1u);
if (alloc->mHal.state.yuv) {
o += DeriveYUVLayout(alloc->mHal.state.yuv, &alloc->mHal.drvState);
for (uint32_t ct = 1; ct < alloc->mHal.drvState.lodCount; ct++) {
offsets[ct] = (size_t)alloc->mHal.drvState.lod[ct].mallocPtr;
}
} else if (alloc->mHal.drvState.lodCount > 1) {
uint32_t tx = alloc->mHal.drvState.lod[0].dimX;
uint32_t ty = alloc->mHal.drvState.lod[0].dimY;
uint32_t tz = alloc->mHal.drvState.lod[0].dimZ;
for (uint32_t lod = 1; lod < alloc->mHal.drvState.lodCount; lod++) {
alloc->mHal.drvState.lod[lod].dimX = tx;
alloc->mHal.drvState.lod[lod].dimY = ty;
alloc->mHal.drvState.lod[lod].dimZ = tz;
alloc->mHal.drvState.lod[lod].stride =
rsRound(tx * type->getElementSizeBytes(), requiredAlignment);
offsets[lod] = o;
o += alloc->mHal.drvState.lod[lod].stride * rsMax(ty, 1u) * rsMax(tz, 1u);
if (tx > 1) tx >>= 1;
if (ty > 1) ty >>= 1;
if (tz > 1) tz >>= 1;
}
}
alloc->mHal.drvState.faceOffset = o;
alloc->mHal.drvState.lod[0].mallocPtr = ptr;
for (uint32_t lod = 1; lod < alloc->mHal.drvState.lodCount; lod++) {
alloc->mHal.drvState.lod[lod].mallocPtr = ptr + offsets[lod];
}
size_t allocSize = alloc->mHal.drvState.faceOffset;
if (alloc->mHal.drvState.faceCount) {
allocSize *= 6;
}
return allocSize;
}
size_t AllocationBuildPointerTable(const Context *rsc, const Allocation *alloc,
const Type *type, uint8_t *ptr) {
return AllocationBuildPointerTable(rsc, alloc, type, ptr,
Allocation::kMinimumRSAlignment);
}
uint8_t *GetOffsetPtr(const Allocation *alloc, uint32_t xoff, uint32_t yoff,
uint32_t zoff, uint32_t lod,
RsAllocationCubemapFace face) {
uint8_t *ptr = (uint8_t *)alloc->mHal.drvState.lod[lod].mallocPtr;
ptr += face * alloc->mHal.drvState.faceOffset;
ptr += zoff * alloc->mHal.drvState.lod[lod].dimY *
alloc->mHal.drvState.lod[lod].stride;
ptr += yoff * alloc->mHal.drvState.lod[lod].stride;
ptr += xoff * alloc->mHal.state.elementSizeBytes;
return ptr;
}
void mip565(const Allocation *alloc, int lod, RsAllocationCubemapFace face) {
uint32_t w = alloc->mHal.drvState.lod[lod + 1].dimX;
uint32_t h = alloc->mHal.drvState.lod[lod + 1].dimY;
for (uint32_t y = 0; y < h; y++) {
uint16_t *oPtr = (uint16_t *)GetOffsetPtr(alloc, 0, y, 0, lod + 1, face);
const uint16_t *i1 =
(uint16_t *)GetOffsetPtr(alloc, 0, 0, y * 2, lod, face);
const uint16_t *i2 =
(uint16_t *)GetOffsetPtr(alloc, 0, 0, y * 2 + 1, lod, face);
for (uint32_t x = 0; x < w; x++) {
*oPtr = rsBoxFilter565(i1[0], i1[1], i2[0], i2[1]);
oPtr++;
i1 += 2;
i2 += 2;
}
}
}
void mip8888(const Allocation *alloc, int lod, RsAllocationCubemapFace face) {
uint32_t w = alloc->mHal.drvState.lod[lod + 1].dimX;
uint32_t h = alloc->mHal.drvState.lod[lod + 1].dimY;
for (uint32_t y = 0; y < h; y++) {
uint32_t *oPtr = (uint32_t *)GetOffsetPtr(alloc, 0, y, 0, lod + 1, face);
const uint32_t *i1 =
(uint32_t *)GetOffsetPtr(alloc, 0, y * 2, 0, lod, face);
const uint32_t *i2 =
(uint32_t *)GetOffsetPtr(alloc, 0, y * 2 + 1, 0, lod, face);
for (uint32_t x = 0; x < w; x++) {
*oPtr = rsBoxFilter8888(i1[0], i1[1], i2[0], i2[1]);
oPtr++;
i1 += 2;
i2 += 2;
}
}
}
void mip8(const Allocation *alloc, int lod, RsAllocationCubemapFace face) {
uint32_t w = alloc->mHal.drvState.lod[lod + 1].dimX;
uint32_t h = alloc->mHal.drvState.lod[lod + 1].dimY;
for (uint32_t y = 0; y < h; y++) {
uint8_t *oPtr = GetOffsetPtr(alloc, 0, y, 0, lod + 1, face);
const uint8_t *i1 = GetOffsetPtr(alloc, 0, y * 2, 0, lod, face);
const uint8_t *i2 = GetOffsetPtr(alloc, 0, y * 2 + 1, 0, lod, face);
for (uint32_t x = 0; x < w; x++) {
*oPtr = (uint8_t)(((uint32_t)i1[0] + i1[1] + i2[0] + i2[1]) * 0.25f);
oPtr++;
i1 += 2;
i2 += 2;
}
}
}
} // anonymous namespace
RSoVAllocation::RSoVAllocation(RSoVContext *context, const Type *type,
size_t bufferSize)
: mBuffer(new RSoVBuffer(context, bufferSize)),
mType(type),
mWidth(type->getDimX()),
mHeight(type->getDimY()),
mDepth(type->getDimZ()) {}
RSoVBuffer::RSoVBuffer(RSoVContext *context, size_t size)
: mRSoV(context), mDevice(context->getDevice()) {
InitBuffer(size);
}
RSoVBuffer::~RSoVBuffer() {
vkUnmapMemory(mDevice, mMem);
vkDestroyBuffer(mDevice, mBuf, nullptr);
vkFreeMemory(mDevice, mMem, nullptr);
}
void RSoVBuffer::InitBuffer(size_t bufferSize) {
VkResult res;
VkBufferCreateInfo buf_info = {
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
.size = bufferSize,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.flags = 0,
};
res = vkCreateBuffer(mDevice, &buf_info, nullptr, &mBuf);
rsAssert(res == VK_SUCCESS);
VkMemoryRequirements mem_reqs;
vkGetBufferMemoryRequirements(mDevice, mBuf, &mem_reqs);
VkMemoryAllocateInfo allocateInfo = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.pNext = nullptr,
.memoryTypeIndex = 0,
.allocationSize = mem_reqs.size,
};
bool pass;
pass =
mRSoV->MemoryTypeFromProperties(mem_reqs.memoryTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&allocateInfo.memoryTypeIndex);
rsAssert(pass);
// TODO: Make this aligned
res = vkAllocateMemory(mDevice, &allocateInfo, nullptr, &mMem);
rsAssert(res == VK_SUCCESS);
res = vkBindBufferMemory(mDevice, mBuf, mMem, 0);
rsAssert(res == VK_SUCCESS);
mBufferInfo.buffer = mBuf;
mBufferInfo.offset = 0;
mBufferInfo.range = bufferSize;
res = vkMapMemory(mDevice, mMem, 0, mem_reqs.size, 0, (void **)&mPtr);
rsAssert(res == VK_SUCCESS);
}
} // namespace rsov
} // namespace renderscript
} // namespace android
using android::renderscript::Allocation;
using android::renderscript::Context;
using android::renderscript::Element;
using android::renderscript::Type;
using android::renderscript::rs_allocation;
using android::renderscript::rsMax;
using namespace android::renderscript::rsov;
bool rsovAllocationInit(const Context *rsc, Allocation *alloc, bool forceZero) {
RSoVHal *hal = static_cast<RSoVHal *>(rsc->mHal.drv);
RSoVContext *rsov = hal->mRSoV;
const Type *type = alloc->getType();
// Calculate the object size.
size_t allocSize = AllocationBuildPointerTable(rsc, alloc, type, nullptr);
RSoVAllocation *rsovAlloc = new RSoVAllocation(rsov, type, allocSize);
alloc->mHal.drv = rsovAlloc;
AllocationBuildPointerTable(rsc, alloc, type,
(uint8_t *)rsovAlloc->getHostPtr());
return true;
}
void rsovAllocationDestroy(const Context *rsc, Allocation *alloc) {
RSoVAllocation *rsovAlloc = static_cast<RSoVAllocation *>(alloc->mHal.drv);
delete rsovAlloc;
alloc->mHal.drv = nullptr;
}
void rsovAllocationData1D(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t lod, size_t count,
const void *data, size_t sizeBytes) {
const size_t eSize = alloc->mHal.state.type->getElementSizeBytes();
uint8_t *ptr =
GetOffsetPtr(alloc, xoff, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
size_t size = count * eSize;
if (ptr != data) {
// Skip the copy if we are the same allocation. This can arise from
// our Bitmap optimization, where we share the same storage.
if (alloc->mHal.state.hasReferences) {
alloc->incRefs(data, count);
alloc->decRefs(ptr, count);
}
memcpy(ptr, data, size);
}
}
void rsovAllocationData2D(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t yoff, uint32_t lod,
RsAllocationCubemapFace face, uint32_t w, uint32_t h,
const void *data, size_t sizeBytes, size_t stride) {
size_t eSize = alloc->mHal.state.elementSizeBytes;
size_t lineSize = eSize * w;
if (!stride) {
stride = lineSize;
}
if (alloc->mHal.drvState.lod[0].mallocPtr) {
const uint8_t *src = static_cast<const uint8_t *>(data);
uint8_t *dst = GetOffsetPtr(alloc, xoff, yoff, 0, lod, face);
for (uint32_t line = yoff; line < (yoff + h); line++) {
if (alloc->mHal.state.hasReferences) {
alloc->incRefs(src, w);
alloc->decRefs(dst, w);
}
memcpy(dst, src, lineSize);
src += stride;
dst += alloc->mHal.drvState.lod[lod].stride;
}
// TODO: handle YUV Allocations
if (alloc->mHal.state.yuv) {
size_t clineSize = lineSize;
int lod = 1;
int maxLod = 2;
if (alloc->mHal.state.yuv == HAL_PIXEL_FORMAT_YV12) {
maxLod = 3;
clineSize >>= 1;
} else if (alloc->mHal.state.yuv == HAL_PIXEL_FORMAT_YCrCb_420_SP) {
lod = 2;
maxLod = 3;
}
while (lod < maxLod) {
uint8_t *dst = GetOffsetPtr(alloc, xoff, yoff, 0, lod, face);
for (uint32_t line = (yoff >> 1); line < ((yoff + h) >> 1); line++) {
memcpy(dst, src, clineSize);
// When copying from an array to an Allocation, the src pointer
// to the array should just move by the number of bytes copied.
src += clineSize;
dst += alloc->mHal.drvState.lod[lod].stride;
}
lod++;
}
}
}
}
void rsovAllocationData3D(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t yoff, uint32_t zoff,
uint32_t lod, uint32_t w, uint32_t h, uint32_t d,
const void *data, size_t sizeBytes, size_t stride) {
uint32_t eSize = alloc->mHal.state.elementSizeBytes;
uint32_t lineSize = eSize * w;
if (!stride) {
stride = lineSize;
}
if (alloc->mHal.drvState.lod[0].mallocPtr) {
const uint8_t *src = static_cast<const uint8_t *>(data);
for (uint32_t z = zoff; z < (d + zoff); z++) {
uint8_t *dst = GetOffsetPtr(alloc, xoff, yoff, z, lod,
RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
for (uint32_t line = yoff; line < (yoff + h); line++) {
if (alloc->mHal.state.hasReferences) {
alloc->incRefs(src, w);
alloc->decRefs(dst, w);
}
memcpy(dst, src, lineSize);
src += stride;
dst += alloc->mHal.drvState.lod[lod].stride;
}
}
}
}
void rsovAllocationRead1D(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t lod, size_t count, void *data,
size_t sizeBytes) {
const size_t eSize = alloc->mHal.state.type->getElementSizeBytes();
const uint8_t *ptr =
GetOffsetPtr(alloc, xoff, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
if (data != ptr) {
// Skip the copy if we are the same allocation. This can arise from
// our Bitmap optimization, where we share the same storage.
memcpy(data, ptr, count * eSize);
}
}
void rsovAllocationRead2D(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t yoff, uint32_t lod,
RsAllocationCubemapFace face, uint32_t w, uint32_t h,
void *data, size_t sizeBytes, size_t stride) {
size_t eSize = alloc->mHal.state.elementSizeBytes;
size_t lineSize = eSize * w;
if (!stride) {
stride = lineSize;
}
if (alloc->mHal.drvState.lod[0].mallocPtr) {
uint8_t *dst = static_cast<uint8_t *>(data);
const uint8_t *src = GetOffsetPtr(alloc, xoff, yoff, 0, lod, face);
if (dst == src) {
// Skip the copy if we are the same allocation. This can arise from
// our Bitmap optimization, where we share the same storage.
return;
}
for (uint32_t line = yoff; line < (yoff + h); line++) {
memcpy(dst, src, lineSize);
dst += stride;
src += alloc->mHal.drvState.lod[lod].stride;
}
} else {
ALOGE("Add code to readback from non-script memory");
}
}
void rsovAllocationRead3D(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t yoff, uint32_t zoff,
uint32_t lod, uint32_t w, uint32_t h, uint32_t d,
void *data, size_t sizeBytes, size_t stride) {
uint32_t eSize = alloc->mHal.state.elementSizeBytes;
uint32_t lineSize = eSize * w;
if (!stride) {
stride = lineSize;
}
if (alloc->mHal.drvState.lod[0].mallocPtr) {
uint8_t *dst = static_cast<uint8_t *>(data);
for (uint32_t z = zoff; z < (d + zoff); z++) {
const uint8_t *src = GetOffsetPtr(alloc, xoff, yoff, z, lod,
RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
if (dst == src) {
// Skip the copy if we are the same allocation. This can arise from
// our Bitmap optimization, where we share the same storage.
return;
}
for (uint32_t line = yoff; line < (yoff + h); line++) {
memcpy(dst, src, lineSize);
dst += stride;
src += alloc->mHal.drvState.lod[lod].stride;
}
}
}
}
void *rsovAllocationLock1D(const Context *rsc, const Allocation *alloc) {
return alloc->mHal.drvState.lod[0].mallocPtr;
}
void rsovAllocationUnlock1D(const Context *rsc, const Allocation *alloc) {}
void rsovAllocationData1D_alloc(const Context *rsc, const Allocation *dstAlloc,
uint32_t dstXoff, uint32_t dstLod, size_t count,
const Allocation *srcAlloc, uint32_t srcXoff,
uint32_t srcLod) {}
void rsovAllocationData2D_alloc_script(
const Context *rsc, const Allocation *dstAlloc, uint32_t dstXoff,
uint32_t dstYoff, uint32_t dstLod, RsAllocationCubemapFace dstFace,
uint32_t w, uint32_t h, const Allocation *srcAlloc, uint32_t srcXoff,
uint32_t srcYoff, uint32_t srcLod, RsAllocationCubemapFace srcFace) {
size_t elementSize = dstAlloc->getType()->getElementSizeBytes();
for (uint32_t i = 0; i < h; i++) {
uint8_t *dstPtr =
GetOffsetPtr(dstAlloc, dstXoff, dstYoff + i, 0, dstLod, dstFace);
uint8_t *srcPtr =
GetOffsetPtr(srcAlloc, srcXoff, srcYoff + i, 0, srcLod, srcFace);
memcpy(dstPtr, srcPtr, w * elementSize);
}
}
void rsovAllocationData3D_alloc_script(
const Context *rsc, const Allocation *dstAlloc, uint32_t dstXoff,
uint32_t dstYoff, uint32_t dstZoff, uint32_t dstLod, uint32_t w, uint32_t h,
uint32_t d, const Allocation *srcAlloc, uint32_t srcXoff, uint32_t srcYoff,
uint32_t srcZoff, uint32_t srcLod) {
uint32_t elementSize = dstAlloc->getType()->getElementSizeBytes();
for (uint32_t j = 0; j < d; j++) {
for (uint32_t i = 0; i < h; i++) {
uint8_t *dstPtr =
GetOffsetPtr(dstAlloc, dstXoff, dstYoff + i, dstZoff + j, dstLod,
RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
uint8_t *srcPtr =
GetOffsetPtr(srcAlloc, srcXoff, srcYoff + i, srcZoff + j, srcLod,
RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
memcpy(dstPtr, srcPtr, w * elementSize);
}
}
}
void rsovAllocationData2D_alloc(
const Context *rsc, const Allocation *dstAlloc, uint32_t dstXoff,
uint32_t dstYoff, uint32_t dstLod, RsAllocationCubemapFace dstFace,
uint32_t w, uint32_t h, const Allocation *srcAlloc, uint32_t srcXoff,
uint32_t srcYoff, uint32_t srcLod, RsAllocationCubemapFace srcFace) {
if (!dstAlloc->getIsScript() && !srcAlloc->getIsScript()) {
rsc->setError(RS_ERROR_FATAL_DRIVER,
"Non-script allocation copies not "
"yet implemented.");
return;
}
rsovAllocationData2D_alloc_script(rsc, dstAlloc, dstXoff, dstYoff, dstLod,
dstFace, w, h, srcAlloc, srcXoff, srcYoff,
srcLod, srcFace);
}
void rsovAllocationData3D_alloc(const Context *rsc, const Allocation *dstAlloc,
uint32_t dstXoff, uint32_t dstYoff,
uint32_t dstZoff, uint32_t dstLod, uint32_t w,
uint32_t h, uint32_t d,
const Allocation *srcAlloc, uint32_t srcXoff,
uint32_t srcYoff, uint32_t srcZoff,
uint32_t srcLod) {
if (!dstAlloc->getIsScript() && !srcAlloc->getIsScript()) {
rsc->setError(RS_ERROR_FATAL_DRIVER,
"Non-script allocation copies not "
"yet implemented.");
return;
}
rsovAllocationData3D_alloc_script(rsc, dstAlloc, dstXoff, dstYoff, dstZoff,
dstLod, w, h, d, srcAlloc, srcXoff, srcYoff,
srcZoff, srcLod);
}
void rsovAllocationAdapterOffset(const Context *rsc, const Allocation *alloc) {
// Get a base pointer to the new LOD
const Allocation *base = alloc->mHal.state.baseAlloc;
const Type *type = alloc->mHal.state.type;
if (base == nullptr) {
return;
}
const int lodBias = alloc->mHal.state.originLOD;
uint32_t lodCount = rsMax(alloc->mHal.drvState.lodCount, (uint32_t)1);
for (uint32_t lod = 0; lod < lodCount; lod++) {
alloc->mHal.drvState.lod[lod] = base->mHal.drvState.lod[lod + lodBias];
alloc->mHal.drvState.lod[lod].mallocPtr = GetOffsetPtr(
alloc, alloc->mHal.state.originX, alloc->mHal.state.originY,
alloc->mHal.state.originZ, lodBias,
(RsAllocationCubemapFace)alloc->mHal.state.originFace);
}
}
bool rsovAllocationAdapterInit(const Context *rsc, Allocation *alloc) {
// TODO: may need a RSoV Allocation here
#if 0
DrvAllocation *drv = (DrvAllocation *)calloc(1, sizeof(DrvAllocation));
if (!drv) {
return false;
}
alloc->mHal.drv = drv;
#endif
// We need to build an allocation that looks like a subset of the parent
// allocation
rsovAllocationAdapterOffset(rsc, alloc);
return true;
}
void rsovAllocationSyncAll(const Context *rsc, const Allocation *alloc,
RsAllocationUsageType src) {
// TODO: anything to do here?
}
void rsovAllocationMarkDirty(const Context *rsc, const Allocation *alloc) {
// TODO: anything to do here?
}
void rsovAllocationResize(const Context *rsc, const Allocation *alloc,
const Type *newType, bool zeroNew) {
// TODO: implement this
// can this be done without copying, if the new size is greater than the
// original?
}
void rsovAllocationGenerateMipmaps(const Context *rsc,
const Allocation *alloc) {
if (!alloc->mHal.drvState.lod[0].mallocPtr) {
return;
}
uint32_t numFaces = alloc->getType()->getDimFaces() ? 6 : 1;
for (uint32_t face = 0; face < numFaces; face++) {
for (uint32_t lod = 0; lod < (alloc->getType()->getLODCount() - 1); lod++) {
switch (alloc->getType()->getElement()->getSizeBits()) {
case 32:
mip8888(alloc, lod, (RsAllocationCubemapFace)face);
break;
case 16:
mip565(alloc, lod, (RsAllocationCubemapFace)face);
break;
case 8:
mip8(alloc, lod, (RsAllocationCubemapFace)face);
break;
}
}
}
}
uint32_t rsovAllocationGrallocBits(const Context *rsc, Allocation *alloc) {
return 0;
}
void rsovAllocationUpdateCachedObject(const Context *rsc,
const Allocation *alloc,
rs_allocation *obj) {
obj->p = alloc;
#ifdef __LP64__
obj->unused1 = nullptr;
obj->unused2 = nullptr;
obj->unused3 = nullptr;
#endif
}
void rsovAllocationSetSurface(const Context *rsc, Allocation *alloc,
ANativeWindow *nw) {
// TODO: implement this
}
void rsovAllocationIoSend(const Context *rsc, Allocation *alloc) {
// TODO: implement this
}
void rsovAllocationIoReceive(const Context *rsc, Allocation *alloc) {
// TODO: implement this
}
void rsovAllocationElementData(const Context *rsc, const Allocation *alloc,
uint32_t x, uint32_t y, uint32_t z,
const void *data, uint32_t cIdx,
size_t sizeBytes) {
uint8_t *ptr =
GetOffsetPtr(alloc, x, y, z, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
const Element *e = alloc->mHal.state.type->getElement()->getField(cIdx);
ptr += alloc->mHal.state.type->getElement()->getFieldOffsetBytes(cIdx);
if (alloc->mHal.state.hasReferences) {
e->incRefs(data);
e->decRefs(ptr);
}
memcpy(ptr, data, sizeBytes);
}
void rsovAllocationElementRead(const Context *rsc, const Allocation *alloc,
uint32_t x, uint32_t y, uint32_t z, void *data,
uint32_t cIdx, size_t sizeBytes) {
uint8_t *ptr =
GetOffsetPtr(alloc, x, y, z, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
const Element *e = alloc->mHal.state.type->getElement()->getField(cIdx);
ptr += alloc->mHal.state.type->getElement()->getFieldOffsetBytes(cIdx);
memcpy(data, ptr, sizeBytes);
}