/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "rsovAllocation.h" #include "rsAllocation.h" #include "rsContext.h" #include "rsCppUtils.h" #include "rsElement.h" #include "rsType.h" #include "rsovContext.h" #include "rsovCore.h" namespace android { namespace renderscript { namespace rsov { namespace { size_t DeriveYUVLayout(int yuv, Allocation::Hal::DrvState *state) { // For the flexible YCbCr format, layout is initialized during call to // Allocation::ioReceive. Return early and avoid clobberring any // pre-existing layout. if (yuv == HAL_PIXEL_FORMAT_YCbCr_420_888) { return 0; } // YUV only supports basic 2d // so we can stash the plane pointers in the mipmap levels. size_t uvSize = 0; state->lod[1].dimX = state->lod[0].dimX / 2; state->lod[1].dimY = state->lod[0].dimY / 2; state->lod[2].dimX = state->lod[0].dimX / 2; state->lod[2].dimY = state->lod[0].dimY / 2; state->yuv.shift = 1; state->yuv.step = 1; state->lodCount = 3; switch (yuv) { case HAL_PIXEL_FORMAT_YV12: state->lod[2].stride = rsRound(state->lod[0].stride >> 1, 16); state->lod[2].mallocPtr = ((uint8_t *)state->lod[0].mallocPtr) + (state->lod[0].stride * state->lod[0].dimY); uvSize += state->lod[2].stride * state->lod[2].dimY; state->lod[1].stride = state->lod[2].stride; state->lod[1].mallocPtr = ((uint8_t *)state->lod[2].mallocPtr) + (state->lod[2].stride * state->lod[2].dimY); uvSize += state->lod[1].stride * state->lod[2].dimY; break; case HAL_PIXEL_FORMAT_YCrCb_420_SP: // NV21 // state->lod[1].dimX = state->lod[0].dimX; state->lod[1].stride = state->lod[0].stride; state->lod[2].stride = state->lod[0].stride; state->lod[2].mallocPtr = ((uint8_t *)state->lod[0].mallocPtr) + (state->lod[0].stride * state->lod[0].dimY); state->lod[1].mallocPtr = ((uint8_t *)state->lod[2].mallocPtr) + 1; uvSize += state->lod[1].stride * state->lod[1].dimY; state->yuv.step = 2; break; default: rsAssert(0); } return uvSize; } // TODO: Dedup this with the same code under frameworks/rs/driver size_t AllocationBuildPointerTable(const Context *rsc, const Allocation *alloc, const Type *type, uint8_t *ptr, size_t requiredAlignment) { alloc->mHal.drvState.lod[0].dimX = type->getDimX(); alloc->mHal.drvState.lod[0].dimY = type->getDimY(); alloc->mHal.drvState.lod[0].dimZ = type->getDimZ(); alloc->mHal.drvState.lod[0].mallocPtr = 0; // Stride needs to be aligned to a boundary defined by requiredAlignment! size_t stride = alloc->mHal.drvState.lod[0].dimX * type->getElementSizeBytes(); alloc->mHal.drvState.lod[0].stride = rsRound(stride, requiredAlignment); alloc->mHal.drvState.lodCount = type->getLODCount(); alloc->mHal.drvState.faceCount = type->getDimFaces(); size_t offsets[Allocation::MAX_LOD]; memset(offsets, 0, sizeof(offsets)); size_t o = alloc->mHal.drvState.lod[0].stride * rsMax(alloc->mHal.drvState.lod[0].dimY, 1u) * rsMax(alloc->mHal.drvState.lod[0].dimZ, 1u); if (alloc->mHal.state.yuv) { o += DeriveYUVLayout(alloc->mHal.state.yuv, &alloc->mHal.drvState); for (uint32_t ct = 1; ct < alloc->mHal.drvState.lodCount; ct++) { offsets[ct] = (size_t)alloc->mHal.drvState.lod[ct].mallocPtr; } } else if (alloc->mHal.drvState.lodCount > 1) { uint32_t tx = alloc->mHal.drvState.lod[0].dimX; uint32_t ty = alloc->mHal.drvState.lod[0].dimY; uint32_t tz = alloc->mHal.drvState.lod[0].dimZ; for (uint32_t lod = 1; lod < alloc->mHal.drvState.lodCount; lod++) { alloc->mHal.drvState.lod[lod].dimX = tx; alloc->mHal.drvState.lod[lod].dimY = ty; alloc->mHal.drvState.lod[lod].dimZ = tz; alloc->mHal.drvState.lod[lod].stride = rsRound(tx * type->getElementSizeBytes(), requiredAlignment); offsets[lod] = o; o += alloc->mHal.drvState.lod[lod].stride * rsMax(ty, 1u) * rsMax(tz, 1u); if (tx > 1) tx >>= 1; if (ty > 1) ty >>= 1; if (tz > 1) tz >>= 1; } } alloc->mHal.drvState.faceOffset = o; alloc->mHal.drvState.lod[0].mallocPtr = ptr; for (uint32_t lod = 1; lod < alloc->mHal.drvState.lodCount; lod++) { alloc->mHal.drvState.lod[lod].mallocPtr = ptr + offsets[lod]; } size_t allocSize = alloc->mHal.drvState.faceOffset; if (alloc->mHal.drvState.faceCount) { allocSize *= 6; } return allocSize; } size_t AllocationBuildPointerTable(const Context *rsc, const Allocation *alloc, const Type *type, uint8_t *ptr) { return AllocationBuildPointerTable(rsc, alloc, type, ptr, Allocation::kMinimumRSAlignment); } uint8_t *GetOffsetPtr(const Allocation *alloc, uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t lod, RsAllocationCubemapFace face) { uint8_t *ptr = (uint8_t *)alloc->mHal.drvState.lod[lod].mallocPtr; ptr += face * alloc->mHal.drvState.faceOffset; ptr += zoff * alloc->mHal.drvState.lod[lod].dimY * alloc->mHal.drvState.lod[lod].stride; ptr += yoff * alloc->mHal.drvState.lod[lod].stride; ptr += xoff * alloc->mHal.state.elementSizeBytes; return ptr; } void mip565(const Allocation *alloc, int lod, RsAllocationCubemapFace face) { uint32_t w = alloc->mHal.drvState.lod[lod + 1].dimX; uint32_t h = alloc->mHal.drvState.lod[lod + 1].dimY; for (uint32_t y = 0; y < h; y++) { uint16_t *oPtr = (uint16_t *)GetOffsetPtr(alloc, 0, y, 0, lod + 1, face); const uint16_t *i1 = (uint16_t *)GetOffsetPtr(alloc, 0, 0, y * 2, lod, face); const uint16_t *i2 = (uint16_t *)GetOffsetPtr(alloc, 0, 0, y * 2 + 1, lod, face); for (uint32_t x = 0; x < w; x++) { *oPtr = rsBoxFilter565(i1[0], i1[1], i2[0], i2[1]); oPtr++; i1 += 2; i2 += 2; } } } void mip8888(const Allocation *alloc, int lod, RsAllocationCubemapFace face) { uint32_t w = alloc->mHal.drvState.lod[lod + 1].dimX; uint32_t h = alloc->mHal.drvState.lod[lod + 1].dimY; for (uint32_t y = 0; y < h; y++) { uint32_t *oPtr = (uint32_t *)GetOffsetPtr(alloc, 0, y, 0, lod + 1, face); const uint32_t *i1 = (uint32_t *)GetOffsetPtr(alloc, 0, y * 2, 0, lod, face); const uint32_t *i2 = (uint32_t *)GetOffsetPtr(alloc, 0, y * 2 + 1, 0, lod, face); for (uint32_t x = 0; x < w; x++) { *oPtr = rsBoxFilter8888(i1[0], i1[1], i2[0], i2[1]); oPtr++; i1 += 2; i2 += 2; } } } void mip8(const Allocation *alloc, int lod, RsAllocationCubemapFace face) { uint32_t w = alloc->mHal.drvState.lod[lod + 1].dimX; uint32_t h = alloc->mHal.drvState.lod[lod + 1].dimY; for (uint32_t y = 0; y < h; y++) { uint8_t *oPtr = GetOffsetPtr(alloc, 0, y, 0, lod + 1, face); const uint8_t *i1 = GetOffsetPtr(alloc, 0, y * 2, 0, lod, face); const uint8_t *i2 = GetOffsetPtr(alloc, 0, y * 2 + 1, 0, lod, face); for (uint32_t x = 0; x < w; x++) { *oPtr = (uint8_t)(((uint32_t)i1[0] + i1[1] + i2[0] + i2[1]) * 0.25f); oPtr++; i1 += 2; i2 += 2; } } } } // anonymous namespace RSoVAllocation::RSoVAllocation(RSoVContext *context, const Type *type, size_t bufferSize) : mBuffer(new RSoVBuffer(context, bufferSize)), mType(type), mWidth(type->getDimX()), mHeight(type->getDimY()), mDepth(type->getDimZ()) {} RSoVBuffer::RSoVBuffer(RSoVContext *context, size_t size) : mRSoV(context), mDevice(context->getDevice()) { InitBuffer(size); } RSoVBuffer::~RSoVBuffer() { vkUnmapMemory(mDevice, mMem); vkDestroyBuffer(mDevice, mBuf, nullptr); vkFreeMemory(mDevice, mMem, nullptr); } void RSoVBuffer::InitBuffer(size_t bufferSize) { VkResult res; VkBufferCreateInfo buf_info = { .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, .pNext = nullptr, .usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, .size = bufferSize, .queueFamilyIndexCount = 0, .pQueueFamilyIndices = nullptr, .sharingMode = VK_SHARING_MODE_EXCLUSIVE, .flags = 0, }; res = vkCreateBuffer(mDevice, &buf_info, nullptr, &mBuf); rsAssert(res == VK_SUCCESS); VkMemoryRequirements mem_reqs; vkGetBufferMemoryRequirements(mDevice, mBuf, &mem_reqs); VkMemoryAllocateInfo allocateInfo = { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .pNext = nullptr, .memoryTypeIndex = 0, .allocationSize = mem_reqs.size, }; bool pass; pass = mRSoV->MemoryTypeFromProperties(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &allocateInfo.memoryTypeIndex); rsAssert(pass); // TODO: Make this aligned res = vkAllocateMemory(mDevice, &allocateInfo, nullptr, &mMem); rsAssert(res == VK_SUCCESS); res = vkBindBufferMemory(mDevice, mBuf, mMem, 0); rsAssert(res == VK_SUCCESS); mBufferInfo.buffer = mBuf; mBufferInfo.offset = 0; mBufferInfo.range = bufferSize; res = vkMapMemory(mDevice, mMem, 0, mem_reqs.size, 0, (void **)&mPtr); rsAssert(res == VK_SUCCESS); } } // namespace rsov } // namespace renderscript } // namespace android using android::renderscript::Allocation; using android::renderscript::Context; using android::renderscript::Element; using android::renderscript::Type; using android::renderscript::rs_allocation; using android::renderscript::rsMax; using namespace android::renderscript::rsov; bool rsovAllocationInit(const Context *rsc, Allocation *alloc, bool forceZero) { RSoVHal *hal = static_cast<RSoVHal *>(rsc->mHal.drv); RSoVContext *rsov = hal->mRSoV; const Type *type = alloc->getType(); // Calculate the object size. size_t allocSize = AllocationBuildPointerTable(rsc, alloc, type, nullptr); RSoVAllocation *rsovAlloc = new RSoVAllocation(rsov, type, allocSize); alloc->mHal.drv = rsovAlloc; AllocationBuildPointerTable(rsc, alloc, type, (uint8_t *)rsovAlloc->getHostPtr()); return true; } void rsovAllocationDestroy(const Context *rsc, Allocation *alloc) { RSoVAllocation *rsovAlloc = static_cast<RSoVAllocation *>(alloc->mHal.drv); delete rsovAlloc; alloc->mHal.drv = nullptr; } void rsovAllocationData1D(const Context *rsc, const Allocation *alloc, uint32_t xoff, uint32_t lod, size_t count, const void *data, size_t sizeBytes) { const size_t eSize = alloc->mHal.state.type->getElementSizeBytes(); uint8_t *ptr = GetOffsetPtr(alloc, xoff, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); size_t size = count * eSize; if (ptr != data) { // Skip the copy if we are the same allocation. This can arise from // our Bitmap optimization, where we share the same storage. if (alloc->mHal.state.hasReferences) { alloc->incRefs(data, count); alloc->decRefs(ptr, count); } memcpy(ptr, data, size); } } void rsovAllocationData2D(const Context *rsc, const Allocation *alloc, uint32_t xoff, uint32_t yoff, uint32_t lod, RsAllocationCubemapFace face, uint32_t w, uint32_t h, const void *data, size_t sizeBytes, size_t stride) { size_t eSize = alloc->mHal.state.elementSizeBytes; size_t lineSize = eSize * w; if (!stride) { stride = lineSize; } if (alloc->mHal.drvState.lod[0].mallocPtr) { const uint8_t *src = static_cast<const uint8_t *>(data); uint8_t *dst = GetOffsetPtr(alloc, xoff, yoff, 0, lod, face); for (uint32_t line = yoff; line < (yoff + h); line++) { if (alloc->mHal.state.hasReferences) { alloc->incRefs(src, w); alloc->decRefs(dst, w); } memcpy(dst, src, lineSize); src += stride; dst += alloc->mHal.drvState.lod[lod].stride; } // TODO: handle YUV Allocations if (alloc->mHal.state.yuv) { size_t clineSize = lineSize; int lod = 1; int maxLod = 2; if (alloc->mHal.state.yuv == HAL_PIXEL_FORMAT_YV12) { maxLod = 3; clineSize >>= 1; } else if (alloc->mHal.state.yuv == HAL_PIXEL_FORMAT_YCrCb_420_SP) { lod = 2; maxLod = 3; } while (lod < maxLod) { uint8_t *dst = GetOffsetPtr(alloc, xoff, yoff, 0, lod, face); for (uint32_t line = (yoff >> 1); line < ((yoff + h) >> 1); line++) { memcpy(dst, src, clineSize); // When copying from an array to an Allocation, the src pointer // to the array should just move by the number of bytes copied. src += clineSize; dst += alloc->mHal.drvState.lod[lod].stride; } lod++; } } } } void rsovAllocationData3D(const Context *rsc, const Allocation *alloc, uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t lod, uint32_t w, uint32_t h, uint32_t d, const void *data, size_t sizeBytes, size_t stride) { uint32_t eSize = alloc->mHal.state.elementSizeBytes; uint32_t lineSize = eSize * w; if (!stride) { stride = lineSize; } if (alloc->mHal.drvState.lod[0].mallocPtr) { const uint8_t *src = static_cast<const uint8_t *>(data); for (uint32_t z = zoff; z < (d + zoff); z++) { uint8_t *dst = GetOffsetPtr(alloc, xoff, yoff, z, lod, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); for (uint32_t line = yoff; line < (yoff + h); line++) { if (alloc->mHal.state.hasReferences) { alloc->incRefs(src, w); alloc->decRefs(dst, w); } memcpy(dst, src, lineSize); src += stride; dst += alloc->mHal.drvState.lod[lod].stride; } } } } void rsovAllocationRead1D(const Context *rsc, const Allocation *alloc, uint32_t xoff, uint32_t lod, size_t count, void *data, size_t sizeBytes) { const size_t eSize = alloc->mHal.state.type->getElementSizeBytes(); const uint8_t *ptr = GetOffsetPtr(alloc, xoff, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); if (data != ptr) { // Skip the copy if we are the same allocation. This can arise from // our Bitmap optimization, where we share the same storage. memcpy(data, ptr, count * eSize); } } void rsovAllocationRead2D(const Context *rsc, const Allocation *alloc, uint32_t xoff, uint32_t yoff, uint32_t lod, RsAllocationCubemapFace face, uint32_t w, uint32_t h, void *data, size_t sizeBytes, size_t stride) { size_t eSize = alloc->mHal.state.elementSizeBytes; size_t lineSize = eSize * w; if (!stride) { stride = lineSize; } if (alloc->mHal.drvState.lod[0].mallocPtr) { uint8_t *dst = static_cast<uint8_t *>(data); const uint8_t *src = GetOffsetPtr(alloc, xoff, yoff, 0, lod, face); if (dst == src) { // Skip the copy if we are the same allocation. This can arise from // our Bitmap optimization, where we share the same storage. return; } for (uint32_t line = yoff; line < (yoff + h); line++) { memcpy(dst, src, lineSize); dst += stride; src += alloc->mHal.drvState.lod[lod].stride; } } else { ALOGE("Add code to readback from non-script memory"); } } void rsovAllocationRead3D(const Context *rsc, const Allocation *alloc, uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t lod, uint32_t w, uint32_t h, uint32_t d, void *data, size_t sizeBytes, size_t stride) { uint32_t eSize = alloc->mHal.state.elementSizeBytes; uint32_t lineSize = eSize * w; if (!stride) { stride = lineSize; } if (alloc->mHal.drvState.lod[0].mallocPtr) { uint8_t *dst = static_cast<uint8_t *>(data); for (uint32_t z = zoff; z < (d + zoff); z++) { const uint8_t *src = GetOffsetPtr(alloc, xoff, yoff, z, lod, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); if (dst == src) { // Skip the copy if we are the same allocation. This can arise from // our Bitmap optimization, where we share the same storage. return; } for (uint32_t line = yoff; line < (yoff + h); line++) { memcpy(dst, src, lineSize); dst += stride; src += alloc->mHal.drvState.lod[lod].stride; } } } } void *rsovAllocationLock1D(const Context *rsc, const Allocation *alloc) { return alloc->mHal.drvState.lod[0].mallocPtr; } void rsovAllocationUnlock1D(const Context *rsc, const Allocation *alloc) {} void rsovAllocationData1D_alloc(const Context *rsc, const Allocation *dstAlloc, uint32_t dstXoff, uint32_t dstLod, size_t count, const Allocation *srcAlloc, uint32_t srcXoff, uint32_t srcLod) {} void rsovAllocationData2D_alloc_script( const Context *rsc, const Allocation *dstAlloc, uint32_t dstXoff, uint32_t dstYoff, uint32_t dstLod, RsAllocationCubemapFace dstFace, uint32_t w, uint32_t h, const Allocation *srcAlloc, uint32_t srcXoff, uint32_t srcYoff, uint32_t srcLod, RsAllocationCubemapFace srcFace) { size_t elementSize = dstAlloc->getType()->getElementSizeBytes(); for (uint32_t i = 0; i < h; i++) { uint8_t *dstPtr = GetOffsetPtr(dstAlloc, dstXoff, dstYoff + i, 0, dstLod, dstFace); uint8_t *srcPtr = GetOffsetPtr(srcAlloc, srcXoff, srcYoff + i, 0, srcLod, srcFace); memcpy(dstPtr, srcPtr, w * elementSize); } } void rsovAllocationData3D_alloc_script( const Context *rsc, const Allocation *dstAlloc, uint32_t dstXoff, uint32_t dstYoff, uint32_t dstZoff, uint32_t dstLod, uint32_t w, uint32_t h, uint32_t d, const Allocation *srcAlloc, uint32_t srcXoff, uint32_t srcYoff, uint32_t srcZoff, uint32_t srcLod) { uint32_t elementSize = dstAlloc->getType()->getElementSizeBytes(); for (uint32_t j = 0; j < d; j++) { for (uint32_t i = 0; i < h; i++) { uint8_t *dstPtr = GetOffsetPtr(dstAlloc, dstXoff, dstYoff + i, dstZoff + j, dstLod, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); uint8_t *srcPtr = GetOffsetPtr(srcAlloc, srcXoff, srcYoff + i, srcZoff + j, srcLod, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); memcpy(dstPtr, srcPtr, w * elementSize); } } } void rsovAllocationData2D_alloc( const Context *rsc, const Allocation *dstAlloc, uint32_t dstXoff, uint32_t dstYoff, uint32_t dstLod, RsAllocationCubemapFace dstFace, uint32_t w, uint32_t h, const Allocation *srcAlloc, uint32_t srcXoff, uint32_t srcYoff, uint32_t srcLod, RsAllocationCubemapFace srcFace) { if (!dstAlloc->getIsScript() && !srcAlloc->getIsScript()) { rsc->setError(RS_ERROR_FATAL_DRIVER, "Non-script allocation copies not " "yet implemented."); return; } rsovAllocationData2D_alloc_script(rsc, dstAlloc, dstXoff, dstYoff, dstLod, dstFace, w, h, srcAlloc, srcXoff, srcYoff, srcLod, srcFace); } void rsovAllocationData3D_alloc(const Context *rsc, const Allocation *dstAlloc, uint32_t dstXoff, uint32_t dstYoff, uint32_t dstZoff, uint32_t dstLod, uint32_t w, uint32_t h, uint32_t d, const Allocation *srcAlloc, uint32_t srcXoff, uint32_t srcYoff, uint32_t srcZoff, uint32_t srcLod) { if (!dstAlloc->getIsScript() && !srcAlloc->getIsScript()) { rsc->setError(RS_ERROR_FATAL_DRIVER, "Non-script allocation copies not " "yet implemented."); return; } rsovAllocationData3D_alloc_script(rsc, dstAlloc, dstXoff, dstYoff, dstZoff, dstLod, w, h, d, srcAlloc, srcXoff, srcYoff, srcZoff, srcLod); } void rsovAllocationAdapterOffset(const Context *rsc, const Allocation *alloc) { // Get a base pointer to the new LOD const Allocation *base = alloc->mHal.state.baseAlloc; const Type *type = alloc->mHal.state.type; if (base == nullptr) { return; } const int lodBias = alloc->mHal.state.originLOD; uint32_t lodCount = rsMax(alloc->mHal.drvState.lodCount, (uint32_t)1); for (uint32_t lod = 0; lod < lodCount; lod++) { alloc->mHal.drvState.lod[lod] = base->mHal.drvState.lod[lod + lodBias]; alloc->mHal.drvState.lod[lod].mallocPtr = GetOffsetPtr( alloc, alloc->mHal.state.originX, alloc->mHal.state.originY, alloc->mHal.state.originZ, lodBias, (RsAllocationCubemapFace)alloc->mHal.state.originFace); } } bool rsovAllocationAdapterInit(const Context *rsc, Allocation *alloc) { // TODO: may need a RSoV Allocation here #if 0 DrvAllocation *drv = (DrvAllocation *)calloc(1, sizeof(DrvAllocation)); if (!drv) { return false; } alloc->mHal.drv = drv; #endif // We need to build an allocation that looks like a subset of the parent // allocation rsovAllocationAdapterOffset(rsc, alloc); return true; } void rsovAllocationSyncAll(const Context *rsc, const Allocation *alloc, RsAllocationUsageType src) { // TODO: anything to do here? } void rsovAllocationMarkDirty(const Context *rsc, const Allocation *alloc) { // TODO: anything to do here? } void rsovAllocationResize(const Context *rsc, const Allocation *alloc, const Type *newType, bool zeroNew) { // TODO: implement this // can this be done without copying, if the new size is greater than the // original? } void rsovAllocationGenerateMipmaps(const Context *rsc, const Allocation *alloc) { if (!alloc->mHal.drvState.lod[0].mallocPtr) { return; } uint32_t numFaces = alloc->getType()->getDimFaces() ? 6 : 1; for (uint32_t face = 0; face < numFaces; face++) { for (uint32_t lod = 0; lod < (alloc->getType()->getLODCount() - 1); lod++) { switch (alloc->getType()->getElement()->getSizeBits()) { case 32: mip8888(alloc, lod, (RsAllocationCubemapFace)face); break; case 16: mip565(alloc, lod, (RsAllocationCubemapFace)face); break; case 8: mip8(alloc, lod, (RsAllocationCubemapFace)face); break; } } } } uint32_t rsovAllocationGrallocBits(const Context *rsc, Allocation *alloc) { return 0; } void rsovAllocationUpdateCachedObject(const Context *rsc, const Allocation *alloc, rs_allocation *obj) { obj->p = alloc; #ifdef __LP64__ obj->unused1 = nullptr; obj->unused2 = nullptr; obj->unused3 = nullptr; #endif } void rsovAllocationSetSurface(const Context *rsc, Allocation *alloc, ANativeWindow *nw) { // TODO: implement this } void rsovAllocationIoSend(const Context *rsc, Allocation *alloc) { // TODO: implement this } void rsovAllocationIoReceive(const Context *rsc, Allocation *alloc) { // TODO: implement this } void rsovAllocationElementData(const Context *rsc, const Allocation *alloc, uint32_t x, uint32_t y, uint32_t z, const void *data, uint32_t cIdx, size_t sizeBytes) { uint8_t *ptr = GetOffsetPtr(alloc, x, y, z, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); const Element *e = alloc->mHal.state.type->getElement()->getField(cIdx); ptr += alloc->mHal.state.type->getElement()->getFieldOffsetBytes(cIdx); if (alloc->mHal.state.hasReferences) { e->incRefs(data); e->decRefs(ptr); } memcpy(ptr, data, sizeBytes); } void rsovAllocationElementRead(const Context *rsc, const Allocation *alloc, uint32_t x, uint32_t y, uint32_t z, void *data, uint32_t cIdx, size_t sizeBytes) { uint8_t *ptr = GetOffsetPtr(alloc, x, y, z, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); const Element *e = alloc->mHal.state.type->getElement()->getField(cIdx); ptr += alloc->mHal.state.type->getElement()->getFieldOffsetBytes(cIdx); memcpy(data, ptr, sizeBytes); }