/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ModelBuilder"
#include "ModelBuilder.h"
#include "CompilationBuilder.h"
#include "GraphDump.h"
#include "Manager.h"
#include "TypeManager.h"
#include "Utils.h"
#include "ValidateHal.h"
#include <map>
#include <utility>
namespace android {
namespace nn {
// The maximum number of operands and operations that a model may have.
const uint32_t MAX_NUMBER_OF_OPERANDS = 0xFFFFFFFE;
const uint32_t MAX_NUMBER_OF_OPERATIONS = 0xFFFFFFFE;
bool ModelBuilder::badState(const char* name) {
if (mCompletedModel) {
LOG(ERROR) << "ANeuralNetworksModel_" << name << " can't modify after model finished";
return true;
}
if (mInvalidModel) {
LOG(ERROR) << "ANeuralNetworksModel_" << name << " can't modify an invalid model";
return true;
}
return false;
}
int ModelBuilder::getExtensionType(const char* extensionName, uint16_t typeWithinExtension,
int32_t* type) {
return TypeManager::get()->getExtensionType(extensionName, typeWithinExtension, type)
? ANEURALNETWORKS_NO_ERROR
: ANEURALNETWORKS_BAD_DATA;
}
int ModelBuilder::addOperand(const ANeuralNetworksOperandType& type) {
if (badState("addOperand")) {
return ANEURALNETWORKS_BAD_STATE;
}
OperandType operandType = static_cast<OperandType>(type.type);
if (isExtensionOperandType(operandType) && !TypeManager::get()->areExtensionsAllowed()) {
LOG(ERROR) << "Extensions are not supported for this process.";
return ANEURALNETWORKS_BAD_DATA;
}
if (operandType == OperandType::OEM || operandType == OperandType::TENSOR_OEM_BYTE) {
LOG(WARNING) << "OEM data type is deprecated. Use Extensions instead.";
}
const Extension::OperandTypeInformation* info = nullptr;
if (isExtensionOperandType(operandType) &&
!TypeManager::get()->getExtensionOperandTypeInfo(operandType, &info)) {
LOG(ERROR) << "Extension operand type " << toString(operandType) << " is not registered";
return ANEURALNETWORKS_BAD_DATA;
}
NN_RETURN_IF_ERROR(validateOperandType(type, info, "ANeuralNetworksModel_addOperand", true));
size_t idx = mOperands.size();
if (idx >= MAX_NUMBER_OF_OPERANDS) {
LOG(ERROR) << "ANeuralNetworksModel_addOperand exceed max operands";
return ANEURALNETWORKS_BAD_DATA;
}
mOperands.push_back({
.type = operandType,
.dimensions =
hidl_vec<uint32_t>(type.dimensions, type.dimensions + type.dimensionCount),
.numberOfConsumers = 0,
.scale = type.scale,
.zeroPoint = type.zeroPoint,
.lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
.location = {.poolIndex = 0, .offset = 0, .length = 0},
.extraParams = Operand::ExtraParams(),
});
return ANEURALNETWORKS_NO_ERROR;
}
int ModelBuilder::setOperandValue(uint32_t index, const void* buffer, size_t length) {
VLOG(MODEL) << __func__ << " for operand " << index << " size " << length;
if (badState("setOperandValue")) {
return ANEURALNETWORKS_BAD_STATE;
}
if (index >= operandCount()) {
LOG(ERROR) << "ANeuralNetworksModel_setOperandValue setting operand " << index << " of "
<< operandCount();
return ANEURALNETWORKS_BAD_DATA;
}
Operand& operand = mOperands[index];
if (buffer == nullptr) {
if (length) {
LOG(ERROR) << "ANeuralNetworksModel_setOperandValue buffer is nullptr but length is "
"not 0";
return ANEURALNETWORKS_BAD_DATA;
}
operand.lifetime = OperandLifeTime::NO_VALUE;
// The location is unused and is set to zeros.
operand.location = {.poolIndex = 0, .offset = 0, .length = 0};
} else {
if (TypeManager::get()->isTensorType(operand.type) &&
tensorHasUnspecifiedDimensions(operand)) {
LOG(ERROR) << "ANeuralNetworksModel_setOperandValue setting operand " << index
<< " which has operand type that is not fully specified";
return ANEURALNETWORKS_BAD_DATA;
}
if (length > 0xFFFFFFFF) {
LOG(ERROR) << "ANeuralNetworksModel_setOperandValue value length of " << length
<< " exceeds max size";
return ANEURALNETWORKS_BAD_DATA;
}
uint32_t valueLength = static_cast<uint32_t>(length);
if (operand.type != OperandType::OEM) {
uint32_t neededLength = TypeManager::get()->getSizeOfData(operand);
if (neededLength != valueLength) {
LOG(ERROR) << "ANeuralNetworksModel_setOperandValue setting " << valueLength
<< " bytes when needing " << neededLength;
return ANEURALNETWORKS_BAD_DATA;
}
}
if (valueLength <= ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES) {
uint32_t existingSize = static_cast<uint32_t>(mSmallOperandValues.size());
uint32_t extraBytes = alignBytesNeeded(existingSize, valueLength);
mSmallOperandValues.resize(existingSize + extraBytes + valueLength);
operand.lifetime = OperandLifeTime::CONSTANT_COPY;
operand.location = {
.poolIndex = 0, .offset = existingSize + extraBytes, .length = valueLength};
memcpy(&mSmallOperandValues[operand.location.offset], buffer, valueLength);
VLOG(MODEL) << "Copied small value to offset " << operand.location.offset;
} else {
VLOG(MODEL) << "Saving large value";
operand.lifetime = OperandLifeTime::CONSTANT_REFERENCE;
// The values for poolIndex and offset will be set when the model is finished.
typedef decltype(operand.location.poolIndex) PoolIndexType;
typedef decltype(operand.location.offset) OffsetType;
operand.location = {.poolIndex = ~PoolIndexType(0),
.offset = ~OffsetType(0),
.length = valueLength};
// We keep track of the buffers. We'll allocate the shared memory only
// once we know the total size, to avoid needless copies.
mLargeOperandValues.push_back(LargeValue{.operandIndex = index, .buffer = buffer});
}
}
return ANEURALNETWORKS_NO_ERROR;
}
int ModelBuilder::setOperandSymmPerChannelQuantParams(
uint32_t index, const ANeuralNetworksSymmPerChannelQuantParams& channelQuant) {
if (badState("setOperandSymmPerChannelQuantParams")) {
return ANEURALNETWORKS_BAD_STATE;
}
if (index >= operandCount()) {
LOG(ERROR) << "ANeuralNetworksModel_setOperandSymmPerChannelQuantParams "
<< "setting per-channel quantization parameters for operand " << index << " of "
<< operandCount();
return ANEURALNETWORKS_BAD_DATA;
}
Operand& operand = mOperands[index];
if (!validateOperandSymmPerChannelQuantParams(
operand, channelQuant,
"ANeuralNetworksModel_setOperandSymmPerChannelQuantParams")) {
return ANEURALNETWORKS_BAD_DATA;
}
switch (operand.type) {
case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
operand.extraParams.channelQuant({
.scales = hidl_vec<float>(channelQuant.scales,
channelQuant.scales + channelQuant.scaleCount),
.channelDim = channelQuant.channelDim,
});
break;
default:
LOG(ERROR) << "ANeuralNetworksModel_setOperandSymmPerChannelQuantParams "
<< "invalid operand type " << static_cast<int32_t>(operand.type);
return ANEURALNETWORKS_BAD_DATA;
}
return ANEURALNETWORKS_NO_ERROR;
}
int ModelBuilder::setOperandExtensionData(uint32_t index, const void* data, size_t length) {
if (badState("setOperandExtensionData")) {
return ANEURALNETWORKS_BAD_STATE;
}
if (index >= operandCount()) {
LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData "
<< "setting extension data for operand " << index << " of " << operandCount();
return ANEURALNETWORKS_BAD_DATA;
}
Operand& operand = mOperands[index];
if (data == nullptr && length != 0) {
LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData data is nullptr but length is "
<< length;
return ANEURALNETWORKS_BAD_DATA;
}
if (data != nullptr && length == 0) {
LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData data is not nullptr but length "
<< "is zero";
return ANEURALNETWORKS_BAD_DATA;
}
if (!isExtensionOperandType(operand.type)) {
LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData "
<< "setting extension data for a base operand type "
<< static_cast<int32_t>(operand.type);
return ANEURALNETWORKS_BAD_DATA;
}
if (data == nullptr) {
operand.extraParams.none();
} else {
operand.extraParams.extension(
hidl_vec<uint8_t>(reinterpret_cast<const uint8_t*>(data),
reinterpret_cast<const uint8_t*>(data) + length));
}
return ANEURALNETWORKS_NO_ERROR;
}
int ModelBuilder::copyLargeValuesToSharedMemory() {
VLOG(MODEL) << __func__ << " has " << mLargeOperandValues.size() << " values.";
if (!mLargeOperandValues.empty()) {
// Calculate the size of the shared memory needed for all the large values.
// Also sets the offset for each value within the memory.
size_t poolSize = 0;
for (LargeValue& l : mLargeOperandValues) {
Operand& operand = mOperands[l.operandIndex];
nnAssert(operand.lifetime == OperandLifeTime::CONSTANT_REFERENCE);
poolSize += alignBytesNeeded(poolSize, operand.location.length);
operand.location.offset = poolSize;
poolSize += operand.location.length;
}
// Allocated the shared memory.
int n = mLargeValueMemory.create(poolSize);
if (n != ANEURALNETWORKS_NO_ERROR) {
return n;
}
uint8_t* memoryPointer = nullptr;
n = mLargeValueMemory.getPointer(&memoryPointer);
if (n != ANEURALNETWORKS_NO_ERROR) {
return n;
}
uint32_t poolIndex = mMemories.add(&mLargeValueMemory);
VLOG(MODEL) << "Allocated large value pool of size " << poolSize << " at index "
<< poolIndex;
// Copy the values to this memory.
for (LargeValue& l : mLargeOperandValues) {
Operand& operand = mOperands[l.operandIndex];
operand.location.poolIndex = poolIndex;
memcpy(memoryPointer + operand.location.offset, l.buffer, operand.location.length);
}
}
return ANEURALNETWORKS_NO_ERROR;
}
int ModelBuilder::setOperandValueFromMemory(uint32_t index, const Memory* memory, uint32_t offset,
size_t length) {
VLOG(MODEL) << __func__ << " for operand " << index << " offset " << offset << " size "
<< length;
if (badState("setOperandValueFromMemory")) {
return ANEURALNETWORKS_BAD_STATE;
}
if (index >= operandCount()) {
LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromMemory setting operand " << index
<< " of " << operandCount();
return ANEURALNETWORKS_BAD_DATA;
}
Operand& operand = mOperands[index];
if (TypeManager::get()->isTensorType(operand.type) && tensorHasUnspecifiedDimensions(operand)) {
LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromMemory setting operand " << index
<< " which has operand type that is not fully specified";
return ANEURALNETWORKS_BAD_DATA;
}
// Only BLOB format AHardwareBuffer can be used for constant data.
if (memory->getHidlMemory().name() == "hardware_buffer") {
LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromMemory passed an AHardwareBuffer"
<< " that is not in AHARDWAREBUFFER_FORMAT_BLOB format";
return ANEURALNETWORKS_UNMAPPABLE;
}
uint32_t neededLength = TypeManager::get()->getSizeOfData(operand);
if (neededLength != length) {
LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromMemory setting " << length
<< " bytes when needing " << neededLength;
return ANEURALNETWORKS_BAD_DATA;
}
if (!memory->validateSize(offset, length)) {
return ANEURALNETWORKS_BAD_DATA;
}
operand.lifetime = OperandLifeTime::CONSTANT_REFERENCE;
operand.location = {.poolIndex = mMemories.add(memory),
.offset = offset,
.length = static_cast<uint32_t>(length)};
return ANEURALNETWORKS_NO_ERROR;
}
int ModelBuilder::addOperation(ANeuralNetworksOperationType type, uint32_t inputCount,
const uint32_t* inputs, uint32_t outputCount,
const uint32_t* outputs) {
if (badState("addOperation")) {
return ANEURALNETWORKS_BAD_STATE;
}
OperationType operationType = static_cast<OperationType>(type);
if (isExtensionOperationType(operationType) && !TypeManager::get()->areExtensionsAllowed()) {
LOG(ERROR) << "Extensions are not supported for this process.";
return ANEURALNETWORKS_BAD_DATA;
}
if (operationType == OperationType::OEM_OPERATION) {
LOG(WARNING) << "OEM_OPERATION is deprecated. Use Extensions instead.";
}
if (!isExtensionOperationType(operationType)) {
if (!validCode(kNumberOfOperationTypes, kNumberOfOperationTypesOEM, type)) {
LOG(ERROR) << "ANeuralNetworksModel_addOperation invalid operation type " << type;
return ANEURALNETWORKS_BAD_DATA;
}
}
NN_RETURN_IF_ERROR(validateOperation(type, inputCount, inputs, outputCount, outputs, mOperands,
HalVersion::LATEST));
uint32_t operationIndex = operationCount();
if (operationIndex >= MAX_NUMBER_OF_OPERATIONS) {
LOG(ERROR) << "ANeuralNetworksModel_addOperation exceed max operations";
return ANEURALNETWORKS_BAD_DATA;
}
mOperations.push_back({
.type = operationType,
.inputs = hidl_vec<uint32_t>(inputs, inputs + inputCount),
.outputs = hidl_vec<uint32_t>(outputs, outputs + outputCount),
});
for (uint32_t i : mOperations.back().inputs) {
mOperands[i].numberOfConsumers++;
}
mHasOEMOperation |= (operationType == OperationType::OEM_OPERATION);
mHasExtensionOperation |= isExtensionOperationType(operationType);
return ANEURALNETWORKS_NO_ERROR;
}
int ModelBuilder::identifyInputsAndOutputs(uint32_t inputCount, const uint32_t* inputs,
uint32_t outputCount, const uint32_t* outputs) {
if (badState("identifyInputsAndOutputs")) {
return ANEURALNETWORKS_BAD_STATE;
}
int n = validateOperandList(inputCount, inputs, operandCount(),
"ANeuralNetworksModel_identifyInputsAndOutputs inputs");
if (n != ANEURALNETWORKS_NO_ERROR) {
return n;
}
n = validateOperandList(outputCount, outputs, operandCount(),
"ANeuralNetworksModel_identifyInputsAndOutputs outputs");
if (n != ANEURALNETWORKS_NO_ERROR) {
return n;
}
// Makes a copy of the index list, validates the arguments, and changes
// the lifetime info of the corresponding operand.
auto setArguments = [&](std::vector<uint32_t>* indexVector, uint32_t indexCount,
const uint32_t* indexList, OperandLifeTime lifetime) -> bool {
indexVector->resize(indexCount);
for (uint32_t i = 0; i < indexCount; i++) {
const uint32_t operandIndex = indexList[i];
if (operandIndex >= mOperands.size()) {
LOG(ERROR) << "ANeuralNetworksModel_identifyInputsAndOutputs Can't set input or "
"output "
"to be "
<< operandIndex << " as this exceeds the numbe of operands "
<< mOperands.size();
return false;
}
(*indexVector)[i] = operandIndex;
Operand& operand = mOperands[operandIndex];
if (operand.lifetime != OperandLifeTime::TEMPORARY_VARIABLE) {
LOG(ERROR) << "ANeuralNetworksModel_identifyInputsAndOutputs Can't set operand "
<< operandIndex
<< " to be an input or output. Check that it's not a constant or "
"already an input or output";
return false;
}
operand.lifetime = lifetime;
}
return true;
};
if (!setArguments(&mInputIndexes, inputCount, inputs, OperandLifeTime::MODEL_INPUT) ||
!setArguments(&mOutputIndexes, outputCount, outputs, OperandLifeTime::MODEL_OUTPUT)) {
return ANEURALNETWORKS_BAD_DATA;
}
return ANEURALNETWORKS_NO_ERROR;
}
int ModelBuilder::relaxComputationFloat32toFloat16(bool allow) {
if (badState("relaxComputationFloat32toFloat16")) {
return ANEURALNETWORKS_BAD_STATE;
}
mRelaxComputationFloat32toFloat16 = allow;
return ANEURALNETWORKS_NO_ERROR;
}
int ModelBuilder::createCompilation(CompilationBuilder** compilation,
const std::vector<std::shared_ptr<Device>>& devices,
bool explicitDeviceList) {
if (!mCompletedModel || mInvalidModel) {
LOG(ERROR) << "ANeuralNetworksCompilation_create passed an unfinished or invalid model";
*compilation = nullptr;
return ANEURALNETWORKS_BAD_STATE;
}
*compilation = new (std::nothrow) CompilationBuilder(this, devices, explicitDeviceList);
return (*compilation ? ANEURALNETWORKS_NO_ERROR : ANEURALNETWORKS_OUT_OF_MEMORY);
}
int ModelBuilder::finish() {
if (mCompletedModel) {
LOG(ERROR) << "ANeuralNetworksModel_finish called more than once";
return ANEURALNETWORKS_BAD_STATE;
}
if (mInvalidModel) {
LOG(ERROR) << "ANeuralNetworksModel_finish called on an invalid model";
return ANEURALNETWORKS_BAD_STATE;
}
int n = copyLargeValuesToSharedMemory();
if (n != ANEURALNETWORKS_NO_ERROR) {
return n;
}
// TODO: Modify validation so that it can be called without creating a HAL Model.
// NOTE: Must copyLargeValuesToSharedMemory() before validation; otherwise,
// a CONSTANT_REFERENCE operand will not have correct .poolIndex, and
// validation will not work properly.
Model modelForValidation;
setHidlModel(&modelForValidation);
if (!validateModel(modelForValidation)) {
LOG(ERROR) << "ANeuralNetworksModel_finish called on invalid model";
mInvalidModel = true;
return ANEURALNETWORKS_BAD_DATA;
}
if (VLOG_IS_ON(MODEL)) {
graphDump("ModelBuilder::finish", modelForValidation, nullptr);
}
// We sort the operations so that they will be in the appropriate
// order for a single-threaded, op at a time execution.
// TODO: we don't need this if we always run the partitioner.
sortIntoRunOrder();
mCompletedModel = true;
return ANEURALNETWORKS_NO_ERROR;
}
void ModelBuilder::sortIntoRunOrder() {
if (!mSortedOperationIndexMap.empty()) {
LOG(ERROR) << "Operations already in run order.";
return;
}
// Tracks the operations that can be executed.
std::vector<uint32_t> opsReadyToRun;
std::vector<Operation> runOrder;
// Tracks how many inputs are needed for each operation to be ready to run.
std::multimap<uint32_t, uint32_t> operandToOperations;
std::vector<uint32_t> unknownInputCount(operationCount());
for (uint32_t operationIndex = 0; operationIndex < operationCount(); operationIndex++) {
uint32_t& count = unknownInputCount[operationIndex];
count = 0;
for (uint32_t operandIndex : mOperations[operationIndex].inputs) {
auto lifetime = mOperands[operandIndex].lifetime;
if (lifetime == OperandLifeTime::TEMPORARY_VARIABLE ||
lifetime == OperandLifeTime::MODEL_OUTPUT) {
count++;
operandToOperations.insert(
std::pair<uint32_t, uint32_t>(operandIndex, operationIndex));
}
}
if (count == 0) {
opsReadyToRun.push_back(operationIndex);
}
}
while (opsReadyToRun.size() > 0) {
// Execute the next op
int opIndex = opsReadyToRun.back();
opsReadyToRun.pop_back();
const Operation& operation = mOperations[opIndex];
runOrder.push_back(mOperations[opIndex]);
mSortedOperationIndexMap.push_back(opIndex);
// Mark all its outputs as known.
for (uint32_t operandIndex : operation.outputs) {
auto range = operandToOperations.equal_range(operandIndex);
for (auto i = range.first; i != range.second; i++) {
uint32_t& count = unknownInputCount[i->second];
if (--count == 0) {
opsReadyToRun.push_back(i->second);
}
}
}
}
mOperations = runOrder;
}
void ModelBuilder::setHidlModel(Model* model) const {
model->operands = mOperands;
model->operations = mOperations;
model->inputIndexes = mInputIndexes;
model->outputIndexes = mOutputIndexes;
model->operandValues = mSmallOperandValues;
model->relaxComputationFloat32toFloat16 = mRelaxComputationFloat32toFloat16;
model->extensionNameToPrefix = getExtensionNameToPrefixMap();
uint32_t count = mMemories.size();
model->pools.resize(count);
for (uint32_t i = 0; i < count; i++) {
model->pools[i] = mMemories[i]->getHidlMemory();
}
}
std::vector<Model::ExtensionNameAndPrefix> ModelBuilder::getExtensionNameToPrefixMap() const {
std::vector<Model::ExtensionNameAndPrefix> extensionNameToPrefix;
std::set<uint16_t> prefixSet;
auto addExtensionWithPrefix = [&extensionNameToPrefix, &prefixSet](uint16_t prefix) {
if (!prefixSet.insert(prefix).second) {
return;
}
const Extension* extension;
CHECK(TypeManager::get()->getExtensionInfo(prefix, &extension));
extensionNameToPrefix.push_back({
.name = extension->name,
.prefix = prefix,
});
};
constexpr uint8_t kLowBitsType =
static_cast<uint8_t>(Model::ExtensionTypeEncoding::LOW_BITS_TYPE);
for (const auto& operand : mOperands) {
if (isExtensionOperandType(operand.type)) {
addExtensionWithPrefix(static_cast<uint32_t>(operand.type) >> kLowBitsType);
}
}
for (const auto& operation : mOperations) {
if (isExtensionOperationType(operation.type)) {
addExtensionWithPrefix(static_cast<uint32_t>(operation.type) >> kLowBitsType);
}
}
return extensionNameToPrefix;
}
} // namespace nn
} // namespace android