/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "ModelBuilder" #include "ModelBuilder.h" #include "CompilationBuilder.h" #include "GraphDump.h" #include "Manager.h" #include "TypeManager.h" #include "Utils.h" #include "ValidateHal.h" #include <map> #include <utility> namespace android { namespace nn { // The maximum number of operands and operations that a model may have. const uint32_t MAX_NUMBER_OF_OPERANDS = 0xFFFFFFFE; const uint32_t MAX_NUMBER_OF_OPERATIONS = 0xFFFFFFFE; bool ModelBuilder::badState(const char* name) { if (mCompletedModel) { LOG(ERROR) << "ANeuralNetworksModel_" << name << " can't modify after model finished"; return true; } if (mInvalidModel) { LOG(ERROR) << "ANeuralNetworksModel_" << name << " can't modify an invalid model"; return true; } return false; } int ModelBuilder::getExtensionType(const char* extensionName, uint16_t typeWithinExtension, int32_t* type) { return TypeManager::get()->getExtensionType(extensionName, typeWithinExtension, type) ? ANEURALNETWORKS_NO_ERROR : ANEURALNETWORKS_BAD_DATA; } int ModelBuilder::addOperand(const ANeuralNetworksOperandType& type) { if (badState("addOperand")) { return ANEURALNETWORKS_BAD_STATE; } OperandType operandType = static_cast<OperandType>(type.type); if (isExtensionOperandType(operandType) && !TypeManager::get()->areExtensionsAllowed()) { LOG(ERROR) << "Extensions are not supported for this process."; return ANEURALNETWORKS_BAD_DATA; } if (operandType == OperandType::OEM || operandType == OperandType::TENSOR_OEM_BYTE) { LOG(WARNING) << "OEM data type is deprecated. Use Extensions instead."; } const Extension::OperandTypeInformation* info = nullptr; if (isExtensionOperandType(operandType) && !TypeManager::get()->getExtensionOperandTypeInfo(operandType, &info)) { LOG(ERROR) << "Extension operand type " << toString(operandType) << " is not registered"; return ANEURALNETWORKS_BAD_DATA; } NN_RETURN_IF_ERROR(validateOperandType(type, info, "ANeuralNetworksModel_addOperand", true)); size_t idx = mOperands.size(); if (idx >= MAX_NUMBER_OF_OPERANDS) { LOG(ERROR) << "ANeuralNetworksModel_addOperand exceed max operands"; return ANEURALNETWORKS_BAD_DATA; } mOperands.push_back({ .type = operandType, .dimensions = hidl_vec<uint32_t>(type.dimensions, type.dimensions + type.dimensionCount), .numberOfConsumers = 0, .scale = type.scale, .zeroPoint = type.zeroPoint, .lifetime = OperandLifeTime::TEMPORARY_VARIABLE, .location = {.poolIndex = 0, .offset = 0, .length = 0}, .extraParams = Operand::ExtraParams(), }); return ANEURALNETWORKS_NO_ERROR; } int ModelBuilder::setOperandValue(uint32_t index, const void* buffer, size_t length) { VLOG(MODEL) << __func__ << " for operand " << index << " size " << length; if (badState("setOperandValue")) { return ANEURALNETWORKS_BAD_STATE; } if (index >= operandCount()) { LOG(ERROR) << "ANeuralNetworksModel_setOperandValue setting operand " << index << " of " << operandCount(); return ANEURALNETWORKS_BAD_DATA; } Operand& operand = mOperands[index]; if (buffer == nullptr) { if (length) { LOG(ERROR) << "ANeuralNetworksModel_setOperandValue buffer is nullptr but length is " "not 0"; return ANEURALNETWORKS_BAD_DATA; } operand.lifetime = OperandLifeTime::NO_VALUE; // The location is unused and is set to zeros. operand.location = {.poolIndex = 0, .offset = 0, .length = 0}; } else { if (TypeManager::get()->isTensorType(operand.type) && tensorHasUnspecifiedDimensions(operand)) { LOG(ERROR) << "ANeuralNetworksModel_setOperandValue setting operand " << index << " which has operand type that is not fully specified"; return ANEURALNETWORKS_BAD_DATA; } if (length > 0xFFFFFFFF) { LOG(ERROR) << "ANeuralNetworksModel_setOperandValue value length of " << length << " exceeds max size"; return ANEURALNETWORKS_BAD_DATA; } uint32_t valueLength = static_cast<uint32_t>(length); if (operand.type != OperandType::OEM) { uint32_t neededLength = TypeManager::get()->getSizeOfData(operand); if (neededLength != valueLength) { LOG(ERROR) << "ANeuralNetworksModel_setOperandValue setting " << valueLength << " bytes when needing " << neededLength; return ANEURALNETWORKS_BAD_DATA; } } if (valueLength <= ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES) { uint32_t existingSize = static_cast<uint32_t>(mSmallOperandValues.size()); uint32_t extraBytes = alignBytesNeeded(existingSize, valueLength); mSmallOperandValues.resize(existingSize + extraBytes + valueLength); operand.lifetime = OperandLifeTime::CONSTANT_COPY; operand.location = { .poolIndex = 0, .offset = existingSize + extraBytes, .length = valueLength}; memcpy(&mSmallOperandValues[operand.location.offset], buffer, valueLength); VLOG(MODEL) << "Copied small value to offset " << operand.location.offset; } else { VLOG(MODEL) << "Saving large value"; operand.lifetime = OperandLifeTime::CONSTANT_REFERENCE; // The values for poolIndex and offset will be set when the model is finished. typedef decltype(operand.location.poolIndex) PoolIndexType; typedef decltype(operand.location.offset) OffsetType; operand.location = {.poolIndex = ~PoolIndexType(0), .offset = ~OffsetType(0), .length = valueLength}; // We keep track of the buffers. We'll allocate the shared memory only // once we know the total size, to avoid needless copies. mLargeOperandValues.push_back(LargeValue{.operandIndex = index, .buffer = buffer}); } } return ANEURALNETWORKS_NO_ERROR; } int ModelBuilder::setOperandSymmPerChannelQuantParams( uint32_t index, const ANeuralNetworksSymmPerChannelQuantParams& channelQuant) { if (badState("setOperandSymmPerChannelQuantParams")) { return ANEURALNETWORKS_BAD_STATE; } if (index >= operandCount()) { LOG(ERROR) << "ANeuralNetworksModel_setOperandSymmPerChannelQuantParams " << "setting per-channel quantization parameters for operand " << index << " of " << operandCount(); return ANEURALNETWORKS_BAD_DATA; } Operand& operand = mOperands[index]; if (!validateOperandSymmPerChannelQuantParams( operand, channelQuant, "ANeuralNetworksModel_setOperandSymmPerChannelQuantParams")) { return ANEURALNETWORKS_BAD_DATA; } switch (operand.type) { case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: operand.extraParams.channelQuant({ .scales = hidl_vec<float>(channelQuant.scales, channelQuant.scales + channelQuant.scaleCount), .channelDim = channelQuant.channelDim, }); break; default: LOG(ERROR) << "ANeuralNetworksModel_setOperandSymmPerChannelQuantParams " << "invalid operand type " << static_cast<int32_t>(operand.type); return ANEURALNETWORKS_BAD_DATA; } return ANEURALNETWORKS_NO_ERROR; } int ModelBuilder::setOperandExtensionData(uint32_t index, const void* data, size_t length) { if (badState("setOperandExtensionData")) { return ANEURALNETWORKS_BAD_STATE; } if (index >= operandCount()) { LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData " << "setting extension data for operand " << index << " of " << operandCount(); return ANEURALNETWORKS_BAD_DATA; } Operand& operand = mOperands[index]; if (data == nullptr && length != 0) { LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData data is nullptr but length is " << length; return ANEURALNETWORKS_BAD_DATA; } if (data != nullptr && length == 0) { LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData data is not nullptr but length " << "is zero"; return ANEURALNETWORKS_BAD_DATA; } if (!isExtensionOperandType(operand.type)) { LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData " << "setting extension data for a base operand type " << static_cast<int32_t>(operand.type); return ANEURALNETWORKS_BAD_DATA; } if (data == nullptr) { operand.extraParams.none(); } else { operand.extraParams.extension( hidl_vec<uint8_t>(reinterpret_cast<const uint8_t*>(data), reinterpret_cast<const uint8_t*>(data) + length)); } return ANEURALNETWORKS_NO_ERROR; } int ModelBuilder::copyLargeValuesToSharedMemory() { VLOG(MODEL) << __func__ << " has " << mLargeOperandValues.size() << " values."; if (!mLargeOperandValues.empty()) { // Calculate the size of the shared memory needed for all the large values. // Also sets the offset for each value within the memory. size_t poolSize = 0; for (LargeValue& l : mLargeOperandValues) { Operand& operand = mOperands[l.operandIndex]; nnAssert(operand.lifetime == OperandLifeTime::CONSTANT_REFERENCE); poolSize += alignBytesNeeded(poolSize, operand.location.length); operand.location.offset = poolSize; poolSize += operand.location.length; } // Allocated the shared memory. int n = mLargeValueMemory.create(poolSize); if (n != ANEURALNETWORKS_NO_ERROR) { return n; } uint8_t* memoryPointer = nullptr; n = mLargeValueMemory.getPointer(&memoryPointer); if (n != ANEURALNETWORKS_NO_ERROR) { return n; } uint32_t poolIndex = mMemories.add(&mLargeValueMemory); VLOG(MODEL) << "Allocated large value pool of size " << poolSize << " at index " << poolIndex; // Copy the values to this memory. for (LargeValue& l : mLargeOperandValues) { Operand& operand = mOperands[l.operandIndex]; operand.location.poolIndex = poolIndex; memcpy(memoryPointer + operand.location.offset, l.buffer, operand.location.length); } } return ANEURALNETWORKS_NO_ERROR; } int ModelBuilder::setOperandValueFromMemory(uint32_t index, const Memory* memory, uint32_t offset, size_t length) { VLOG(MODEL) << __func__ << " for operand " << index << " offset " << offset << " size " << length; if (badState("setOperandValueFromMemory")) { return ANEURALNETWORKS_BAD_STATE; } if (index >= operandCount()) { LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromMemory setting operand " << index << " of " << operandCount(); return ANEURALNETWORKS_BAD_DATA; } Operand& operand = mOperands[index]; if (TypeManager::get()->isTensorType(operand.type) && tensorHasUnspecifiedDimensions(operand)) { LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromMemory setting operand " << index << " which has operand type that is not fully specified"; return ANEURALNETWORKS_BAD_DATA; } // Only BLOB format AHardwareBuffer can be used for constant data. if (memory->getHidlMemory().name() == "hardware_buffer") { LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromMemory passed an AHardwareBuffer" << " that is not in AHARDWAREBUFFER_FORMAT_BLOB format"; return ANEURALNETWORKS_UNMAPPABLE; } uint32_t neededLength = TypeManager::get()->getSizeOfData(operand); if (neededLength != length) { LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromMemory setting " << length << " bytes when needing " << neededLength; return ANEURALNETWORKS_BAD_DATA; } if (!memory->validateSize(offset, length)) { return ANEURALNETWORKS_BAD_DATA; } operand.lifetime = OperandLifeTime::CONSTANT_REFERENCE; operand.location = {.poolIndex = mMemories.add(memory), .offset = offset, .length = static_cast<uint32_t>(length)}; return ANEURALNETWORKS_NO_ERROR; } int ModelBuilder::addOperation(ANeuralNetworksOperationType type, uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount, const uint32_t* outputs) { if (badState("addOperation")) { return ANEURALNETWORKS_BAD_STATE; } OperationType operationType = static_cast<OperationType>(type); if (isExtensionOperationType(operationType) && !TypeManager::get()->areExtensionsAllowed()) { LOG(ERROR) << "Extensions are not supported for this process."; return ANEURALNETWORKS_BAD_DATA; } if (operationType == OperationType::OEM_OPERATION) { LOG(WARNING) << "OEM_OPERATION is deprecated. Use Extensions instead."; } if (!isExtensionOperationType(operationType)) { if (!validCode(kNumberOfOperationTypes, kNumberOfOperationTypesOEM, type)) { LOG(ERROR) << "ANeuralNetworksModel_addOperation invalid operation type " << type; return ANEURALNETWORKS_BAD_DATA; } } NN_RETURN_IF_ERROR(validateOperation(type, inputCount, inputs, outputCount, outputs, mOperands, HalVersion::LATEST)); uint32_t operationIndex = operationCount(); if (operationIndex >= MAX_NUMBER_OF_OPERATIONS) { LOG(ERROR) << "ANeuralNetworksModel_addOperation exceed max operations"; return ANEURALNETWORKS_BAD_DATA; } mOperations.push_back({ .type = operationType, .inputs = hidl_vec<uint32_t>(inputs, inputs + inputCount), .outputs = hidl_vec<uint32_t>(outputs, outputs + outputCount), }); for (uint32_t i : mOperations.back().inputs) { mOperands[i].numberOfConsumers++; } mHasOEMOperation |= (operationType == OperationType::OEM_OPERATION); mHasExtensionOperation |= isExtensionOperationType(operationType); return ANEURALNETWORKS_NO_ERROR; } int ModelBuilder::identifyInputsAndOutputs(uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount, const uint32_t* outputs) { if (badState("identifyInputsAndOutputs")) { return ANEURALNETWORKS_BAD_STATE; } int n = validateOperandList(inputCount, inputs, operandCount(), "ANeuralNetworksModel_identifyInputsAndOutputs inputs"); if (n != ANEURALNETWORKS_NO_ERROR) { return n; } n = validateOperandList(outputCount, outputs, operandCount(), "ANeuralNetworksModel_identifyInputsAndOutputs outputs"); if (n != ANEURALNETWORKS_NO_ERROR) { return n; } // Makes a copy of the index list, validates the arguments, and changes // the lifetime info of the corresponding operand. auto setArguments = [&](std::vector<uint32_t>* indexVector, uint32_t indexCount, const uint32_t* indexList, OperandLifeTime lifetime) -> bool { indexVector->resize(indexCount); for (uint32_t i = 0; i < indexCount; i++) { const uint32_t operandIndex = indexList[i]; if (operandIndex >= mOperands.size()) { LOG(ERROR) << "ANeuralNetworksModel_identifyInputsAndOutputs Can't set input or " "output " "to be " << operandIndex << " as this exceeds the numbe of operands " << mOperands.size(); return false; } (*indexVector)[i] = operandIndex; Operand& operand = mOperands[operandIndex]; if (operand.lifetime != OperandLifeTime::TEMPORARY_VARIABLE) { LOG(ERROR) << "ANeuralNetworksModel_identifyInputsAndOutputs Can't set operand " << operandIndex << " to be an input or output. Check that it's not a constant or " "already an input or output"; return false; } operand.lifetime = lifetime; } return true; }; if (!setArguments(&mInputIndexes, inputCount, inputs, OperandLifeTime::MODEL_INPUT) || !setArguments(&mOutputIndexes, outputCount, outputs, OperandLifeTime::MODEL_OUTPUT)) { return ANEURALNETWORKS_BAD_DATA; } return ANEURALNETWORKS_NO_ERROR; } int ModelBuilder::relaxComputationFloat32toFloat16(bool allow) { if (badState("relaxComputationFloat32toFloat16")) { return ANEURALNETWORKS_BAD_STATE; } mRelaxComputationFloat32toFloat16 = allow; return ANEURALNETWORKS_NO_ERROR; } int ModelBuilder::createCompilation(CompilationBuilder** compilation, const std::vector<std::shared_ptr<Device>>& devices, bool explicitDeviceList) { if (!mCompletedModel || mInvalidModel) { LOG(ERROR) << "ANeuralNetworksCompilation_create passed an unfinished or invalid model"; *compilation = nullptr; return ANEURALNETWORKS_BAD_STATE; } *compilation = new (std::nothrow) CompilationBuilder(this, devices, explicitDeviceList); return (*compilation ? ANEURALNETWORKS_NO_ERROR : ANEURALNETWORKS_OUT_OF_MEMORY); } int ModelBuilder::finish() { if (mCompletedModel) { LOG(ERROR) << "ANeuralNetworksModel_finish called more than once"; return ANEURALNETWORKS_BAD_STATE; } if (mInvalidModel) { LOG(ERROR) << "ANeuralNetworksModel_finish called on an invalid model"; return ANEURALNETWORKS_BAD_STATE; } int n = copyLargeValuesToSharedMemory(); if (n != ANEURALNETWORKS_NO_ERROR) { return n; } // TODO: Modify validation so that it can be called without creating a HAL Model. // NOTE: Must copyLargeValuesToSharedMemory() before validation; otherwise, // a CONSTANT_REFERENCE operand will not have correct .poolIndex, and // validation will not work properly. Model modelForValidation; setHidlModel(&modelForValidation); if (!validateModel(modelForValidation)) { LOG(ERROR) << "ANeuralNetworksModel_finish called on invalid model"; mInvalidModel = true; return ANEURALNETWORKS_BAD_DATA; } if (VLOG_IS_ON(MODEL)) { graphDump("ModelBuilder::finish", modelForValidation, nullptr); } // We sort the operations so that they will be in the appropriate // order for a single-threaded, op at a time execution. // TODO: we don't need this if we always run the partitioner. sortIntoRunOrder(); mCompletedModel = true; return ANEURALNETWORKS_NO_ERROR; } void ModelBuilder::sortIntoRunOrder() { if (!mSortedOperationIndexMap.empty()) { LOG(ERROR) << "Operations already in run order."; return; } // Tracks the operations that can be executed. std::vector<uint32_t> opsReadyToRun; std::vector<Operation> runOrder; // Tracks how many inputs are needed for each operation to be ready to run. std::multimap<uint32_t, uint32_t> operandToOperations; std::vector<uint32_t> unknownInputCount(operationCount()); for (uint32_t operationIndex = 0; operationIndex < operationCount(); operationIndex++) { uint32_t& count = unknownInputCount[operationIndex]; count = 0; for (uint32_t operandIndex : mOperations[operationIndex].inputs) { auto lifetime = mOperands[operandIndex].lifetime; if (lifetime == OperandLifeTime::TEMPORARY_VARIABLE || lifetime == OperandLifeTime::MODEL_OUTPUT) { count++; operandToOperations.insert( std::pair<uint32_t, uint32_t>(operandIndex, operationIndex)); } } if (count == 0) { opsReadyToRun.push_back(operationIndex); } } while (opsReadyToRun.size() > 0) { // Execute the next op int opIndex = opsReadyToRun.back(); opsReadyToRun.pop_back(); const Operation& operation = mOperations[opIndex]; runOrder.push_back(mOperations[opIndex]); mSortedOperationIndexMap.push_back(opIndex); // Mark all its outputs as known. for (uint32_t operandIndex : operation.outputs) { auto range = operandToOperations.equal_range(operandIndex); for (auto i = range.first; i != range.second; i++) { uint32_t& count = unknownInputCount[i->second]; if (--count == 0) { opsReadyToRun.push_back(i->second); } } } } mOperations = runOrder; } void ModelBuilder::setHidlModel(Model* model) const { model->operands = mOperands; model->operations = mOperations; model->inputIndexes = mInputIndexes; model->outputIndexes = mOutputIndexes; model->operandValues = mSmallOperandValues; model->relaxComputationFloat32toFloat16 = mRelaxComputationFloat32toFloat16; model->extensionNameToPrefix = getExtensionNameToPrefixMap(); uint32_t count = mMemories.size(); model->pools.resize(count); for (uint32_t i = 0; i < count; i++) { model->pools[i] = mMemories[i]->getHidlMemory(); } } std::vector<Model::ExtensionNameAndPrefix> ModelBuilder::getExtensionNameToPrefixMap() const { std::vector<Model::ExtensionNameAndPrefix> extensionNameToPrefix; std::set<uint16_t> prefixSet; auto addExtensionWithPrefix = [&extensionNameToPrefix, &prefixSet](uint16_t prefix) { if (!prefixSet.insert(prefix).second) { return; } const Extension* extension; CHECK(TypeManager::get()->getExtensionInfo(prefix, &extension)); extensionNameToPrefix.push_back({ .name = extension->name, .prefix = prefix, }); }; constexpr uint8_t kLowBitsType = static_cast<uint8_t>(Model::ExtensionTypeEncoding::LOW_BITS_TYPE); for (const auto& operand : mOperands) { if (isExtensionOperandType(operand.type)) { addExtensionWithPrefix(static_cast<uint32_t>(operand.type) >> kLowBitsType); } } for (const auto& operation : mOperations) { if (isExtensionOperationType(operation.type)) { addExtensionWithPrefix(static_cast<uint32_t>(operation.type) >> kLowBitsType); } } return extensionNameToPrefix; } } // namespace nn } // namespace android