// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/arguments-inl.h"
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/isolate-inl.h"
#include "src/runtime/runtime-utils.h"
namespace v8 {
namespace internal {
RUNTIME_FUNCTION(Runtime_IsValidSmi) {
SealHandleScope shs(isolate);
DCHECK_EQ(1, args.length());
CONVERT_NUMBER_CHECKED(int32_t, number, Int32, args[0]);
return isolate->heap()->ToBoolean(Smi::IsValid(number));
}
RUNTIME_FUNCTION(Runtime_StringToNumber) {
HandleScope handle_scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
return *String::ToNumber(isolate, subject);
}
// ES6 18.2.5 parseInt(string, radix) slow path
RUNTIME_FUNCTION(Runtime_StringParseInt) {
HandleScope handle_scope(isolate);
DCHECK_EQ(2, args.length());
CONVERT_ARG_HANDLE_CHECKED(Object, string, 0);
CONVERT_ARG_HANDLE_CHECKED(Object, radix, 1);
// Convert {string} to a String first, and flatten it.
Handle<String> subject;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, subject,
Object::ToString(isolate, string));
subject = String::Flatten(isolate, subject);
// Convert {radix} to Int32.
if (!radix->IsNumber()) {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, radix,
Object::ToNumber(isolate, radix));
}
int radix32 = DoubleToInt32(radix->Number());
if (radix32 != 0 && (radix32 < 2 || radix32 > 36)) {
return ReadOnlyRoots(isolate).nan_value();
}
double result = StringToInt(isolate, subject, radix32);
return *isolate->factory()->NewNumber(result);
}
// ES6 18.2.4 parseFloat(string)
RUNTIME_FUNCTION(Runtime_StringParseFloat) {
HandleScope shs(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
double value = StringToDouble(isolate, isolate->unicode_cache(), subject,
ALLOW_TRAILING_JUNK,
std::numeric_limits<double>::quiet_NaN());
return *isolate->factory()->NewNumber(value);
}
RUNTIME_FUNCTION(Runtime_NumberToString) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);
return *isolate->factory()->NumberToString(number);
}
// Compare two Smis x, y as if they were converted to strings and then
// compared lexicographically. Returns:
// -1 if x < y
// 0 if x == y
// 1 if x > y
RUNTIME_FUNCTION(Runtime_SmiLexicographicCompare) {
SealHandleScope shs(isolate);
DCHECK_EQ(2, args.length());
CONVERT_SMI_ARG_CHECKED(x_value, 0);
CONVERT_SMI_ARG_CHECKED(y_value, 1);
// If the integers are equal so are the string representations.
if (x_value == y_value) return Smi::FromInt(0);
// If one of the integers is zero the normal integer order is the
// same as the lexicographic order of the string representations.
if (x_value == 0 || y_value == 0)
return Smi::FromInt(x_value < y_value ? -1 : 1);
// If only one of the integers is negative the negative number is
// smallest because the char code of '-' is less than the char code
// of any digit. Otherwise, we make both values positive.
// Use unsigned values otherwise the logic is incorrect for -MIN_INT on
// architectures using 32-bit Smis.
uint32_t x_scaled = x_value;
uint32_t y_scaled = y_value;
if (x_value < 0 || y_value < 0) {
if (y_value >= 0) return Smi::FromInt(-1);
if (x_value >= 0) return Smi::FromInt(1);
x_scaled = -x_value;
y_scaled = -y_value;
}
static const uint32_t kPowersOf10[] = {
1, 10, 100, 1000,
10 * 1000, 100 * 1000, 1000 * 1000, 10 * 1000 * 1000,
100 * 1000 * 1000, 1000 * 1000 * 1000};
// If the integers have the same number of decimal digits they can be
// compared directly as the numeric order is the same as the
// lexicographic order. If one integer has fewer digits, it is scaled
// by some power of 10 to have the same number of digits as the longer
// integer. If the scaled integers are equal it means the shorter
// integer comes first in the lexicographic order.
// From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
int x_log2 = 31 - base::bits::CountLeadingZeros(x_scaled);
int x_log10 = ((x_log2 + 1) * 1233) >> 12;
x_log10 -= x_scaled < kPowersOf10[x_log10];
int y_log2 = 31 - base::bits::CountLeadingZeros(y_scaled);
int y_log10 = ((y_log2 + 1) * 1233) >> 12;
y_log10 -= y_scaled < kPowersOf10[y_log10];
int tie = 0;
if (x_log10 < y_log10) {
// X has fewer digits. We would like to simply scale up X but that
// might overflow, e.g when comparing 9 with 1_000_000_000, 9 would
// be scaled up to 9_000_000_000. So we scale up by the next
// smallest power and scale down Y to drop one digit. It is OK to
// drop one digit from the longer integer since the final digit is
// past the length of the shorter integer.
x_scaled *= kPowersOf10[y_log10 - x_log10 - 1];
y_scaled /= 10;
tie = -1;
} else if (y_log10 < x_log10) {
y_scaled *= kPowersOf10[x_log10 - y_log10 - 1];
x_scaled /= 10;
tie = 1;
}
if (x_scaled < y_scaled) return Smi::FromInt(-1);
if (x_scaled > y_scaled) return Smi::FromInt(1);
return Smi::FromInt(tie);
}
RUNTIME_FUNCTION(Runtime_MaxSmi) {
SealHandleScope shs(isolate);
DCHECK_EQ(0, args.length());
return Smi::FromInt(Smi::kMaxValue);
}
RUNTIME_FUNCTION(Runtime_IsSmi) {
SealHandleScope shs(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_CHECKED(Object, obj, 0);
return isolate->heap()->ToBoolean(obj->IsSmi());
}
RUNTIME_FUNCTION(Runtime_GetHoleNaNUpper) {
HandleScope scope(isolate);
DCHECK_EQ(0, args.length());
return *isolate->factory()->NewNumberFromUint(kHoleNanUpper32);
}
RUNTIME_FUNCTION(Runtime_GetHoleNaNLower) {
HandleScope scope(isolate);
DCHECK_EQ(0, args.length());
return *isolate->factory()->NewNumberFromUint(kHoleNanLower32);
}
} // namespace internal
} // namespace v8