// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/arguments-inl.h" #include "src/base/bits.h" #include "src/bootstrapper.h" #include "src/isolate-inl.h" #include "src/runtime/runtime-utils.h" namespace v8 { namespace internal { RUNTIME_FUNCTION(Runtime_IsValidSmi) { SealHandleScope shs(isolate); DCHECK_EQ(1, args.length()); CONVERT_NUMBER_CHECKED(int32_t, number, Int32, args[0]); return isolate->heap()->ToBoolean(Smi::IsValid(number)); } RUNTIME_FUNCTION(Runtime_StringToNumber) { HandleScope handle_scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); return *String::ToNumber(isolate, subject); } // ES6 18.2.5 parseInt(string, radix) slow path RUNTIME_FUNCTION(Runtime_StringParseInt) { HandleScope handle_scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, string, 0); CONVERT_ARG_HANDLE_CHECKED(Object, radix, 1); // Convert {string} to a String first, and flatten it. Handle<String> subject; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, subject, Object::ToString(isolate, string)); subject = String::Flatten(isolate, subject); // Convert {radix} to Int32. if (!radix->IsNumber()) { ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, radix, Object::ToNumber(isolate, radix)); } int radix32 = DoubleToInt32(radix->Number()); if (radix32 != 0 && (radix32 < 2 || radix32 > 36)) { return ReadOnlyRoots(isolate).nan_value(); } double result = StringToInt(isolate, subject, radix32); return *isolate->factory()->NewNumber(result); } // ES6 18.2.4 parseFloat(string) RUNTIME_FUNCTION(Runtime_StringParseFloat) { HandleScope shs(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); double value = StringToDouble(isolate, isolate->unicode_cache(), subject, ALLOW_TRAILING_JUNK, std::numeric_limits<double>::quiet_NaN()); return *isolate->factory()->NewNumber(value); } RUNTIME_FUNCTION(Runtime_NumberToString) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0); return *isolate->factory()->NumberToString(number); } // Compare two Smis x, y as if they were converted to strings and then // compared lexicographically. Returns: // -1 if x < y // 0 if x == y // 1 if x > y RUNTIME_FUNCTION(Runtime_SmiLexicographicCompare) { SealHandleScope shs(isolate); DCHECK_EQ(2, args.length()); CONVERT_SMI_ARG_CHECKED(x_value, 0); CONVERT_SMI_ARG_CHECKED(y_value, 1); // If the integers are equal so are the string representations. if (x_value == y_value) return Smi::FromInt(0); // If one of the integers is zero the normal integer order is the // same as the lexicographic order of the string representations. if (x_value == 0 || y_value == 0) return Smi::FromInt(x_value < y_value ? -1 : 1); // If only one of the integers is negative the negative number is // smallest because the char code of '-' is less than the char code // of any digit. Otherwise, we make both values positive. // Use unsigned values otherwise the logic is incorrect for -MIN_INT on // architectures using 32-bit Smis. uint32_t x_scaled = x_value; uint32_t y_scaled = y_value; if (x_value < 0 || y_value < 0) { if (y_value >= 0) return Smi::FromInt(-1); if (x_value >= 0) return Smi::FromInt(1); x_scaled = -x_value; y_scaled = -y_value; } static const uint32_t kPowersOf10[] = { 1, 10, 100, 1000, 10 * 1000, 100 * 1000, 1000 * 1000, 10 * 1000 * 1000, 100 * 1000 * 1000, 1000 * 1000 * 1000}; // If the integers have the same number of decimal digits they can be // compared directly as the numeric order is the same as the // lexicographic order. If one integer has fewer digits, it is scaled // by some power of 10 to have the same number of digits as the longer // integer. If the scaled integers are equal it means the shorter // integer comes first in the lexicographic order. // From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 int x_log2 = 31 - base::bits::CountLeadingZeros(x_scaled); int x_log10 = ((x_log2 + 1) * 1233) >> 12; x_log10 -= x_scaled < kPowersOf10[x_log10]; int y_log2 = 31 - base::bits::CountLeadingZeros(y_scaled); int y_log10 = ((y_log2 + 1) * 1233) >> 12; y_log10 -= y_scaled < kPowersOf10[y_log10]; int tie = 0; if (x_log10 < y_log10) { // X has fewer digits. We would like to simply scale up X but that // might overflow, e.g when comparing 9 with 1_000_000_000, 9 would // be scaled up to 9_000_000_000. So we scale up by the next // smallest power and scale down Y to drop one digit. It is OK to // drop one digit from the longer integer since the final digit is // past the length of the shorter integer. x_scaled *= kPowersOf10[y_log10 - x_log10 - 1]; y_scaled /= 10; tie = -1; } else if (y_log10 < x_log10) { y_scaled *= kPowersOf10[x_log10 - y_log10 - 1]; x_scaled /= 10; tie = 1; } if (x_scaled < y_scaled) return Smi::FromInt(-1); if (x_scaled > y_scaled) return Smi::FromInt(1); return Smi::FromInt(tie); } RUNTIME_FUNCTION(Runtime_MaxSmi) { SealHandleScope shs(isolate); DCHECK_EQ(0, args.length()); return Smi::FromInt(Smi::kMaxValue); } RUNTIME_FUNCTION(Runtime_IsSmi) { SealHandleScope shs(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_CHECKED(Object, obj, 0); return isolate->heap()->ToBoolean(obj->IsSmi()); } RUNTIME_FUNCTION(Runtime_GetHoleNaNUpper) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); return *isolate->factory()->NewNumberFromUint(kHoleNanUpper32); } RUNTIME_FUNCTION(Runtime_GetHoleNaNLower) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); return *isolate->factory()->NewNumberFromUint(kHoleNanLower32); } } // namespace internal } // namespace v8