// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/regexp/x64/regexp-macro-assembler-x64.h"
#include "src/heap/factory.h"
#include "src/log.h"
#include "src/macro-assembler.h"
#include "src/objects-inl.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/regexp/regexp-stack.h"
#include "src/unicode.h"
namespace v8 {
namespace internal {
#ifndef V8_INTERPRETED_REGEXP
/*
* This assembler uses the following register assignment convention
* - rdx : Currently loaded character(s) as Latin1 or UC16. Must be loaded
* using LoadCurrentCharacter before using any of the dispatch methods.
* Temporarily stores the index of capture start after a matching pass
* for a global regexp.
* - rdi : Current position in input, as negative offset from end of string.
* Please notice that this is the byte offset, not the character
* offset! Is always a 32-bit signed (negative) offset, but must be
* maintained sign-extended to 64 bits, since it is used as index.
* - rsi : End of input (points to byte after last character in input),
* so that rsi+rdi points to the current character.
* - rbp : Frame pointer. Used to access arguments, local variables and
* RegExp registers.
* - rsp : Points to tip of C stack.
* - rcx : Points to tip of backtrack stack. The backtrack stack contains
* only 32-bit values. Most are offsets from some base (e.g., character
* positions from end of string or code location from Code* pointer).
* - r8 : Code object pointer. Used to convert between absolute and
* code-object-relative addresses.
*
* The registers rax, rbx, r9 and r11 are free to use for computations.
* If changed to use r12+, they should be saved as callee-save registers.
* The macro assembler special register r13 (kRootRegister) isn't special
* during execution of RegExp code (it doesn't hold the value assumed when
* creating JS code), so Root related macro operations can be used.
*
* Each call to a C++ method should retain these registers.
*
* The stack will have the following content, in some order, indexable from the
* frame pointer (see, e.g., kStackHighEnd):
* - Isolate* isolate (address of the current isolate)
* - direct_call (if 1, direct call from JavaScript code, if 0 call
* through the runtime system)
* - stack_area_base (high end of the memory area to use as
* backtracking stack)
* - capture array size (may fit multiple sets of matches)
* - int* capture_array (int[num_saved_registers_], for output).
* - end of input (address of end of string)
* - start of input (address of first character in string)
* - start index (character index of start)
* - String* input_string (input string)
* - return address
* - backup of callee save registers (rbx, possibly rsi and rdi).
* - success counter (only useful for global regexp to count matches)
* - Offset of location before start of input (effectively character
* string start - 1). Used to initialize capture registers to a
* non-position.
* - At start of string (if 1, we are starting at the start of the
* string, otherwise 0)
* - register 0 rbp[-n] (Only positions must be stored in the first
* - register 1 rbp[-n-8] num_saved_registers_ registers)
* - ...
*
* The first num_saved_registers_ registers are initialized to point to
* "character -1" in the string (i.e., char_size() bytes before the first
* character of the string). The remaining registers starts out uninitialized.
*
* The first seven values must be provided by the calling code by
* calling the code's entry address cast to a function pointer with the
* following signature:
* int (*match)(String* input_string,
* int start_index,
* Address start,
* Address end,
* int* capture_output_array,
* int num_capture_registers,
* byte* stack_area_base,
* bool direct_call = false,
* Isolate* isolate);
*/
#define __ ACCESS_MASM((&masm_))
RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone,
Mode mode,
int registers_to_save)
: NativeRegExpMacroAssembler(isolate, zone),
masm_(isolate, nullptr, kRegExpCodeSize, CodeObjectRequired::kYes),
no_root_array_scope_(&masm_),
code_relative_fixup_positions_(zone),
mode_(mode),
num_registers_(registers_to_save),
num_saved_registers_(registers_to_save),
entry_label_(),
start_label_(),
success_label_(),
backtrack_label_(),
exit_label_() {
DCHECK_EQ(0, registers_to_save % 2);
__ jmp(&entry_label_); // We'll write the entry code when we know more.
__ bind(&start_label_); // And then continue from here.
}
RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() {
// Unuse labels in case we throw away the assembler without calling GetCode.
entry_label_.Unuse();
start_label_.Unuse();
success_label_.Unuse();
backtrack_label_.Unuse();
exit_label_.Unuse();
check_preempt_label_.Unuse();
stack_overflow_label_.Unuse();
}
int RegExpMacroAssemblerX64::stack_limit_slack() {
return RegExpStack::kStackLimitSlack;
}
void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) {
if (by != 0) {
__ addq(rdi, Immediate(by * char_size()));
}
}
void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) {
DCHECK_LE(0, reg);
DCHECK_GT(num_registers_, reg);
if (by != 0) {
__ addp(register_location(reg), Immediate(by));
}
}
void RegExpMacroAssemblerX64::Backtrack() {
CheckPreemption();
// Pop Code* offset from backtrack stack, add Code* and jump to location.
Pop(rbx);
__ addp(rbx, code_object_pointer());
__ jmp(rbx);
}
void RegExpMacroAssemblerX64::Bind(Label* label) {
__ bind(label);
}
void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) {
__ cmpl(current_character(), Immediate(c));
BranchOrBacktrack(equal, on_equal);
}
void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) {
__ cmpl(current_character(), Immediate(limit));
BranchOrBacktrack(greater, on_greater);
}
void RegExpMacroAssemblerX64::CheckAtStart(Label* on_at_start) {
__ leap(rax, Operand(rdi, -char_size()));
__ cmpp(rax, Operand(rbp, kStringStartMinusOne));
BranchOrBacktrack(equal, on_at_start);
}
void RegExpMacroAssemblerX64::CheckNotAtStart(int cp_offset,
Label* on_not_at_start) {
__ leap(rax, Operand(rdi, -char_size() + cp_offset * char_size()));
__ cmpp(rax, Operand(rbp, kStringStartMinusOne));
BranchOrBacktrack(not_equal, on_not_at_start);
}
void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) {
__ cmpl(current_character(), Immediate(limit));
BranchOrBacktrack(less, on_less);
}
void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) {
Label fallthrough;
__ cmpl(rdi, Operand(backtrack_stackpointer(), 0));
__ j(not_equal, &fallthrough);
Drop();
BranchOrBacktrack(no_condition, on_equal);
__ bind(&fallthrough);
}
void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase(
int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
Label fallthrough;
ReadPositionFromRegister(rdx, start_reg); // Offset of start of capture
ReadPositionFromRegister(rbx, start_reg + 1); // Offset of end of capture
__ subp(rbx, rdx); // Length of capture.
// -----------------------
// rdx = Start offset of capture.
// rbx = Length of capture
// At this point, the capture registers are either both set or both cleared.
// If the capture length is zero, then the capture is either empty or cleared.
// Fall through in both cases.
__ j(equal, &fallthrough);
// -----------------------
// rdx - Start of capture
// rbx - length of capture
// Check that there are sufficient characters left in the input.
if (read_backward) {
__ movl(rax, Operand(rbp, kStringStartMinusOne));
__ addl(rax, rbx);
__ cmpl(rdi, rax);
BranchOrBacktrack(less_equal, on_no_match);
} else {
__ movl(rax, rdi);
__ addl(rax, rbx);
BranchOrBacktrack(greater, on_no_match);
}
if (mode_ == LATIN1) {
Label loop_increment;
if (on_no_match == nullptr) {
on_no_match = &backtrack_label_;
}
__ leap(r9, Operand(rsi, rdx, times_1, 0));
__ leap(r11, Operand(rsi, rdi, times_1, 0));
if (read_backward) {
__ subp(r11, rbx); // Offset by length when matching backwards.
}
__ addp(rbx, r9); // End of capture
// ---------------------
// r11 - current input character address
// r9 - current capture character address
// rbx - end of capture
Label loop;
__ bind(&loop);
__ movzxbl(rdx, Operand(r9, 0));
__ movzxbl(rax, Operand(r11, 0));
// al - input character
// dl - capture character
__ cmpb(rax, rdx);
__ j(equal, &loop_increment);
// Mismatch, try case-insensitive match (converting letters to lower-case).
// I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's
// a match.
__ orp(rax, Immediate(0x20)); // Convert match character to lower-case.
__ orp(rdx, Immediate(0x20)); // Convert capture character to lower-case.
__ cmpb(rax, rdx);
__ j(not_equal, on_no_match); // Definitely not equal.
__ subb(rax, Immediate('a'));
__ cmpb(rax, Immediate('z' - 'a'));
__ j(below_equal, &loop_increment); // In range 'a'-'z'.
// Latin-1: Check for values in range [224,254] but not 247.
__ subb(rax, Immediate(224 - 'a'));
__ cmpb(rax, Immediate(254 - 224));
__ j(above, on_no_match); // Weren't Latin-1 letters.
__ cmpb(rax, Immediate(247 - 224)); // Check for 247.
__ j(equal, on_no_match);
__ bind(&loop_increment);
// Increment pointers into match and capture strings.
__ addp(r11, Immediate(1));
__ addp(r9, Immediate(1));
// Compare to end of capture, and loop if not done.
__ cmpp(r9, rbx);
__ j(below, &loop);
// Compute new value of character position after the matched part.
__ movp(rdi, r11);
__ subq(rdi, rsi);
if (read_backward) {
// Subtract match length if we matched backward.
__ addq(rdi, register_location(start_reg));
__ subq(rdi, register_location(start_reg + 1));
}
} else {
DCHECK(mode_ == UC16);
// Save important/volatile registers before calling C function.
#ifndef _WIN64
// Caller save on Linux and callee save in Windows.
__ pushq(rsi);
__ pushq(rdi);
#endif
__ pushq(backtrack_stackpointer());
static const int num_arguments = 4;
__ PrepareCallCFunction(num_arguments);
// Put arguments into parameter registers. Parameters are
// Address byte_offset1 - Address captured substring's start.
// Address byte_offset2 - Address of current character position.
// size_t byte_length - length of capture in bytes(!)
// Isolate* isolate or 0 if unicode flag.
#ifdef _WIN64
DCHECK(rcx == arg_reg_1);
DCHECK(rdx == arg_reg_2);
// Compute and set byte_offset1 (start of capture).
__ leap(rcx, Operand(rsi, rdx, times_1, 0));
// Set byte_offset2.
__ leap(rdx, Operand(rsi, rdi, times_1, 0));
if (read_backward) {
__ subq(rdx, rbx);
}
#else // AMD64 calling convention
DCHECK(rdi == arg_reg_1);
DCHECK(rsi == arg_reg_2);
// Compute byte_offset2 (current position = rsi+rdi).
__ leap(rax, Operand(rsi, rdi, times_1, 0));
// Compute and set byte_offset1 (start of capture).
__ leap(rdi, Operand(rsi, rdx, times_1, 0));
// Set byte_offset2.
__ movp(rsi, rax);
if (read_backward) {
__ subq(rsi, rbx);
}
#endif // _WIN64
// Set byte_length.
__ movp(arg_reg_3, rbx);
// Isolate.
#ifdef V8_INTL_SUPPORT
if (unicode) {
__ movp(arg_reg_4, Immediate(0));
} else // NOLINT
#endif // V8_INTL_SUPPORT
{
__ LoadAddress(arg_reg_4, ExternalReference::isolate_address(isolate()));
}
{ // NOLINT: Can't find a way to open this scope without confusing the
// linter.
AllowExternalCallThatCantCauseGC scope(&masm_);
ExternalReference compare =
ExternalReference::re_case_insensitive_compare_uc16(isolate());
__ CallCFunction(compare, num_arguments);
}
// Restore original values before reacting on result value.
__ Move(code_object_pointer(), masm_.CodeObject());
__ popq(backtrack_stackpointer());
#ifndef _WIN64
__ popq(rdi);
__ popq(rsi);
#endif
// Check if function returned non-zero for success or zero for failure.
__ testp(rax, rax);
BranchOrBacktrack(zero, on_no_match);
// On success, advance position by length of capture.
// Requires that rbx is callee save (true for both Win64 and AMD64 ABIs).
if (read_backward) {
__ subq(rdi, rbx);
} else {
__ addq(rdi, rbx);
}
}
__ bind(&fallthrough);
}
void RegExpMacroAssemblerX64::CheckNotBackReference(int start_reg,
bool read_backward,
Label* on_no_match) {
Label fallthrough;
// Find length of back-referenced capture.
ReadPositionFromRegister(rdx, start_reg); // Offset of start of capture
ReadPositionFromRegister(rax, start_reg + 1); // Offset of end of capture
__ subp(rax, rdx); // Length to check.
// At this point, the capture registers are either both set or both cleared.
// If the capture length is zero, then the capture is either empty or cleared.
// Fall through in both cases.
__ j(equal, &fallthrough);
// -----------------------
// rdx - Start of capture
// rax - length of capture
// Check that there are sufficient characters left in the input.
if (read_backward) {
__ movl(rbx, Operand(rbp, kStringStartMinusOne));
__ addl(rbx, rax);
__ cmpl(rdi, rbx);
BranchOrBacktrack(less_equal, on_no_match);
} else {
__ movl(rbx, rdi);
__ addl(rbx, rax);
BranchOrBacktrack(greater, on_no_match);
}
// Compute pointers to match string and capture string
__ leap(rbx, Operand(rsi, rdi, times_1, 0)); // Start of match.
if (read_backward) {
__ subq(rbx, rax); // Offset by length when matching backwards.
}
__ addp(rdx, rsi); // Start of capture.
__ leap(r9, Operand(rdx, rax, times_1, 0)); // End of capture
// -----------------------
// rbx - current capture character address.
// rbx - current input character address .
// r9 - end of input to match (capture length after rbx).
Label loop;
__ bind(&loop);
if (mode_ == LATIN1) {
__ movzxbl(rax, Operand(rdx, 0));
__ cmpb(rax, Operand(rbx, 0));
} else {
DCHECK(mode_ == UC16);
__ movzxwl(rax, Operand(rdx, 0));
__ cmpw(rax, Operand(rbx, 0));
}
BranchOrBacktrack(not_equal, on_no_match);
// Increment pointers into capture and match string.
__ addp(rbx, Immediate(char_size()));
__ addp(rdx, Immediate(char_size()));
// Check if we have reached end of match area.
__ cmpp(rdx, r9);
__ j(below, &loop);
// Success.
// Set current character position to position after match.
__ movp(rdi, rbx);
__ subq(rdi, rsi);
if (read_backward) {
// Subtract match length if we matched backward.
__ addq(rdi, register_location(start_reg));
__ subq(rdi, register_location(start_reg + 1));
}
__ bind(&fallthrough);
}
void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c,
Label* on_not_equal) {
__ cmpl(current_character(), Immediate(c));
BranchOrBacktrack(not_equal, on_not_equal);
}
void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c,
uint32_t mask,
Label* on_equal) {
if (c == 0) {
__ testl(current_character(), Immediate(mask));
} else {
__ movl(rax, Immediate(mask));
__ andp(rax, current_character());
__ cmpl(rax, Immediate(c));
}
BranchOrBacktrack(equal, on_equal);
}
void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c,
uint32_t mask,
Label* on_not_equal) {
if (c == 0) {
__ testl(current_character(), Immediate(mask));
} else {
__ movl(rax, Immediate(mask));
__ andp(rax, current_character());
__ cmpl(rax, Immediate(c));
}
BranchOrBacktrack(not_equal, on_not_equal);
}
void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd(
uc16 c,
uc16 minus,
uc16 mask,
Label* on_not_equal) {
DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
__ leap(rax, Operand(current_character(), -minus));
__ andp(rax, Immediate(mask));
__ cmpl(rax, Immediate(c));
BranchOrBacktrack(not_equal, on_not_equal);
}
void RegExpMacroAssemblerX64::CheckCharacterInRange(
uc16 from,
uc16 to,
Label* on_in_range) {
__ leal(rax, Operand(current_character(), -from));
__ cmpl(rax, Immediate(to - from));
BranchOrBacktrack(below_equal, on_in_range);
}
void RegExpMacroAssemblerX64::CheckCharacterNotInRange(
uc16 from,
uc16 to,
Label* on_not_in_range) {
__ leal(rax, Operand(current_character(), -from));
__ cmpl(rax, Immediate(to - from));
BranchOrBacktrack(above, on_not_in_range);
}
void RegExpMacroAssemblerX64::CheckBitInTable(
Handle<ByteArray> table,
Label* on_bit_set) {
__ Move(rax, table);
Register index = current_character();
if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
__ movp(rbx, current_character());
__ andp(rbx, Immediate(kTableMask));
index = rbx;
}
__ cmpb(FieldOperand(rax, index, times_1, ByteArray::kHeaderSize),
Immediate(0));
BranchOrBacktrack(not_equal, on_bit_set);
}
bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type,
Label* on_no_match) {
// Range checks (c in min..max) are generally implemented by an unsigned
// (c - min) <= (max - min) check, using the sequence:
// leap(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min))
// cmp(rax, Immediate(max - min))
switch (type) {
case 's':
// Match space-characters
if (mode_ == LATIN1) {
// One byte space characters are '\t'..'\r', ' ' and \u00a0.
Label success;
__ cmpl(current_character(), Immediate(' '));
__ j(equal, &success, Label::kNear);
// Check range 0x09..0x0D
__ leap(rax, Operand(current_character(), -'\t'));
__ cmpl(rax, Immediate('\r' - '\t'));
__ j(below_equal, &success, Label::kNear);
// \u00a0 (NBSP).
__ cmpl(rax, Immediate(0x00A0 - '\t'));
BranchOrBacktrack(not_equal, on_no_match);
__ bind(&success);
return true;
}
return false;
case 'S':
// The emitted code for generic character classes is good enough.
return false;
case 'd':
// Match ASCII digits ('0'..'9')
__ leap(rax, Operand(current_character(), -'0'));
__ cmpl(rax, Immediate('9' - '0'));
BranchOrBacktrack(above, on_no_match);
return true;
case 'D':
// Match non ASCII-digits
__ leap(rax, Operand(current_character(), -'0'));
__ cmpl(rax, Immediate('9' - '0'));
BranchOrBacktrack(below_equal, on_no_match);
return true;
case '.': {
// Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
__ movl(rax, current_character());
__ xorp(rax, Immediate(0x01));
// See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
__ subl(rax, Immediate(0x0B));
__ cmpl(rax, Immediate(0x0C - 0x0B));
BranchOrBacktrack(below_equal, on_no_match);
if (mode_ == UC16) {
// Compare original value to 0x2028 and 0x2029, using the already
// computed (current_char ^ 0x01 - 0x0B). I.e., check for
// 0x201D (0x2028 - 0x0B) or 0x201E.
__ subl(rax, Immediate(0x2028 - 0x0B));
__ cmpl(rax, Immediate(0x2029 - 0x2028));
BranchOrBacktrack(below_equal, on_no_match);
}
return true;
}
case 'n': {
// Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
__ movl(rax, current_character());
__ xorp(rax, Immediate(0x01));
// See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
__ subl(rax, Immediate(0x0B));
__ cmpl(rax, Immediate(0x0C - 0x0B));
if (mode_ == LATIN1) {
BranchOrBacktrack(above, on_no_match);
} else {
Label done;
BranchOrBacktrack(below_equal, &done);
// Compare original value to 0x2028 and 0x2029, using the already
// computed (current_char ^ 0x01 - 0x0B). I.e., check for
// 0x201D (0x2028 - 0x0B) or 0x201E.
__ subl(rax, Immediate(0x2028 - 0x0B));
__ cmpl(rax, Immediate(0x2029 - 0x2028));
BranchOrBacktrack(above, on_no_match);
__ bind(&done);
}
return true;
}
case 'w': {
if (mode_ != LATIN1) {
// Table is 256 entries, so all Latin1 characters can be tested.
__ cmpl(current_character(), Immediate('z'));
BranchOrBacktrack(above, on_no_match);
}
__ Move(rbx, ExternalReference::re_word_character_map(isolate()));
DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
__ testb(Operand(rbx, current_character(), times_1, 0),
current_character());
BranchOrBacktrack(zero, on_no_match);
return true;
}
case 'W': {
Label done;
if (mode_ != LATIN1) {
// Table is 256 entries, so all Latin1 characters can be tested.
__ cmpl(current_character(), Immediate('z'));
__ j(above, &done);
}
__ Move(rbx, ExternalReference::re_word_character_map(isolate()));
DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
__ testb(Operand(rbx, current_character(), times_1, 0),
current_character());
BranchOrBacktrack(not_zero, on_no_match);
if (mode_ != LATIN1) {
__ bind(&done);
}
return true;
}
case '*':
// Match any character.
return true;
// No custom implementation (yet): s(UC16), S(UC16).
default:
return false;
}
}
void RegExpMacroAssemblerX64::Fail() {
STATIC_ASSERT(FAILURE == 0); // Return value for failure is zero.
if (!global()) {
__ Set(rax, FAILURE);
}
__ jmp(&exit_label_);
}
Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) {
Label return_rax;
// Finalize code - write the entry point code now we know how many
// registers we need.
// Entry code:
__ bind(&entry_label_);
// Tell the system that we have a stack frame. Because the type is MANUAL, no
// is generated.
FrameScope scope(&masm_, StackFrame::MANUAL);
// Actually emit code to start a new stack frame.
__ pushq(rbp);
__ movp(rbp, rsp);
// Save parameters and callee-save registers. Order here should correspond
// to order of kBackup_ebx etc.
#ifdef _WIN64
// MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots.
// Store register parameters in pre-allocated stack slots,
__ movq(Operand(rbp, kInputString), rcx);
__ movq(Operand(rbp, kStartIndex), rdx); // Passed as int32 in edx.
__ movq(Operand(rbp, kInputStart), r8);
__ movq(Operand(rbp, kInputEnd), r9);
// Callee-save on Win64.
__ pushq(rsi);
__ pushq(rdi);
__ pushq(rbx);
#else
// GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack).
// Push register parameters on stack for reference.
DCHECK_EQ(kInputString, -1 * kRegisterSize);
DCHECK_EQ(kStartIndex, -2 * kRegisterSize);
DCHECK_EQ(kInputStart, -3 * kRegisterSize);
DCHECK_EQ(kInputEnd, -4 * kRegisterSize);
DCHECK_EQ(kRegisterOutput, -5 * kRegisterSize);
DCHECK_EQ(kNumOutputRegisters, -6 * kRegisterSize);
__ pushq(rdi);
__ pushq(rsi);
__ pushq(rdx);
__ pushq(rcx);
__ pushq(r8);
__ pushq(r9);
__ pushq(rbx); // Callee-save
#endif
__ Push(Immediate(0)); // Number of successful matches in a global regexp.
__ Push(Immediate(0)); // Make room for "string start - 1" constant.
// Check if we have space on the stack for registers.
Label stack_limit_hit;
Label stack_ok;
ExternalReference stack_limit =
ExternalReference::address_of_stack_limit(isolate());
__ movp(rcx, rsp);
__ Move(kScratchRegister, stack_limit);
__ subp(rcx, Operand(kScratchRegister, 0));
// Handle it if the stack pointer is already below the stack limit.
__ j(below_equal, &stack_limit_hit);
// Check if there is room for the variable number of registers above
// the stack limit.
__ cmpp(rcx, Immediate(num_registers_ * kPointerSize));
__ j(above_equal, &stack_ok);
// Exit with OutOfMemory exception. There is not enough space on the stack
// for our working registers.
__ Set(rax, EXCEPTION);
__ jmp(&return_rax);
__ bind(&stack_limit_hit);
__ Move(code_object_pointer(), masm_.CodeObject());
CallCheckStackGuardState(); // Preserves no registers beside rbp and rsp.
__ testp(rax, rax);
// If returned value is non-zero, we exit with the returned value as result.
__ j(not_zero, &return_rax);
__ bind(&stack_ok);
// Allocate space on stack for registers.
__ subp(rsp, Immediate(num_registers_ * kPointerSize));
// Load string length.
__ movp(rsi, Operand(rbp, kInputEnd));
// Load input position.
__ movp(rdi, Operand(rbp, kInputStart));
// Set up rdi to be negative offset from string end.
__ subq(rdi, rsi);
// Set rax to address of char before start of the string
// (effectively string position -1).
__ movp(rbx, Operand(rbp, kStartIndex));
__ negq(rbx);
if (mode_ == UC16) {
__ leap(rax, Operand(rdi, rbx, times_2, -char_size()));
} else {
__ leap(rax, Operand(rdi, rbx, times_1, -char_size()));
}
// Store this value in a local variable, for use when clearing
// position registers.
__ movp(Operand(rbp, kStringStartMinusOne), rax);
#if V8_OS_WIN
// Ensure that we have written to each stack page, in order. Skipping a page
// on Windows can cause segmentation faults. Assuming page size is 4k.
const int kPageSize = 4096;
const int kRegistersPerPage = kPageSize / kPointerSize;
for (int i = num_saved_registers_ + kRegistersPerPage - 1;
i < num_registers_;
i += kRegistersPerPage) {
__ movp(register_location(i), rax); // One write every page.
}
#endif // V8_OS_WIN
// Initialize code object pointer.
__ Move(code_object_pointer(), masm_.CodeObject());
Label load_char_start_regexp, start_regexp;
// Load newline if index is at start, previous character otherwise.
__ cmpl(Operand(rbp, kStartIndex), Immediate(0));
__ j(not_equal, &load_char_start_regexp, Label::kNear);
__ Set(current_character(), '\n');
__ jmp(&start_regexp, Label::kNear);
// Global regexp restarts matching here.
__ bind(&load_char_start_regexp);
// Load previous char as initial value of current character register.
LoadCurrentCharacterUnchecked(-1, 1);
__ bind(&start_regexp);
// Initialize on-stack registers.
if (num_saved_registers_ > 0) {
// Fill saved registers with initial value = start offset - 1
// Fill in stack push order, to avoid accessing across an unwritten
// page (a problem on Windows).
if (num_saved_registers_ > 8) {
__ Set(rcx, kRegisterZero);
Label init_loop;
__ bind(&init_loop);
__ movp(Operand(rbp, rcx, times_1, 0), rax);
__ subq(rcx, Immediate(kPointerSize));
__ cmpq(rcx,
Immediate(kRegisterZero - num_saved_registers_ * kPointerSize));
__ j(greater, &init_loop);
} else { // Unroll the loop.
for (int i = 0; i < num_saved_registers_; i++) {
__ movp(register_location(i), rax);
}
}
}
// Initialize backtrack stack pointer.
__ movp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
__ jmp(&start_label_);
// Exit code:
if (success_label_.is_linked()) {
// Save captures when successful.
__ bind(&success_label_);
if (num_saved_registers_ > 0) {
// copy captures to output
__ movp(rdx, Operand(rbp, kStartIndex));
__ movp(rbx, Operand(rbp, kRegisterOutput));
__ movp(rcx, Operand(rbp, kInputEnd));
__ subp(rcx, Operand(rbp, kInputStart));
if (mode_ == UC16) {
__ leap(rcx, Operand(rcx, rdx, times_2, 0));
} else {
__ addp(rcx, rdx);
}
for (int i = 0; i < num_saved_registers_; i++) {
__ movp(rax, register_location(i));
if (i == 0 && global_with_zero_length_check()) {
// Keep capture start in rdx for the zero-length check later.
__ movp(rdx, rax);
}
__ addp(rax, rcx); // Convert to index from start, not end.
if (mode_ == UC16) {
__ sarp(rax, Immediate(1)); // Convert byte index to character index.
}
__ movl(Operand(rbx, i * kIntSize), rax);
}
}
if (global()) {
// Restart matching if the regular expression is flagged as global.
// Increment success counter.
__ incp(Operand(rbp, kSuccessfulCaptures));
// Capture results have been stored, so the number of remaining global
// output registers is reduced by the number of stored captures.
__ movsxlq(rcx, Operand(rbp, kNumOutputRegisters));
__ subp(rcx, Immediate(num_saved_registers_));
// Check whether we have enough room for another set of capture results.
__ cmpp(rcx, Immediate(num_saved_registers_));
__ j(less, &exit_label_);
__ movp(Operand(rbp, kNumOutputRegisters), rcx);
// Advance the location for output.
__ addp(Operand(rbp, kRegisterOutput),
Immediate(num_saved_registers_ * kIntSize));
// Prepare rax to initialize registers with its value in the next run.
__ movp(rax, Operand(rbp, kStringStartMinusOne));
if (global_with_zero_length_check()) {
// Special case for zero-length matches.
// rdx: capture start index
__ cmpp(rdi, rdx);
// Not a zero-length match, restart.
__ j(not_equal, &load_char_start_regexp);
// rdi (offset from the end) is zero if we already reached the end.
__ testp(rdi, rdi);
__ j(zero, &exit_label_, Label::kNear);
// Advance current position after a zero-length match.
Label advance;
__ bind(&advance);
if (mode_ == UC16) {
__ addq(rdi, Immediate(2));
} else {
__ incq(rdi);
}
if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
}
__ jmp(&load_char_start_regexp);
} else {
__ movp(rax, Immediate(SUCCESS));
}
}
__ bind(&exit_label_);
if (global()) {
// Return the number of successful captures.
__ movp(rax, Operand(rbp, kSuccessfulCaptures));
}
__ bind(&return_rax);
#ifdef _WIN64
// Restore callee save registers.
__ leap(rsp, Operand(rbp, kLastCalleeSaveRegister));
__ popq(rbx);
__ popq(rdi);
__ popq(rsi);
// Stack now at rbp.
#else
// Restore callee save register.
__ movp(rbx, Operand(rbp, kBackup_rbx));
// Skip rsp to rbp.
__ movp(rsp, rbp);
#endif
// Exit function frame, restore previous one.
__ popq(rbp);
__ ret(0);
// Backtrack code (branch target for conditional backtracks).
if (backtrack_label_.is_linked()) {
__ bind(&backtrack_label_);
Backtrack();
}
Label exit_with_exception;
// Preempt-code
if (check_preempt_label_.is_linked()) {
SafeCallTarget(&check_preempt_label_);
__ pushq(backtrack_stackpointer());
__ pushq(rdi);
CallCheckStackGuardState();
__ testp(rax, rax);
// If returning non-zero, we should end execution with the given
// result as return value.
__ j(not_zero, &return_rax);
// Restore registers.
__ Move(code_object_pointer(), masm_.CodeObject());
__ popq(rdi);
__ popq(backtrack_stackpointer());
// String might have moved: Reload esi from frame.
__ movp(rsi, Operand(rbp, kInputEnd));
SafeReturn();
}
// Backtrack stack overflow code.
if (stack_overflow_label_.is_linked()) {
SafeCallTarget(&stack_overflow_label_);
// Reached if the backtrack-stack limit has been hit.
Label grow_failed;
// Save registers before calling C function
#ifndef _WIN64
// Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI.
__ pushq(rsi);
__ pushq(rdi);
#endif
// Call GrowStack(backtrack_stackpointer())
static const int num_arguments = 3;
__ PrepareCallCFunction(num_arguments);
#ifdef _WIN64
// Microsoft passes parameters in rcx, rdx, r8.
// First argument, backtrack stackpointer, is already in rcx.
__ leap(rdx, Operand(rbp, kStackHighEnd)); // Second argument
__ LoadAddress(r8, ExternalReference::isolate_address(isolate()));
#else
// AMD64 ABI passes parameters in rdi, rsi, rdx.
__ movp(rdi, backtrack_stackpointer()); // First argument.
__ leap(rsi, Operand(rbp, kStackHighEnd)); // Second argument.
__ LoadAddress(rdx, ExternalReference::isolate_address(isolate()));
#endif
ExternalReference grow_stack =
ExternalReference::re_grow_stack(isolate());
__ CallCFunction(grow_stack, num_arguments);
// If return nullptr, we have failed to grow the stack, and
// must exit with a stack-overflow exception.
__ testp(rax, rax);
__ j(equal, &exit_with_exception);
// Otherwise use return value as new stack pointer.
__ movp(backtrack_stackpointer(), rax);
// Restore saved registers and continue.
__ Move(code_object_pointer(), masm_.CodeObject());
#ifndef _WIN64
__ popq(rdi);
__ popq(rsi);
#endif
SafeReturn();
}
if (exit_with_exception.is_linked()) {
// If any of the code above needed to exit with an exception.
__ bind(&exit_with_exception);
// Exit with Result EXCEPTION(-1) to signal thrown exception.
__ Set(rax, EXCEPTION);
__ jmp(&return_rax);
}
FixupCodeRelativePositions();
CodeDesc code_desc;
Isolate* isolate = this->isolate();
masm_.GetCode(isolate, &code_desc);
Handle<Code> code =
isolate->factory()->NewCode(code_desc, Code::REGEXP, masm_.CodeObject());
PROFILE(isolate, RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
return Handle<HeapObject>::cast(code);
}
void RegExpMacroAssemblerX64::GoTo(Label* to) {
BranchOrBacktrack(no_condition, to);
}
void RegExpMacroAssemblerX64::IfRegisterGE(int reg,
int comparand,
Label* if_ge) {
__ cmpp(register_location(reg), Immediate(comparand));
BranchOrBacktrack(greater_equal, if_ge);
}
void RegExpMacroAssemblerX64::IfRegisterLT(int reg,
int comparand,
Label* if_lt) {
__ cmpp(register_location(reg), Immediate(comparand));
BranchOrBacktrack(less, if_lt);
}
void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg,
Label* if_eq) {
__ cmpp(rdi, register_location(reg));
BranchOrBacktrack(equal, if_eq);
}
RegExpMacroAssembler::IrregexpImplementation
RegExpMacroAssemblerX64::Implementation() {
return kX64Implementation;
}
void RegExpMacroAssemblerX64::LoadCurrentCharacter(int cp_offset,
Label* on_end_of_input,
bool check_bounds,
int characters) {
DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works)
if (check_bounds) {
if (cp_offset >= 0) {
CheckPosition(cp_offset + characters - 1, on_end_of_input);
} else {
CheckPosition(cp_offset, on_end_of_input);
}
}
LoadCurrentCharacterUnchecked(cp_offset, characters);
}
void RegExpMacroAssemblerX64::PopCurrentPosition() {
Pop(rdi);
}
void RegExpMacroAssemblerX64::PopRegister(int register_index) {
Pop(rax);
__ movp(register_location(register_index), rax);
}
void RegExpMacroAssemblerX64::PushBacktrack(Label* label) {
Push(label);
CheckStackLimit();
}
void RegExpMacroAssemblerX64::PushCurrentPosition() {
Push(rdi);
}
void RegExpMacroAssemblerX64::PushRegister(int register_index,
StackCheckFlag check_stack_limit) {
__ movp(rax, register_location(register_index));
Push(rax);
if (check_stack_limit) CheckStackLimit();
}
STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size);
void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) {
if (kPointerSize == kInt64Size) {
__ movq(rdi, register_location(reg));
} else {
// Need sign extension for x32 as rdi might be used as an index register.
__ movsxlq(rdi, register_location(reg));
}
}
void RegExpMacroAssemblerX64::ReadPositionFromRegister(Register dst, int reg) {
if (kPointerSize == kInt64Size) {
__ movq(dst, register_location(reg));
} else {
// Need sign extension for x32 as dst might be used as an index register.
__ movsxlq(dst, register_location(reg));
}
}
void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) {
__ movp(backtrack_stackpointer(), register_location(reg));
__ addp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
}
void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) {
Label after_position;
__ cmpp(rdi, Immediate(-by * char_size()));
__ j(greater_equal, &after_position, Label::kNear);
__ movq(rdi, Immediate(-by * char_size()));
// On RegExp code entry (where this operation is used), the character before
// the current position is expected to be already loaded.
// We have advanced the position, so it's safe to read backwards.
LoadCurrentCharacterUnchecked(-1, 1);
__ bind(&after_position);
}
void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) {
DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
__ movp(register_location(register_index), Immediate(to));
}
bool RegExpMacroAssemblerX64::Succeed() {
__ jmp(&success_label_);
return global();
}
void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg,
int cp_offset) {
if (cp_offset == 0) {
__ movp(register_location(reg), rdi);
} else {
__ leap(rax, Operand(rdi, cp_offset * char_size()));
__ movp(register_location(reg), rax);
}
}
void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) {
DCHECK(reg_from <= reg_to);
__ movp(rax, Operand(rbp, kStringStartMinusOne));
for (int reg = reg_from; reg <= reg_to; reg++) {
__ movp(register_location(reg), rax);
}
}
void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) {
__ movp(rax, backtrack_stackpointer());
__ subp(rax, Operand(rbp, kStackHighEnd));
__ movp(register_location(reg), rax);
}
// Private methods:
void RegExpMacroAssemblerX64::CallCheckStackGuardState() {
// This function call preserves no register values. Caller should
// store anything volatile in a C call or overwritten by this function.
static const int num_arguments = 3;
__ PrepareCallCFunction(num_arguments);
#ifdef _WIN64
// Second argument: Code* of self. (Do this before overwriting r8).
__ movp(rdx, code_object_pointer());
// Third argument: RegExp code frame pointer.
__ movp(r8, rbp);
// First argument: Next address on the stack (will be address of
// return address).
__ leap(rcx, Operand(rsp, -kPointerSize));
#else
// Third argument: RegExp code frame pointer.
__ movp(rdx, rbp);
// Second argument: Code* of self.
__ movp(rsi, code_object_pointer());
// First argument: Next address on the stack (will be address of
// return address).
__ leap(rdi, Operand(rsp, -kRegisterSize));
#endif
ExternalReference stack_check =
ExternalReference::re_check_stack_guard_state(isolate());
__ CallCFunction(stack_check, num_arguments);
}
// Helper function for reading a value out of a stack frame.
template <typename T>
static T& frame_entry(Address re_frame, int frame_offset) {
return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset));
}
template <typename T>
static T* frame_entry_address(Address re_frame, int frame_offset) {
return reinterpret_cast<T*>(re_frame + frame_offset);
}
int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
Code* re_code,
Address re_frame) {
return NativeRegExpMacroAssembler::CheckStackGuardState(
frame_entry<Isolate*>(re_frame, kIsolate),
frame_entry<int>(re_frame, kStartIndex),
frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
frame_entry_address<String*>(re_frame, kInputString),
frame_entry_address<const byte*>(re_frame, kInputStart),
frame_entry_address<const byte*>(re_frame, kInputEnd));
}
Operand RegExpMacroAssemblerX64::register_location(int register_index) {
DCHECK(register_index < (1<<30));
if (num_registers_ <= register_index) {
num_registers_ = register_index + 1;
}
return Operand(rbp, kRegisterZero - register_index * kPointerSize);
}
void RegExpMacroAssemblerX64::CheckPosition(int cp_offset,
Label* on_outside_input) {
if (cp_offset >= 0) {
__ cmpl(rdi, Immediate(-cp_offset * char_size()));
BranchOrBacktrack(greater_equal, on_outside_input);
} else {
__ leap(rax, Operand(rdi, cp_offset * char_size()));
__ cmpp(rax, Operand(rbp, kStringStartMinusOne));
BranchOrBacktrack(less_equal, on_outside_input);
}
}
void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition,
Label* to) {
if (condition < 0) { // No condition
if (to == nullptr) {
Backtrack();
return;
}
__ jmp(to);
return;
}
if (to == nullptr) {
__ j(condition, &backtrack_label_);
return;
}
__ j(condition, to);
}
void RegExpMacroAssemblerX64::SafeCall(Label* to) {
__ call(to);
}
void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) {
__ bind(label);
__ subp(Operand(rsp, 0), code_object_pointer());
}
void RegExpMacroAssemblerX64::SafeReturn() {
__ addp(Operand(rsp, 0), code_object_pointer());
__ ret(0);
}
void RegExpMacroAssemblerX64::Push(Register source) {
DCHECK(source != backtrack_stackpointer());
// Notice: This updates flags, unlike normal Push.
__ subp(backtrack_stackpointer(), Immediate(kIntSize));
__ movl(Operand(backtrack_stackpointer(), 0), source);
}
void RegExpMacroAssemblerX64::Push(Immediate value) {
// Notice: This updates flags, unlike normal Push.
__ subp(backtrack_stackpointer(), Immediate(kIntSize));
__ movl(Operand(backtrack_stackpointer(), 0), value);
}
void RegExpMacroAssemblerX64::FixupCodeRelativePositions() {
for (int position : code_relative_fixup_positions_) {
// The position succeeds a relative label offset from position.
// Patch the relative offset to be relative to the Code object pointer
// instead.
int patch_position = position - kIntSize;
int offset = masm_.long_at(patch_position);
masm_.long_at_put(patch_position,
offset
+ position
+ Code::kHeaderSize
- kHeapObjectTag);
}
code_relative_fixup_positions_.Rewind(0);
}
void RegExpMacroAssemblerX64::Push(Label* backtrack_target) {
__ subp(backtrack_stackpointer(), Immediate(kIntSize));
__ movl(Operand(backtrack_stackpointer(), 0), backtrack_target);
MarkPositionForCodeRelativeFixup();
}
void RegExpMacroAssemblerX64::Pop(Register target) {
DCHECK(target != backtrack_stackpointer());
__ movsxlq(target, Operand(backtrack_stackpointer(), 0));
// Notice: This updates flags, unlike normal Pop.
__ addp(backtrack_stackpointer(), Immediate(kIntSize));
}
void RegExpMacroAssemblerX64::Drop() {
__ addp(backtrack_stackpointer(), Immediate(kIntSize));
}
void RegExpMacroAssemblerX64::CheckPreemption() {
// Check for preemption.
Label no_preempt;
ExternalReference stack_limit =
ExternalReference::address_of_stack_limit(isolate());
__ load_rax(stack_limit);
__ cmpp(rsp, rax);
__ j(above, &no_preempt);
SafeCall(&check_preempt_label_);
__ bind(&no_preempt);
}
void RegExpMacroAssemblerX64::CheckStackLimit() {
Label no_stack_overflow;
ExternalReference stack_limit =
ExternalReference::address_of_regexp_stack_limit(isolate());
__ load_rax(stack_limit);
__ cmpp(backtrack_stackpointer(), rax);
__ j(above, &no_stack_overflow);
SafeCall(&stack_overflow_label_);
__ bind(&no_stack_overflow);
}
void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset,
int characters) {
if (mode_ == LATIN1) {
if (characters == 4) {
__ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
} else if (characters == 2) {
__ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
} else {
DCHECK_EQ(1, characters);
__ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
}
} else {
DCHECK(mode_ == UC16);
if (characters == 2) {
__ movl(current_character(),
Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
} else {
DCHECK_EQ(1, characters);
__ movzxwl(current_character(),
Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
}
}
}
#undef __
#endif // V8_INTERPRETED_REGEXP
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X64