// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_X64 #include "src/regexp/x64/regexp-macro-assembler-x64.h" #include "src/heap/factory.h" #include "src/log.h" #include "src/macro-assembler.h" #include "src/objects-inl.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/regexp/regexp-stack.h" #include "src/unicode.h" namespace v8 { namespace internal { #ifndef V8_INTERPRETED_REGEXP /* * This assembler uses the following register assignment convention * - rdx : Currently loaded character(s) as Latin1 or UC16. Must be loaded * using LoadCurrentCharacter before using any of the dispatch methods. * Temporarily stores the index of capture start after a matching pass * for a global regexp. * - rdi : Current position in input, as negative offset from end of string. * Please notice that this is the byte offset, not the character * offset! Is always a 32-bit signed (negative) offset, but must be * maintained sign-extended to 64 bits, since it is used as index. * - rsi : End of input (points to byte after last character in input), * so that rsi+rdi points to the current character. * - rbp : Frame pointer. Used to access arguments, local variables and * RegExp registers. * - rsp : Points to tip of C stack. * - rcx : Points to tip of backtrack stack. The backtrack stack contains * only 32-bit values. Most are offsets from some base (e.g., character * positions from end of string or code location from Code* pointer). * - r8 : Code object pointer. Used to convert between absolute and * code-object-relative addresses. * * The registers rax, rbx, r9 and r11 are free to use for computations. * If changed to use r12+, they should be saved as callee-save registers. * The macro assembler special register r13 (kRootRegister) isn't special * during execution of RegExp code (it doesn't hold the value assumed when * creating JS code), so Root related macro operations can be used. * * Each call to a C++ method should retain these registers. * * The stack will have the following content, in some order, indexable from the * frame pointer (see, e.g., kStackHighEnd): * - Isolate* isolate (address of the current isolate) * - direct_call (if 1, direct call from JavaScript code, if 0 call * through the runtime system) * - stack_area_base (high end of the memory area to use as * backtracking stack) * - capture array size (may fit multiple sets of matches) * - int* capture_array (int[num_saved_registers_], for output). * - end of input (address of end of string) * - start of input (address of first character in string) * - start index (character index of start) * - String* input_string (input string) * - return address * - backup of callee save registers (rbx, possibly rsi and rdi). * - success counter (only useful for global regexp to count matches) * - Offset of location before start of input (effectively character * string start - 1). Used to initialize capture registers to a * non-position. * - At start of string (if 1, we are starting at the start of the * string, otherwise 0) * - register 0 rbp[-n] (Only positions must be stored in the first * - register 1 rbp[-n-8] num_saved_registers_ registers) * - ... * * The first num_saved_registers_ registers are initialized to point to * "character -1" in the string (i.e., char_size() bytes before the first * character of the string). The remaining registers starts out uninitialized. * * The first seven values must be provided by the calling code by * calling the code's entry address cast to a function pointer with the * following signature: * int (*match)(String* input_string, * int start_index, * Address start, * Address end, * int* capture_output_array, * int num_capture_registers, * byte* stack_area_base, * bool direct_call = false, * Isolate* isolate); */ #define __ ACCESS_MASM((&masm_)) RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone, Mode mode, int registers_to_save) : NativeRegExpMacroAssembler(isolate, zone), masm_(isolate, nullptr, kRegExpCodeSize, CodeObjectRequired::kYes), no_root_array_scope_(&masm_), code_relative_fixup_positions_(zone), mode_(mode), num_registers_(registers_to_save), num_saved_registers_(registers_to_save), entry_label_(), start_label_(), success_label_(), backtrack_label_(), exit_label_() { DCHECK_EQ(0, registers_to_save % 2); __ jmp(&entry_label_); // We'll write the entry code when we know more. __ bind(&start_label_); // And then continue from here. } RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() { // Unuse labels in case we throw away the assembler without calling GetCode. entry_label_.Unuse(); start_label_.Unuse(); success_label_.Unuse(); backtrack_label_.Unuse(); exit_label_.Unuse(); check_preempt_label_.Unuse(); stack_overflow_label_.Unuse(); } int RegExpMacroAssemblerX64::stack_limit_slack() { return RegExpStack::kStackLimitSlack; } void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) { if (by != 0) { __ addq(rdi, Immediate(by * char_size())); } } void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) { DCHECK_LE(0, reg); DCHECK_GT(num_registers_, reg); if (by != 0) { __ addp(register_location(reg), Immediate(by)); } } void RegExpMacroAssemblerX64::Backtrack() { CheckPreemption(); // Pop Code* offset from backtrack stack, add Code* and jump to location. Pop(rbx); __ addp(rbx, code_object_pointer()); __ jmp(rbx); } void RegExpMacroAssemblerX64::Bind(Label* label) { __ bind(label); } void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) { __ cmpl(current_character(), Immediate(c)); BranchOrBacktrack(equal, on_equal); } void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) { __ cmpl(current_character(), Immediate(limit)); BranchOrBacktrack(greater, on_greater); } void RegExpMacroAssemblerX64::CheckAtStart(Label* on_at_start) { __ leap(rax, Operand(rdi, -char_size())); __ cmpp(rax, Operand(rbp, kStringStartMinusOne)); BranchOrBacktrack(equal, on_at_start); } void RegExpMacroAssemblerX64::CheckNotAtStart(int cp_offset, Label* on_not_at_start) { __ leap(rax, Operand(rdi, -char_size() + cp_offset * char_size())); __ cmpp(rax, Operand(rbp, kStringStartMinusOne)); BranchOrBacktrack(not_equal, on_not_at_start); } void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) { __ cmpl(current_character(), Immediate(limit)); BranchOrBacktrack(less, on_less); } void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) { Label fallthrough; __ cmpl(rdi, Operand(backtrack_stackpointer(), 0)); __ j(not_equal, &fallthrough); Drop(); BranchOrBacktrack(no_condition, on_equal); __ bind(&fallthrough); } void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase( int start_reg, bool read_backward, bool unicode, Label* on_no_match) { Label fallthrough; ReadPositionFromRegister(rdx, start_reg); // Offset of start of capture ReadPositionFromRegister(rbx, start_reg + 1); // Offset of end of capture __ subp(rbx, rdx); // Length of capture. // ----------------------- // rdx = Start offset of capture. // rbx = Length of capture // At this point, the capture registers are either both set or both cleared. // If the capture length is zero, then the capture is either empty or cleared. // Fall through in both cases. __ j(equal, &fallthrough); // ----------------------- // rdx - Start of capture // rbx - length of capture // Check that there are sufficient characters left in the input. if (read_backward) { __ movl(rax, Operand(rbp, kStringStartMinusOne)); __ addl(rax, rbx); __ cmpl(rdi, rax); BranchOrBacktrack(less_equal, on_no_match); } else { __ movl(rax, rdi); __ addl(rax, rbx); BranchOrBacktrack(greater, on_no_match); } if (mode_ == LATIN1) { Label loop_increment; if (on_no_match == nullptr) { on_no_match = &backtrack_label_; } __ leap(r9, Operand(rsi, rdx, times_1, 0)); __ leap(r11, Operand(rsi, rdi, times_1, 0)); if (read_backward) { __ subp(r11, rbx); // Offset by length when matching backwards. } __ addp(rbx, r9); // End of capture // --------------------- // r11 - current input character address // r9 - current capture character address // rbx - end of capture Label loop; __ bind(&loop); __ movzxbl(rdx, Operand(r9, 0)); __ movzxbl(rax, Operand(r11, 0)); // al - input character // dl - capture character __ cmpb(rax, rdx); __ j(equal, &loop_increment); // Mismatch, try case-insensitive match (converting letters to lower-case). // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's // a match. __ orp(rax, Immediate(0x20)); // Convert match character to lower-case. __ orp(rdx, Immediate(0x20)); // Convert capture character to lower-case. __ cmpb(rax, rdx); __ j(not_equal, on_no_match); // Definitely not equal. __ subb(rax, Immediate('a')); __ cmpb(rax, Immediate('z' - 'a')); __ j(below_equal, &loop_increment); // In range 'a'-'z'. // Latin-1: Check for values in range [224,254] but not 247. __ subb(rax, Immediate(224 - 'a')); __ cmpb(rax, Immediate(254 - 224)); __ j(above, on_no_match); // Weren't Latin-1 letters. __ cmpb(rax, Immediate(247 - 224)); // Check for 247. __ j(equal, on_no_match); __ bind(&loop_increment); // Increment pointers into match and capture strings. __ addp(r11, Immediate(1)); __ addp(r9, Immediate(1)); // Compare to end of capture, and loop if not done. __ cmpp(r9, rbx); __ j(below, &loop); // Compute new value of character position after the matched part. __ movp(rdi, r11); __ subq(rdi, rsi); if (read_backward) { // Subtract match length if we matched backward. __ addq(rdi, register_location(start_reg)); __ subq(rdi, register_location(start_reg + 1)); } } else { DCHECK(mode_ == UC16); // Save important/volatile registers before calling C function. #ifndef _WIN64 // Caller save on Linux and callee save in Windows. __ pushq(rsi); __ pushq(rdi); #endif __ pushq(backtrack_stackpointer()); static const int num_arguments = 4; __ PrepareCallCFunction(num_arguments); // Put arguments into parameter registers. Parameters are // Address byte_offset1 - Address captured substring's start. // Address byte_offset2 - Address of current character position. // size_t byte_length - length of capture in bytes(!) // Isolate* isolate or 0 if unicode flag. #ifdef _WIN64 DCHECK(rcx == arg_reg_1); DCHECK(rdx == arg_reg_2); // Compute and set byte_offset1 (start of capture). __ leap(rcx, Operand(rsi, rdx, times_1, 0)); // Set byte_offset2. __ leap(rdx, Operand(rsi, rdi, times_1, 0)); if (read_backward) { __ subq(rdx, rbx); } #else // AMD64 calling convention DCHECK(rdi == arg_reg_1); DCHECK(rsi == arg_reg_2); // Compute byte_offset2 (current position = rsi+rdi). __ leap(rax, Operand(rsi, rdi, times_1, 0)); // Compute and set byte_offset1 (start of capture). __ leap(rdi, Operand(rsi, rdx, times_1, 0)); // Set byte_offset2. __ movp(rsi, rax); if (read_backward) { __ subq(rsi, rbx); } #endif // _WIN64 // Set byte_length. __ movp(arg_reg_3, rbx); // Isolate. #ifdef V8_INTL_SUPPORT if (unicode) { __ movp(arg_reg_4, Immediate(0)); } else // NOLINT #endif // V8_INTL_SUPPORT { __ LoadAddress(arg_reg_4, ExternalReference::isolate_address(isolate())); } { // NOLINT: Can't find a way to open this scope without confusing the // linter. AllowExternalCallThatCantCauseGC scope(&masm_); ExternalReference compare = ExternalReference::re_case_insensitive_compare_uc16(isolate()); __ CallCFunction(compare, num_arguments); } // Restore original values before reacting on result value. __ Move(code_object_pointer(), masm_.CodeObject()); __ popq(backtrack_stackpointer()); #ifndef _WIN64 __ popq(rdi); __ popq(rsi); #endif // Check if function returned non-zero for success or zero for failure. __ testp(rax, rax); BranchOrBacktrack(zero, on_no_match); // On success, advance position by length of capture. // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs). if (read_backward) { __ subq(rdi, rbx); } else { __ addq(rdi, rbx); } } __ bind(&fallthrough); } void RegExpMacroAssemblerX64::CheckNotBackReference(int start_reg, bool read_backward, Label* on_no_match) { Label fallthrough; // Find length of back-referenced capture. ReadPositionFromRegister(rdx, start_reg); // Offset of start of capture ReadPositionFromRegister(rax, start_reg + 1); // Offset of end of capture __ subp(rax, rdx); // Length to check. // At this point, the capture registers are either both set or both cleared. // If the capture length is zero, then the capture is either empty or cleared. // Fall through in both cases. __ j(equal, &fallthrough); // ----------------------- // rdx - Start of capture // rax - length of capture // Check that there are sufficient characters left in the input. if (read_backward) { __ movl(rbx, Operand(rbp, kStringStartMinusOne)); __ addl(rbx, rax); __ cmpl(rdi, rbx); BranchOrBacktrack(less_equal, on_no_match); } else { __ movl(rbx, rdi); __ addl(rbx, rax); BranchOrBacktrack(greater, on_no_match); } // Compute pointers to match string and capture string __ leap(rbx, Operand(rsi, rdi, times_1, 0)); // Start of match. if (read_backward) { __ subq(rbx, rax); // Offset by length when matching backwards. } __ addp(rdx, rsi); // Start of capture. __ leap(r9, Operand(rdx, rax, times_1, 0)); // End of capture // ----------------------- // rbx - current capture character address. // rbx - current input character address . // r9 - end of input to match (capture length after rbx). Label loop; __ bind(&loop); if (mode_ == LATIN1) { __ movzxbl(rax, Operand(rdx, 0)); __ cmpb(rax, Operand(rbx, 0)); } else { DCHECK(mode_ == UC16); __ movzxwl(rax, Operand(rdx, 0)); __ cmpw(rax, Operand(rbx, 0)); } BranchOrBacktrack(not_equal, on_no_match); // Increment pointers into capture and match string. __ addp(rbx, Immediate(char_size())); __ addp(rdx, Immediate(char_size())); // Check if we have reached end of match area. __ cmpp(rdx, r9); __ j(below, &loop); // Success. // Set current character position to position after match. __ movp(rdi, rbx); __ subq(rdi, rsi); if (read_backward) { // Subtract match length if we matched backward. __ addq(rdi, register_location(start_reg)); __ subq(rdi, register_location(start_reg + 1)); } __ bind(&fallthrough); } void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c, Label* on_not_equal) { __ cmpl(current_character(), Immediate(c)); BranchOrBacktrack(not_equal, on_not_equal); } void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_equal) { if (c == 0) { __ testl(current_character(), Immediate(mask)); } else { __ movl(rax, Immediate(mask)); __ andp(rax, current_character()); __ cmpl(rax, Immediate(c)); } BranchOrBacktrack(equal, on_equal); } void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_not_equal) { if (c == 0) { __ testl(current_character(), Immediate(mask)); } else { __ movl(rax, Immediate(mask)); __ andp(rax, current_character()); __ cmpl(rax, Immediate(c)); } BranchOrBacktrack(not_equal, on_not_equal); } void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd( uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) { DCHECK_GT(String::kMaxUtf16CodeUnit, minus); __ leap(rax, Operand(current_character(), -minus)); __ andp(rax, Immediate(mask)); __ cmpl(rax, Immediate(c)); BranchOrBacktrack(not_equal, on_not_equal); } void RegExpMacroAssemblerX64::CheckCharacterInRange( uc16 from, uc16 to, Label* on_in_range) { __ leal(rax, Operand(current_character(), -from)); __ cmpl(rax, Immediate(to - from)); BranchOrBacktrack(below_equal, on_in_range); } void RegExpMacroAssemblerX64::CheckCharacterNotInRange( uc16 from, uc16 to, Label* on_not_in_range) { __ leal(rax, Operand(current_character(), -from)); __ cmpl(rax, Immediate(to - from)); BranchOrBacktrack(above, on_not_in_range); } void RegExpMacroAssemblerX64::CheckBitInTable( Handle<ByteArray> table, Label* on_bit_set) { __ Move(rax, table); Register index = current_character(); if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) { __ movp(rbx, current_character()); __ andp(rbx, Immediate(kTableMask)); index = rbx; } __ cmpb(FieldOperand(rax, index, times_1, ByteArray::kHeaderSize), Immediate(0)); BranchOrBacktrack(not_equal, on_bit_set); } bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type, Label* on_no_match) { // Range checks (c in min..max) are generally implemented by an unsigned // (c - min) <= (max - min) check, using the sequence: // leap(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min)) // cmp(rax, Immediate(max - min)) switch (type) { case 's': // Match space-characters if (mode_ == LATIN1) { // One byte space characters are '\t'..'\r', ' ' and \u00a0. Label success; __ cmpl(current_character(), Immediate(' ')); __ j(equal, &success, Label::kNear); // Check range 0x09..0x0D __ leap(rax, Operand(current_character(), -'\t')); __ cmpl(rax, Immediate('\r' - '\t')); __ j(below_equal, &success, Label::kNear); // \u00a0 (NBSP). __ cmpl(rax, Immediate(0x00A0 - '\t')); BranchOrBacktrack(not_equal, on_no_match); __ bind(&success); return true; } return false; case 'S': // The emitted code for generic character classes is good enough. return false; case 'd': // Match ASCII digits ('0'..'9') __ leap(rax, Operand(current_character(), -'0')); __ cmpl(rax, Immediate('9' - '0')); BranchOrBacktrack(above, on_no_match); return true; case 'D': // Match non ASCII-digits __ leap(rax, Operand(current_character(), -'0')); __ cmpl(rax, Immediate('9' - '0')); BranchOrBacktrack(below_equal, on_no_match); return true; case '.': { // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029) __ movl(rax, current_character()); __ xorp(rax, Immediate(0x01)); // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C __ subl(rax, Immediate(0x0B)); __ cmpl(rax, Immediate(0x0C - 0x0B)); BranchOrBacktrack(below_equal, on_no_match); if (mode_ == UC16) { // Compare original value to 0x2028 and 0x2029, using the already // computed (current_char ^ 0x01 - 0x0B). I.e., check for // 0x201D (0x2028 - 0x0B) or 0x201E. __ subl(rax, Immediate(0x2028 - 0x0B)); __ cmpl(rax, Immediate(0x2029 - 0x2028)); BranchOrBacktrack(below_equal, on_no_match); } return true; } case 'n': { // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029) __ movl(rax, current_character()); __ xorp(rax, Immediate(0x01)); // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C __ subl(rax, Immediate(0x0B)); __ cmpl(rax, Immediate(0x0C - 0x0B)); if (mode_ == LATIN1) { BranchOrBacktrack(above, on_no_match); } else { Label done; BranchOrBacktrack(below_equal, &done); // Compare original value to 0x2028 and 0x2029, using the already // computed (current_char ^ 0x01 - 0x0B). I.e., check for // 0x201D (0x2028 - 0x0B) or 0x201E. __ subl(rax, Immediate(0x2028 - 0x0B)); __ cmpl(rax, Immediate(0x2029 - 0x2028)); BranchOrBacktrack(above, on_no_match); __ bind(&done); } return true; } case 'w': { if (mode_ != LATIN1) { // Table is 256 entries, so all Latin1 characters can be tested. __ cmpl(current_character(), Immediate('z')); BranchOrBacktrack(above, on_no_match); } __ Move(rbx, ExternalReference::re_word_character_map(isolate())); DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char. __ testb(Operand(rbx, current_character(), times_1, 0), current_character()); BranchOrBacktrack(zero, on_no_match); return true; } case 'W': { Label done; if (mode_ != LATIN1) { // Table is 256 entries, so all Latin1 characters can be tested. __ cmpl(current_character(), Immediate('z')); __ j(above, &done); } __ Move(rbx, ExternalReference::re_word_character_map(isolate())); DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char. __ testb(Operand(rbx, current_character(), times_1, 0), current_character()); BranchOrBacktrack(not_zero, on_no_match); if (mode_ != LATIN1) { __ bind(&done); } return true; } case '*': // Match any character. return true; // No custom implementation (yet): s(UC16), S(UC16). default: return false; } } void RegExpMacroAssemblerX64::Fail() { STATIC_ASSERT(FAILURE == 0); // Return value for failure is zero. if (!global()) { __ Set(rax, FAILURE); } __ jmp(&exit_label_); } Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) { Label return_rax; // Finalize code - write the entry point code now we know how many // registers we need. // Entry code: __ bind(&entry_label_); // Tell the system that we have a stack frame. Because the type is MANUAL, no // is generated. FrameScope scope(&masm_, StackFrame::MANUAL); // Actually emit code to start a new stack frame. __ pushq(rbp); __ movp(rbp, rsp); // Save parameters and callee-save registers. Order here should correspond // to order of kBackup_ebx etc. #ifdef _WIN64 // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots. // Store register parameters in pre-allocated stack slots, __ movq(Operand(rbp, kInputString), rcx); __ movq(Operand(rbp, kStartIndex), rdx); // Passed as int32 in edx. __ movq(Operand(rbp, kInputStart), r8); __ movq(Operand(rbp, kInputEnd), r9); // Callee-save on Win64. __ pushq(rsi); __ pushq(rdi); __ pushq(rbx); #else // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack). // Push register parameters on stack for reference. DCHECK_EQ(kInputString, -1 * kRegisterSize); DCHECK_EQ(kStartIndex, -2 * kRegisterSize); DCHECK_EQ(kInputStart, -3 * kRegisterSize); DCHECK_EQ(kInputEnd, -4 * kRegisterSize); DCHECK_EQ(kRegisterOutput, -5 * kRegisterSize); DCHECK_EQ(kNumOutputRegisters, -6 * kRegisterSize); __ pushq(rdi); __ pushq(rsi); __ pushq(rdx); __ pushq(rcx); __ pushq(r8); __ pushq(r9); __ pushq(rbx); // Callee-save #endif __ Push(Immediate(0)); // Number of successful matches in a global regexp. __ Push(Immediate(0)); // Make room for "string start - 1" constant. // Check if we have space on the stack for registers. Label stack_limit_hit; Label stack_ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(isolate()); __ movp(rcx, rsp); __ Move(kScratchRegister, stack_limit); __ subp(rcx, Operand(kScratchRegister, 0)); // Handle it if the stack pointer is already below the stack limit. __ j(below_equal, &stack_limit_hit); // Check if there is room for the variable number of registers above // the stack limit. __ cmpp(rcx, Immediate(num_registers_ * kPointerSize)); __ j(above_equal, &stack_ok); // Exit with OutOfMemory exception. There is not enough space on the stack // for our working registers. __ Set(rax, EXCEPTION); __ jmp(&return_rax); __ bind(&stack_limit_hit); __ Move(code_object_pointer(), masm_.CodeObject()); CallCheckStackGuardState(); // Preserves no registers beside rbp and rsp. __ testp(rax, rax); // If returned value is non-zero, we exit with the returned value as result. __ j(not_zero, &return_rax); __ bind(&stack_ok); // Allocate space on stack for registers. __ subp(rsp, Immediate(num_registers_ * kPointerSize)); // Load string length. __ movp(rsi, Operand(rbp, kInputEnd)); // Load input position. __ movp(rdi, Operand(rbp, kInputStart)); // Set up rdi to be negative offset from string end. __ subq(rdi, rsi); // Set rax to address of char before start of the string // (effectively string position -1). __ movp(rbx, Operand(rbp, kStartIndex)); __ negq(rbx); if (mode_ == UC16) { __ leap(rax, Operand(rdi, rbx, times_2, -char_size())); } else { __ leap(rax, Operand(rdi, rbx, times_1, -char_size())); } // Store this value in a local variable, for use when clearing // position registers. __ movp(Operand(rbp, kStringStartMinusOne), rax); #if V8_OS_WIN // Ensure that we have written to each stack page, in order. Skipping a page // on Windows can cause segmentation faults. Assuming page size is 4k. const int kPageSize = 4096; const int kRegistersPerPage = kPageSize / kPointerSize; for (int i = num_saved_registers_ + kRegistersPerPage - 1; i < num_registers_; i += kRegistersPerPage) { __ movp(register_location(i), rax); // One write every page. } #endif // V8_OS_WIN // Initialize code object pointer. __ Move(code_object_pointer(), masm_.CodeObject()); Label load_char_start_regexp, start_regexp; // Load newline if index is at start, previous character otherwise. __ cmpl(Operand(rbp, kStartIndex), Immediate(0)); __ j(not_equal, &load_char_start_regexp, Label::kNear); __ Set(current_character(), '\n'); __ jmp(&start_regexp, Label::kNear); // Global regexp restarts matching here. __ bind(&load_char_start_regexp); // Load previous char as initial value of current character register. LoadCurrentCharacterUnchecked(-1, 1); __ bind(&start_regexp); // Initialize on-stack registers. if (num_saved_registers_ > 0) { // Fill saved registers with initial value = start offset - 1 // Fill in stack push order, to avoid accessing across an unwritten // page (a problem on Windows). if (num_saved_registers_ > 8) { __ Set(rcx, kRegisterZero); Label init_loop; __ bind(&init_loop); __ movp(Operand(rbp, rcx, times_1, 0), rax); __ subq(rcx, Immediate(kPointerSize)); __ cmpq(rcx, Immediate(kRegisterZero - num_saved_registers_ * kPointerSize)); __ j(greater, &init_loop); } else { // Unroll the loop. for (int i = 0; i < num_saved_registers_; i++) { __ movp(register_location(i), rax); } } } // Initialize backtrack stack pointer. __ movp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd)); __ jmp(&start_label_); // Exit code: if (success_label_.is_linked()) { // Save captures when successful. __ bind(&success_label_); if (num_saved_registers_ > 0) { // copy captures to output __ movp(rdx, Operand(rbp, kStartIndex)); __ movp(rbx, Operand(rbp, kRegisterOutput)); __ movp(rcx, Operand(rbp, kInputEnd)); __ subp(rcx, Operand(rbp, kInputStart)); if (mode_ == UC16) { __ leap(rcx, Operand(rcx, rdx, times_2, 0)); } else { __ addp(rcx, rdx); } for (int i = 0; i < num_saved_registers_; i++) { __ movp(rax, register_location(i)); if (i == 0 && global_with_zero_length_check()) { // Keep capture start in rdx for the zero-length check later. __ movp(rdx, rax); } __ addp(rax, rcx); // Convert to index from start, not end. if (mode_ == UC16) { __ sarp(rax, Immediate(1)); // Convert byte index to character index. } __ movl(Operand(rbx, i * kIntSize), rax); } } if (global()) { // Restart matching if the regular expression is flagged as global. // Increment success counter. __ incp(Operand(rbp, kSuccessfulCaptures)); // Capture results have been stored, so the number of remaining global // output registers is reduced by the number of stored captures. __ movsxlq(rcx, Operand(rbp, kNumOutputRegisters)); __ subp(rcx, Immediate(num_saved_registers_)); // Check whether we have enough room for another set of capture results. __ cmpp(rcx, Immediate(num_saved_registers_)); __ j(less, &exit_label_); __ movp(Operand(rbp, kNumOutputRegisters), rcx); // Advance the location for output. __ addp(Operand(rbp, kRegisterOutput), Immediate(num_saved_registers_ * kIntSize)); // Prepare rax to initialize registers with its value in the next run. __ movp(rax, Operand(rbp, kStringStartMinusOne)); if (global_with_zero_length_check()) { // Special case for zero-length matches. // rdx: capture start index __ cmpp(rdi, rdx); // Not a zero-length match, restart. __ j(not_equal, &load_char_start_regexp); // rdi (offset from the end) is zero if we already reached the end. __ testp(rdi, rdi); __ j(zero, &exit_label_, Label::kNear); // Advance current position after a zero-length match. Label advance; __ bind(&advance); if (mode_ == UC16) { __ addq(rdi, Immediate(2)); } else { __ incq(rdi); } if (global_unicode()) CheckNotInSurrogatePair(0, &advance); } __ jmp(&load_char_start_regexp); } else { __ movp(rax, Immediate(SUCCESS)); } } __ bind(&exit_label_); if (global()) { // Return the number of successful captures. __ movp(rax, Operand(rbp, kSuccessfulCaptures)); } __ bind(&return_rax); #ifdef _WIN64 // Restore callee save registers. __ leap(rsp, Operand(rbp, kLastCalleeSaveRegister)); __ popq(rbx); __ popq(rdi); __ popq(rsi); // Stack now at rbp. #else // Restore callee save register. __ movp(rbx, Operand(rbp, kBackup_rbx)); // Skip rsp to rbp. __ movp(rsp, rbp); #endif // Exit function frame, restore previous one. __ popq(rbp); __ ret(0); // Backtrack code (branch target for conditional backtracks). if (backtrack_label_.is_linked()) { __ bind(&backtrack_label_); Backtrack(); } Label exit_with_exception; // Preempt-code if (check_preempt_label_.is_linked()) { SafeCallTarget(&check_preempt_label_); __ pushq(backtrack_stackpointer()); __ pushq(rdi); CallCheckStackGuardState(); __ testp(rax, rax); // If returning non-zero, we should end execution with the given // result as return value. __ j(not_zero, &return_rax); // Restore registers. __ Move(code_object_pointer(), masm_.CodeObject()); __ popq(rdi); __ popq(backtrack_stackpointer()); // String might have moved: Reload esi from frame. __ movp(rsi, Operand(rbp, kInputEnd)); SafeReturn(); } // Backtrack stack overflow code. if (stack_overflow_label_.is_linked()) { SafeCallTarget(&stack_overflow_label_); // Reached if the backtrack-stack limit has been hit. Label grow_failed; // Save registers before calling C function #ifndef _WIN64 // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI. __ pushq(rsi); __ pushq(rdi); #endif // Call GrowStack(backtrack_stackpointer()) static const int num_arguments = 3; __ PrepareCallCFunction(num_arguments); #ifdef _WIN64 // Microsoft passes parameters in rcx, rdx, r8. // First argument, backtrack stackpointer, is already in rcx. __ leap(rdx, Operand(rbp, kStackHighEnd)); // Second argument __ LoadAddress(r8, ExternalReference::isolate_address(isolate())); #else // AMD64 ABI passes parameters in rdi, rsi, rdx. __ movp(rdi, backtrack_stackpointer()); // First argument. __ leap(rsi, Operand(rbp, kStackHighEnd)); // Second argument. __ LoadAddress(rdx, ExternalReference::isolate_address(isolate())); #endif ExternalReference grow_stack = ExternalReference::re_grow_stack(isolate()); __ CallCFunction(grow_stack, num_arguments); // If return nullptr, we have failed to grow the stack, and // must exit with a stack-overflow exception. __ testp(rax, rax); __ j(equal, &exit_with_exception); // Otherwise use return value as new stack pointer. __ movp(backtrack_stackpointer(), rax); // Restore saved registers and continue. __ Move(code_object_pointer(), masm_.CodeObject()); #ifndef _WIN64 __ popq(rdi); __ popq(rsi); #endif SafeReturn(); } if (exit_with_exception.is_linked()) { // If any of the code above needed to exit with an exception. __ bind(&exit_with_exception); // Exit with Result EXCEPTION(-1) to signal thrown exception. __ Set(rax, EXCEPTION); __ jmp(&return_rax); } FixupCodeRelativePositions(); CodeDesc code_desc; Isolate* isolate = this->isolate(); masm_.GetCode(isolate, &code_desc); Handle<Code> code = isolate->factory()->NewCode(code_desc, Code::REGEXP, masm_.CodeObject()); PROFILE(isolate, RegExpCodeCreateEvent(AbstractCode::cast(*code), *source)); return Handle<HeapObject>::cast(code); } void RegExpMacroAssemblerX64::GoTo(Label* to) { BranchOrBacktrack(no_condition, to); } void RegExpMacroAssemblerX64::IfRegisterGE(int reg, int comparand, Label* if_ge) { __ cmpp(register_location(reg), Immediate(comparand)); BranchOrBacktrack(greater_equal, if_ge); } void RegExpMacroAssemblerX64::IfRegisterLT(int reg, int comparand, Label* if_lt) { __ cmpp(register_location(reg), Immediate(comparand)); BranchOrBacktrack(less, if_lt); } void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg, Label* if_eq) { __ cmpp(rdi, register_location(reg)); BranchOrBacktrack(equal, if_eq); } RegExpMacroAssembler::IrregexpImplementation RegExpMacroAssemblerX64::Implementation() { return kX64Implementation; } void RegExpMacroAssemblerX64::LoadCurrentCharacter(int cp_offset, Label* on_end_of_input, bool check_bounds, int characters) { DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works) if (check_bounds) { if (cp_offset >= 0) { CheckPosition(cp_offset + characters - 1, on_end_of_input); } else { CheckPosition(cp_offset, on_end_of_input); } } LoadCurrentCharacterUnchecked(cp_offset, characters); } void RegExpMacroAssemblerX64::PopCurrentPosition() { Pop(rdi); } void RegExpMacroAssemblerX64::PopRegister(int register_index) { Pop(rax); __ movp(register_location(register_index), rax); } void RegExpMacroAssemblerX64::PushBacktrack(Label* label) { Push(label); CheckStackLimit(); } void RegExpMacroAssemblerX64::PushCurrentPosition() { Push(rdi); } void RegExpMacroAssemblerX64::PushRegister(int register_index, StackCheckFlag check_stack_limit) { __ movp(rax, register_location(register_index)); Push(rax); if (check_stack_limit) CheckStackLimit(); } STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size); void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) { if (kPointerSize == kInt64Size) { __ movq(rdi, register_location(reg)); } else { // Need sign extension for x32 as rdi might be used as an index register. __ movsxlq(rdi, register_location(reg)); } } void RegExpMacroAssemblerX64::ReadPositionFromRegister(Register dst, int reg) { if (kPointerSize == kInt64Size) { __ movq(dst, register_location(reg)); } else { // Need sign extension for x32 as dst might be used as an index register. __ movsxlq(dst, register_location(reg)); } } void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) { __ movp(backtrack_stackpointer(), register_location(reg)); __ addp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd)); } void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) { Label after_position; __ cmpp(rdi, Immediate(-by * char_size())); __ j(greater_equal, &after_position, Label::kNear); __ movq(rdi, Immediate(-by * char_size())); // On RegExp code entry (where this operation is used), the character before // the current position is expected to be already loaded. // We have advanced the position, so it's safe to read backwards. LoadCurrentCharacterUnchecked(-1, 1); __ bind(&after_position); } void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) { DCHECK(register_index >= num_saved_registers_); // Reserved for positions! __ movp(register_location(register_index), Immediate(to)); } bool RegExpMacroAssemblerX64::Succeed() { __ jmp(&success_label_); return global(); } void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg, int cp_offset) { if (cp_offset == 0) { __ movp(register_location(reg), rdi); } else { __ leap(rax, Operand(rdi, cp_offset * char_size())); __ movp(register_location(reg), rax); } } void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) { DCHECK(reg_from <= reg_to); __ movp(rax, Operand(rbp, kStringStartMinusOne)); for (int reg = reg_from; reg <= reg_to; reg++) { __ movp(register_location(reg), rax); } } void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) { __ movp(rax, backtrack_stackpointer()); __ subp(rax, Operand(rbp, kStackHighEnd)); __ movp(register_location(reg), rax); } // Private methods: void RegExpMacroAssemblerX64::CallCheckStackGuardState() { // This function call preserves no register values. Caller should // store anything volatile in a C call or overwritten by this function. static const int num_arguments = 3; __ PrepareCallCFunction(num_arguments); #ifdef _WIN64 // Second argument: Code* of self. (Do this before overwriting r8). __ movp(rdx, code_object_pointer()); // Third argument: RegExp code frame pointer. __ movp(r8, rbp); // First argument: Next address on the stack (will be address of // return address). __ leap(rcx, Operand(rsp, -kPointerSize)); #else // Third argument: RegExp code frame pointer. __ movp(rdx, rbp); // Second argument: Code* of self. __ movp(rsi, code_object_pointer()); // First argument: Next address on the stack (will be address of // return address). __ leap(rdi, Operand(rsp, -kRegisterSize)); #endif ExternalReference stack_check = ExternalReference::re_check_stack_guard_state(isolate()); __ CallCFunction(stack_check, num_arguments); } // Helper function for reading a value out of a stack frame. template <typename T> static T& frame_entry(Address re_frame, int frame_offset) { return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset)); } template <typename T> static T* frame_entry_address(Address re_frame, int frame_offset) { return reinterpret_cast<T*>(re_frame + frame_offset); } int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address, Code* re_code, Address re_frame) { return NativeRegExpMacroAssembler::CheckStackGuardState( frame_entry<Isolate*>(re_frame, kIsolate), frame_entry<int>(re_frame, kStartIndex), frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code, frame_entry_address<String*>(re_frame, kInputString), frame_entry_address<const byte*>(re_frame, kInputStart), frame_entry_address<const byte*>(re_frame, kInputEnd)); } Operand RegExpMacroAssemblerX64::register_location(int register_index) { DCHECK(register_index < (1<<30)); if (num_registers_ <= register_index) { num_registers_ = register_index + 1; } return Operand(rbp, kRegisterZero - register_index * kPointerSize); } void RegExpMacroAssemblerX64::CheckPosition(int cp_offset, Label* on_outside_input) { if (cp_offset >= 0) { __ cmpl(rdi, Immediate(-cp_offset * char_size())); BranchOrBacktrack(greater_equal, on_outside_input); } else { __ leap(rax, Operand(rdi, cp_offset * char_size())); __ cmpp(rax, Operand(rbp, kStringStartMinusOne)); BranchOrBacktrack(less_equal, on_outside_input); } } void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition, Label* to) { if (condition < 0) { // No condition if (to == nullptr) { Backtrack(); return; } __ jmp(to); return; } if (to == nullptr) { __ j(condition, &backtrack_label_); return; } __ j(condition, to); } void RegExpMacroAssemblerX64::SafeCall(Label* to) { __ call(to); } void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) { __ bind(label); __ subp(Operand(rsp, 0), code_object_pointer()); } void RegExpMacroAssemblerX64::SafeReturn() { __ addp(Operand(rsp, 0), code_object_pointer()); __ ret(0); } void RegExpMacroAssemblerX64::Push(Register source) { DCHECK(source != backtrack_stackpointer()); // Notice: This updates flags, unlike normal Push. __ subp(backtrack_stackpointer(), Immediate(kIntSize)); __ movl(Operand(backtrack_stackpointer(), 0), source); } void RegExpMacroAssemblerX64::Push(Immediate value) { // Notice: This updates flags, unlike normal Push. __ subp(backtrack_stackpointer(), Immediate(kIntSize)); __ movl(Operand(backtrack_stackpointer(), 0), value); } void RegExpMacroAssemblerX64::FixupCodeRelativePositions() { for (int position : code_relative_fixup_positions_) { // The position succeeds a relative label offset from position. // Patch the relative offset to be relative to the Code object pointer // instead. int patch_position = position - kIntSize; int offset = masm_.long_at(patch_position); masm_.long_at_put(patch_position, offset + position + Code::kHeaderSize - kHeapObjectTag); } code_relative_fixup_positions_.Rewind(0); } void RegExpMacroAssemblerX64::Push(Label* backtrack_target) { __ subp(backtrack_stackpointer(), Immediate(kIntSize)); __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target); MarkPositionForCodeRelativeFixup(); } void RegExpMacroAssemblerX64::Pop(Register target) { DCHECK(target != backtrack_stackpointer()); __ movsxlq(target, Operand(backtrack_stackpointer(), 0)); // Notice: This updates flags, unlike normal Pop. __ addp(backtrack_stackpointer(), Immediate(kIntSize)); } void RegExpMacroAssemblerX64::Drop() { __ addp(backtrack_stackpointer(), Immediate(kIntSize)); } void RegExpMacroAssemblerX64::CheckPreemption() { // Check for preemption. Label no_preempt; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(isolate()); __ load_rax(stack_limit); __ cmpp(rsp, rax); __ j(above, &no_preempt); SafeCall(&check_preempt_label_); __ bind(&no_preempt); } void RegExpMacroAssemblerX64::CheckStackLimit() { Label no_stack_overflow; ExternalReference stack_limit = ExternalReference::address_of_regexp_stack_limit(isolate()); __ load_rax(stack_limit); __ cmpp(backtrack_stackpointer(), rax); __ j(above, &no_stack_overflow); SafeCall(&stack_overflow_label_); __ bind(&no_stack_overflow); } void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset, int characters) { if (mode_ == LATIN1) { if (characters == 4) { __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset)); } else if (characters == 2) { __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset)); } else { DCHECK_EQ(1, characters); __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset)); } } else { DCHECK(mode_ == UC16); if (characters == 2) { __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16))); } else { DCHECK_EQ(1, characters); __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16))); } } } #undef __ #endif // V8_INTERPRETED_REGEXP } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X64