// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_S390
#include "src/assembler-inl.h"
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/frame-constants.h"
#include "src/frames.h"
#include "src/objects/js-generator.h"
#include "src/runtime/runtime.h"
#include "src/wasm/wasm-objects.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
ExitFrameType exit_frame_type) {
__ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
if (exit_frame_type == BUILTIN_EXIT) {
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
RelocInfo::CODE_TARGET);
} else {
DCHECK(exit_frame_type == EXIT);
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame),
RelocInfo::CODE_TARGET);
}
}
void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ LoadP(r4, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
__ TestIfSmi(r4);
__ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction,
cr0);
__ CompareObjectType(r4, r5, r6, MAP_TYPE);
__ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
// tail call a stub
__ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
__ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl),
RelocInfo::CODE_TARGET);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- r2 : argument count (preserved for callee)
// -- r3 : target function (preserved for callee)
// -- r5 : new target (preserved for callee)
// -----------------------------------
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Push the number of arguments to the callee.
// Push a copy of the target function and the new target.
// Push function as parameter to the runtime call.
__ SmiTag(r2);
__ Push(r2, r3, r5, r3);
__ CallRuntime(function_id, 1);
__ LoadRR(r4, r2);
// Restore target function and new target.
__ Pop(r2, r3, r5);
__ SmiUntag(r2);
}
static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
__ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
__ JumpToJSEntry(r4);
}
namespace {
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
Label post_instantiation_deopt_entry;
// ----------- S t a t e -------------
// -- r2 : number of arguments
// -- r3 : constructor function
// -- r5 : new target
// -- cp : context
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
{
FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ SmiTag(r2);
__ Push(cp, r2);
__ SmiUntag(r2);
// The receiver for the builtin/api call.
__ PushRoot(Heap::kTheHoleValueRootIndex);
// Set up pointer to last argument.
__ la(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
// r2: number of arguments
// r3: constructor function
// r4: address of last argument (caller sp)
// r5: new target
// cr0: condition indicating whether r2 is zero
// sp[0]: receiver
// sp[1]: receiver
// sp[2]: number of arguments (smi-tagged)
Label loop, no_args;
__ beq(&no_args);
__ ShiftLeftP(ip, r2, Operand(kPointerSizeLog2));
__ SubP(sp, sp, ip);
__ LoadRR(r1, r2);
__ bind(&loop);
__ lay(ip, MemOperand(ip, -kPointerSize));
__ LoadP(r0, MemOperand(ip, r6));
__ StoreP(r0, MemOperand(ip, sp));
__ BranchOnCount(r1, &loop);
__ bind(&no_args);
// Call the function.
// r2: number of arguments
// r3: constructor function
// r5: new target
ParameterCount actual(r2);
__ InvokeFunction(r3, r5, actual, CALL_FUNCTION);
// Restore context from the frame.
__ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// Restore smi-tagged arguments count from the frame.
__ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ SmiToPtrArrayOffset(r3, r3);
__ AddP(sp, sp, r3);
__ AddP(sp, sp, Operand(kPointerSize));
__ Ret();
}
} // namespace
// The construct stub for ES5 constructor functions and ES6 class constructors.
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2: number of arguments (untagged)
// -- r3: constructor function
// -- r5: new target
// -- cp: context
// -- lr: return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
{
FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
Label post_instantiation_deopt_entry, not_create_implicit_receiver;
// Preserve the incoming parameters on the stack.
__ SmiTag(r2);
__ Push(cp, r2, r3);
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ Push(r5);
// ----------- S t a t e -------------
// -- sp[0*kPointerSize]: new target
// -- sp[1*kPointerSize]: padding
// -- r3 and sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: number of arguments (tagged)
// -- sp[4*kPointerSize]: context
// -----------------------------------
__ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ LoadlW(r6, FieldMemOperand(r6, SharedFunctionInfo::kFlagsOffset));
__ TestBitMask(r6, SharedFunctionInfo::IsDerivedConstructorBit::kMask, r0);
__ bne(¬_create_implicit_receiver);
// If not derived class constructor: Allocate the new receiver object.
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
r6, r7);
__ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
RelocInfo::CODE_TARGET);
__ b(&post_instantiation_deopt_entry);
// Else: use TheHoleValue as receiver for constructor call
__ bind(¬_create_implicit_receiver);
__ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
// ----------- S t a t e -------------
// -- r2: receiver
// -- Slot 4 / sp[0*kPointerSize]: new target
// -- Slot 3 / sp[1*kPointerSize]: padding
// -- Slot 2 / sp[2*kPointerSize]: constructor function
// -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged)
// -- Slot 0 / sp[4*kPointerSize]: context
// -----------------------------------
// Deoptimizer enters here.
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
__ bind(&post_instantiation_deopt_entry);
// Restore new target.
__ Pop(r5);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ Push(r2, r2);
// ----------- S t a t e -------------
// -- r5: new target
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: implicit receiver
// -- sp[2*kPointerSize]: padding
// -- sp[3*kPointerSize]: constructor function
// -- sp[4*kPointerSize]: number of arguments (tagged)
// -- sp[5*kPointerSize]: context
// -----------------------------------
// Restore constructor function and argument count.
__ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
__ LoadP(r2, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
__ SmiUntag(r2);
// Set up pointer to last argument.
__ la(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, no_args;
// ----------- S t a t e -------------
// -- r2: number of arguments (untagged)
// -- r5: new target
// -- r6: pointer to last argument
// -- cr0: condition indicating whether r2 is zero
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: implicit receiver
// -- sp[2*kPointerSize]: padding
// -- r3 and sp[3*kPointerSize]: constructor function
// -- sp[4*kPointerSize]: number of arguments (tagged)
// -- sp[5*kPointerSize]: context
// -----------------------------------
__ beq(&no_args);
__ ShiftLeftP(ip, r2, Operand(kPointerSizeLog2));
__ SubP(sp, sp, ip);
__ LoadRR(r1, r2);
__ bind(&loop);
__ lay(ip, MemOperand(ip, -kPointerSize));
__ LoadP(r0, MemOperand(ip, r6));
__ StoreP(r0, MemOperand(ip, sp));
__ BranchOnCount(r1, &loop);
__ bind(&no_args);
// Call the function.
ParameterCount actual(r2);
__ InvokeFunction(r3, r5, actual, CALL_FUNCTION);
// ----------- S t a t e -------------
// -- r0: constructor result
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: padding
// -- sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: number of arguments
// -- sp[4*kPointerSize]: context
// -----------------------------------
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
// Restore the context from the frame.
__ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, do_throw, leave_frame;
// If the result is undefined, we jump out to using the implicit receiver.
__ JumpIfRoot(r2, Heap::kUndefinedValueRootIndex, &use_receiver);
// Otherwise we do a smi check and fall through to check if the return value
// is a valid receiver.
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(r2, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CompareObjectType(r2, r6, r6, FIRST_JS_RECEIVER_TYPE);
__ bge(&leave_frame);
__ b(&use_receiver);
__ bind(&do_throw);
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ LoadP(r2, MemOperand(sp));
__ JumpIfRoot(r2, Heap::kTheHoleValueRootIndex, &do_throw);
__ bind(&leave_frame);
// Restore smi-tagged arguments count from the frame.
__ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ SmiToPtrArrayOffset(r3, r3);
__ AddP(sp, sp, r3);
__ AddP(sp, sp, Operand(kPointerSize));
__ Ret();
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
Register sfi_data,
Register scratch1) {
Label done;
__ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE);
__ bne(&done, Label::kNear);
__ LoadP(sfi_data,
FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
__ bind(&done);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the value to pass to the generator
// -- r3 : the JSGeneratorObject to resume
// -- lr : return address
// -----------------------------------
__ AssertGeneratorObject(r3);
// Store input value into generator object.
__ StoreP(r2, FieldMemOperand(r3, JSGeneratorObject::kInputOrDebugPosOffset),
r0);
__ RecordWriteField(r3, JSGeneratorObject::kInputOrDebugPosOffset, r2, r5,
kLRHasNotBeenSaved, kDontSaveFPRegs);
// Load suspended function and context.
__ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset));
__ LoadP(cp, FieldMemOperand(r6, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
__ Move(ip, debug_hook);
__ LoadB(ip, MemOperand(ip));
__ CmpSmiLiteral(ip, Smi::kZero, r0);
__ bne(&prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ Move(ip, debug_suspended_generator);
__ LoadP(ip, MemOperand(ip));
__ CmpP(ip, r3);
__ beq(&prepare_step_in_suspended_generator);
__ bind(&stepping_prepared);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
__ CompareRoot(sp, Heap::kRealStackLimitRootIndex);
__ blt(&stack_overflow);
// Push receiver.
__ LoadP(ip, FieldMemOperand(r3, JSGeneratorObject::kReceiverOffset));
__ Push(ip);
// ----------- S t a t e -------------
// -- r3 : the JSGeneratorObject to resume
// -- r6 : generator function
// -- cp : generator context
// -- lr : return address
// -- sp[0] : generator receiver
// -----------------------------------
// Copy the function arguments from the generator object's register file.
__ LoadP(r5, FieldMemOperand(r6, JSFunction::kSharedFunctionInfoOffset));
__ LoadLogicalHalfWordP(
r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset));
__ LoadP(r4, FieldMemOperand(
r3, JSGeneratorObject::kParametersAndRegistersOffset));
{
Label loop, done_loop;
__ ShiftLeftP(r5, r5, Operand(kPointerSizeLog2));
__ SubP(sp, r5);
// ip = stack offset
// r5 = parameter array offset
__ LoadImmP(ip, Operand::Zero());
__ SubP(r5, Operand(kPointerSize));
__ blt(&done_loop);
__ lgfi(r1, Operand(-kPointerSize));
__ bind(&loop);
// parameter copy loop
__ LoadP(r0, FieldMemOperand(r4, r5, FixedArray::kHeaderSize));
__ StoreP(r0, MemOperand(sp, ip));
// update offsets
__ lay(ip, MemOperand(ip, kPointerSize));
__ BranchRelativeOnIdxHighP(r5, r1, &loop);
__ bind(&done_loop);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ LoadP(r5, FieldMemOperand(r6, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(r5, FieldMemOperand(r5, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, r5, ip);
__ CompareObjectType(r5, r5, r5, BYTECODE_ARRAY_TYPE);
__ Assert(eq, AbortReason::kMissingBytecodeArray);
}
// Resume (Ignition/TurboFan) generator object.
{
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ LoadRR(r5, r3);
__ LoadRR(r3, r6);
static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
__ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset));
__ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
__ JumpToJSEntry(r4);
}
__ bind(&prepare_step_in_if_stepping);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r3, r6);
// Push hole as receiver since we do not use it for stepping.
__ PushRoot(Heap::kTheHoleValueRootIndex);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(r3);
__ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset));
}
__ b(&stepping_prepared);
__ bind(&prepare_step_in_suspended_generator);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r3);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(r3);
__ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset));
}
__ b(&stepping_prepared);
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bkpt(0); // This should be unreachable.
}
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ push(r3);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
// Clobbers r4; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(r4, Heap::kRealStackLimitRootIndex);
// Make r4 the space we have left. The stack might already be overflowed
// here which will cause r4 to become negative.
__ SubP(r4, sp, r4);
// Check if the arguments will overflow the stack.
__ ShiftLeftP(r0, argc, Operand(kPointerSizeLog2));
__ CmpP(r4, r0);
__ bgt(&okay); // Signed comparison.
// Out of stack space.
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&okay);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from Generate_JS_Entry
// r2: new.target
// r3: function
// r4: receiver
// r5: argc
// r6: argv
// r0,r7-r9, cp may be clobbered
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Enter an internal frame.
{
// FrameScope ends up calling MacroAssembler::EnterFrame here
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address = ExternalReference::Create(
IsolateAddressId::kContextAddress, masm->isolate());
__ Move(cp, context_address);
__ LoadP(cp, MemOperand(cp));
// Push the function and the receiver onto the stack.
__ Push(r3, r4);
// Check if we have enough stack space to push all arguments.
// Clobbers r4.
Generate_CheckStackOverflow(masm, r5);
// Copy arguments to the stack in a loop from argv to sp.
// The arguments are actually placed in reverse order on sp
// compared to argv (i.e. arg1 is highest memory in sp).
// r3: function
// r5: argc
// r6: argv, i.e. points to first arg
// r7: scratch reg to hold scaled argc
// r8: scratch reg to hold arg handle
// r9: scratch reg to hold index into argv
Label argLoop, argExit;
intptr_t zero = 0;
__ ShiftLeftP(r7, r5, Operand(kPointerSizeLog2));
__ SubRR(sp, r7); // Buy the stack frame to fit args
__ LoadImmP(r9, Operand(zero)); // Initialize argv index
__ bind(&argLoop);
__ CmpPH(r7, Operand(zero));
__ beq(&argExit, Label::kNear);
__ lay(r7, MemOperand(r7, -kPointerSize));
__ LoadP(r8, MemOperand(r9, r6)); // read next parameter
__ la(r9, MemOperand(r9, kPointerSize)); // r9++;
__ LoadP(r0, MemOperand(r8)); // dereference handle
__ StoreP(r0, MemOperand(r7, sp)); // push parameter
__ b(&argLoop);
__ bind(&argExit);
// Setup new.target and argc.
__ LoadRR(r6, r2);
__ LoadRR(r2, r5);
__ LoadRR(r5, r6);
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ LoadRoot(r6, Heap::kUndefinedValueRootIndex);
__ LoadRR(r7, r6);
__ LoadRR(r8, r6);
__ LoadRR(r9, r6);
// Invoke the code.
Handle<Code> builtin = is_construct
? BUILTIN_CODE(masm->isolate(), Construct)
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the JS frame and remove the parameters (except function), and
// return.
}
__ b(r14);
// r2: result
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
static void ReplaceClosureCodeWithOptimizedCode(
MacroAssembler* masm, Register optimized_code, Register closure,
Register scratch1, Register scratch2, Register scratch3) {
// Store code entry in the closure.
__ StoreP(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset),
r0);
__ LoadRR(scratch1,
optimized_code); // Write barrier clobbers scratch1 below.
__ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
Register args_count = scratch;
// Get the arguments + receiver count.
__ LoadP(args_count,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ LoadlW(args_count,
FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::INTERPRETED);
__ AddP(sp, sp, args_count);
}
// Tail-call |function_id| if |smi_entry| == |marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
Register smi_entry,
OptimizationMarker marker,
Runtime::FunctionId function_id) {
Label no_match;
__ CmpSmiLiteral(smi_entry, Smi::FromEnum(marker), r0);
__ bne(&no_match);
GenerateTailCallToReturnedCode(masm, function_id);
__ bind(&no_match);
}
static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm,
Register feedback_vector,
Register scratch1, Register scratch2,
Register scratch3) {
// ----------- S t a t e -------------
// -- r0 : argument count (preserved for callee if needed, and caller)
// -- r3 : new target (preserved for callee if needed, and caller)
// -- r1 : target function (preserved for callee if needed, and caller)
// -- feedback vector (preserved for caller if needed)
// -----------------------------------
DCHECK(
!AreAliased(feedback_vector, r2, r3, r5, scratch1, scratch2, scratch3));
Label optimized_code_slot_is_weak_ref, fallthrough;
Register closure = r3;
Register optimized_code_entry = scratch1;
__ LoadP(
optimized_code_entry,
FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset));
// Check if the code entry is a Smi. If yes, we interpret it as an
// optimisation marker. Otherwise, interpret it as a weak reference to a code
// object.
__ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref);
{
// Optimized code slot is a Smi optimization marker.
// Fall through if no optimization trigger.
__ CmpSmiLiteral(optimized_code_entry,
Smi::FromEnum(OptimizationMarker::kNone), r0);
__ beq(&fallthrough);
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kLogFirstExecution,
Runtime::kFunctionFirstExecution);
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kCompileOptimized,
Runtime::kCompileOptimized_NotConcurrent);
TailCallRuntimeIfMarkerEquals(
masm, optimized_code_entry,
OptimizationMarker::kCompileOptimizedConcurrent,
Runtime::kCompileOptimized_Concurrent);
{
// Otherwise, the marker is InOptimizationQueue, so fall through hoping
// that an interrupt will eventually update the slot with optimized code.
if (FLAG_debug_code) {
__ CmpSmiLiteral(
optimized_code_entry,
Smi::FromEnum(OptimizationMarker::kInOptimizationQueue), r0);
__ Assert(eq, AbortReason::kExpectedOptimizationSentinel);
}
__ b(&fallthrough, Label::kNear);
}
}
{
// Optimized code slot is a weak reference.
__ bind(&optimized_code_slot_is_weak_ref);
__ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough);
// Check if the optimized code is marked for deopt. If it is, call the
// runtime to clear it.
Label found_deoptimized_code;
__ LoadP(scratch2, FieldMemOperand(optimized_code_entry,
Code::kCodeDataContainerOffset));
__ LoadW(
scratch2,
FieldMemOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset));
__ TestBit(scratch2, Code::kMarkedForDeoptimizationBit, r0);
__ bne(&found_deoptimized_code);
// Optimized code is good, get it into the closure and link the closure into
// the optimized functions list, then tail call the optimized code.
// The feedback vector is no longer used, so re-use it as a scratch
// register.
ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
scratch2, scratch3, feedback_vector);
static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
__ AddP(r4, optimized_code_entry,
Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(r4);
// Optimized code slot contains deoptimized code, evict it and re-enter the
// closure's code.
__ bind(&found_deoptimized_code);
GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
}
// Fall-through if the optimized code cell is clear and there is no
// optimization marker.
__ bind(&fallthrough);
}
// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
Register bytecode_array,
Register bytecode_offset,
Register bytecode, Register scratch1,
Label* if_return) {
Register bytecode_size_table = scratch1;
Register scratch2 = bytecode;
DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
bytecode));
__ Move(bytecode_size_table,
ExternalReference::bytecode_size_table_address());
// Check if the bytecode is a Wide or ExtraWide prefix bytecode.
Label process_bytecode, extra_wide;
STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
STATIC_ASSERT(3 ==
static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
__ CmpP(bytecode, Operand(0x3));
__ bgt(&process_bytecode);
__ tmll(bytecode, Operand(0x1));
__ bne(&extra_wide);
// Load the next bytecode and update table to the wide scaled table.
__ AddP(bytecode_offset, bytecode_offset, Operand(1));
__ LoadlB(bytecode, MemOperand(bytecode_array, bytecode_offset));
__ AddP(bytecode_size_table, bytecode_size_table,
Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ b(&process_bytecode);
__ bind(&extra_wide);
// Load the next bytecode and update table to the extra wide scaled table.
__ AddP(bytecode_offset, bytecode_offset, Operand(1));
__ LoadlB(bytecode, MemOperand(bytecode_array, bytecode_offset));
__ AddP(bytecode_size_table, bytecode_size_table,
Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
// Load the size of the current bytecode.
__ bind(&process_bytecode);
// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME) \
__ CmpP(bytecode, \
Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \
__ beq(if_return);
RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL
// Otherwise, load the size of the current bytecode and advance the offset.
__ ShiftLeftP(scratch2, bytecode, Operand(2));
__ LoadlW(scratch2, MemOperand(bytecode_size_table, scratch2));
__ AddP(bytecode_offset, bytecode_offset, scratch2);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o r3: the JS function object being called.
// o r5: the incoming new target or generator object
// o cp: our context
// o pp: the caller's constant pool pointer (if enabled)
// o fp: the caller's frame pointer
// o sp: stack pointer
// o lr: return address
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
Register closure = r3;
Register feedback_vector = r4;
// Load the feedback vector from the closure.
__ LoadP(feedback_vector,
FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
__ LoadP(feedback_vector,
FieldMemOperand(feedback_vector, Cell::kValueOffset));
// Read off the optimized code slot in the feedback vector, and if there
// is optimized code or an optimization marker, call that instead.
MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, r6, r8, r7);
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ PushStandardFrame(closure);
// Get the bytecode array from the function object and load it into
// kInterpreterBytecodeArrayRegister.
__ LoadP(r2, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
// Load original bytecode array or the debug copy.
__ LoadP(kInterpreterBytecodeArrayRegister,
FieldMemOperand(r2, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, r6);
// Increment invocation count for the function.
__ LoadW(r1, FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountOffset));
__ AddP(r1, r1, Operand(1));
__ StoreW(r1, FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountOffset));
// Check function data field is actually a BytecodeArray object.
if (FLAG_debug_code) {
__ TestIfSmi(kInterpreterBytecodeArrayRegister);
__ Assert(
ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, r2, no_reg,
BYTECODE_ARRAY_TYPE);
__ Assert(
eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Reset code age.
__ mov(r1, Operand(BytecodeArray::kNoAgeBytecodeAge));
__ StoreByte(r1, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kBytecodeAgeOffset),
r0);
// Load the initial bytecode offset.
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push bytecode array and Smi tagged bytecode array offset.
__ SmiTag(r4, kInterpreterBytecodeOffsetRegister);
__ Push(kInterpreterBytecodeArrayRegister, r4);
// Allocate the local and temporary register file on the stack.
{
// Load frame size (word) from the BytecodeArray object.
__ LoadlW(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ SubP(r8, sp, r4);
__ LoadRoot(r0, Heap::kRealStackLimitRootIndex);
__ CmpLogicalP(r8, r0);
__ bge(&ok);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
Label loop, no_args;
__ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
__ ShiftRightP(r4, r4, Operand(kPointerSizeLog2));
__ LoadAndTestP(r4, r4);
__ beq(&no_args);
__ LoadRR(r1, r4);
__ bind(&loop);
__ push(r8);
__ SubP(r1, Operand(1));
__ bne(&loop);
__ bind(&no_args);
}
// If the bytecode array has a valid incoming new target or generator object
// register, initialize it with incoming value which was passed in r6.
Label no_incoming_new_target_or_generator_register;
__ LoadW(r8, FieldMemOperand(
kInterpreterBytecodeArrayRegister,
BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
__ CmpP(r8, Operand::Zero());
__ beq(&no_incoming_new_target_or_generator_register);
__ ShiftLeftP(r8, r8, Operand(kPointerSizeLog2));
__ StoreP(r5, MemOperand(fp, r8));
__ bind(&no_incoming_new_target_or_generator_register);
// Load accumulator with undefined.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
// Load the dispatch table into a register and dispatch to the bytecode
// handler at the current bytecode offset.
Label do_dispatch;
__ bind(&do_dispatch);
__ mov(kInterpreterDispatchTableRegister,
Operand(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
__ LoadlB(r5, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ ShiftLeftP(r5, r5, Operand(kPointerSizeLog2));
__ LoadP(kJavaScriptCallCodeStartRegister,
MemOperand(kInterpreterDispatchTableRegister, r5));
__ Call(kJavaScriptCallCodeStartRegister);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// Any returns to the entry trampoline are either due to the return bytecode
// or the interpreter tail calling a builtin and then a dispatch.
// Get bytecode array and bytecode offset from the stack frame.
__ LoadP(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ LoadP(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Either return, or advance to the next bytecode and dispatch.
Label do_return;
__ LoadlB(r3, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, r3, r4,
&do_return);
__ b(&do_dispatch);
__ bind(&do_return);
// The return value is in r2.
LeaveInterpreterFrame(masm, r4);
__ Ret();
}
static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
Register scratch,
Label* stack_overflow) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
__ LoadRoot(scratch, Heap::kRealStackLimitRootIndex);
// Make scratch the space we have left. The stack might already be overflowed
// here which will cause scratch to become negative.
__ SubP(scratch, sp, scratch);
// Check if the arguments will overflow the stack.
__ ShiftLeftP(r0, num_args, Operand(kPointerSizeLog2));
__ CmpP(scratch, r0);
__ ble(stack_overflow); // Signed comparison.
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register num_args, Register index,
Register count, Register scratch) {
Label loop, skip;
__ CmpP(count, Operand::Zero());
__ beq(&skip);
__ AddP(index, index, Operand(kPointerSize)); // Bias up for LoadPU
__ LoadRR(r0, count);
__ bind(&loop);
__ LoadP(scratch, MemOperand(index, -kPointerSize));
__ lay(index, MemOperand(index, -kPointerSize));
__ push(scratch);
__ SubP(r0, Operand(1));
__ bne(&loop);
__ bind(&skip);
}
// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
MacroAssembler* masm, ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r4 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- r3 : the target to call (can be any Object).
// -----------------------------------
Label stack_overflow;
// Calculate number of arguments (AddP one for receiver).
__ AddP(r5, r2, Operand(1));
Generate_StackOverflowCheck(masm, r5, ip, &stack_overflow);
// Push "undefined" as the receiver arg if we need to.
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ LoadRR(r5, r2); // Argument count is correct.
}
// Push the arguments.
Generate_InterpreterPushArgs(masm, r5, r4, r5, r6);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Pop(r4); // Pass the spread in a register
__ SubP(r2, r2, Operand(1)); // Subtract one for spread
}
// Call the target.
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable Code.
__ bkpt(0);
}
}
// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- r2 : argument count (not including receiver)
// -- r5 : new target
// -- r3 : constructor to call
// -- r4 : allocation site feedback if available, undefined otherwise.
// -- r6 : address of the first argument
// -----------------------------------
Label stack_overflow;
// Push a slot for the receiver to be constructed.
__ LoadImmP(r0, Operand::Zero());
__ push(r0);
// Push the arguments (skip if none).
Label skip;
__ CmpP(r2, Operand::Zero());
__ beq(&skip);
Generate_StackOverflowCheck(masm, r2, ip, &stack_overflow);
Generate_InterpreterPushArgs(masm, r2, r6, r2, r7);
__ bind(&skip);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Pop(r4); // Pass the spread in a register
__ SubP(r2, r2, Operand(1)); // Subtract one for spread
} else {
__ AssertUndefinedOrAllocationSite(r4, r7);
}
if (mode == InterpreterPushArgsMode::kArrayFunction) {
__ AssertFunction(r3);
// Tail call to the array construct stub (still in the caller
// context at this point).
Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl);
__ Jump(code, RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Call the constructor with r2, r3, and r5 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
// Call the constructor with r2, r3, and r5 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable Code.
__ bkpt(0);
}
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Label builtin_trampoline, trampoline_loaded;
Smi* interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
// If the SFI function_data is an InterpreterData, get the trampoline stored
// in it, otherwise get the trampoline from the builtins list.
__ LoadP(r4, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
__ LoadP(r4, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(r4, FieldMemOperand(r4, SharedFunctionInfo::kFunctionDataOffset));
__ CompareObjectType(r4, kInterpreterDispatchTableRegister,
kInterpreterDispatchTableRegister,
INTERPRETER_DATA_TYPE);
__ bne(&builtin_trampoline);
__ LoadP(r4,
FieldMemOperand(r4, InterpreterData::kInterpreterTrampolineOffset));
__ b(&trampoline_loaded);
__ bind(&builtin_trampoline);
__ Move(r4, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline));
__ bind(&trampoline_loaded);
__ AddP(r14, r4, Operand(interpreter_entry_return_pc_offset->value() +
Code::kHeaderSize - kHeapObjectTag));
// Initialize the dispatch table register.
__ Move(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
// Get the bytecode array pointer from the frame.
__ LoadP(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ TestIfSmi(kInterpreterBytecodeArrayRegister);
__ Assert(
ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, r3, no_reg,
BYTECODE_ARRAY_TYPE);
__ Assert(
eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ LoadP(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Dispatch to the target bytecode.
__ LoadlB(ip, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ ShiftLeftP(ip, ip, Operand(kPointerSizeLog2));
__ LoadP(kJavaScriptCallCodeStartRegister,
MemOperand(kInterpreterDispatchTableRegister, ip));
__ Jump(kJavaScriptCallCodeStartRegister);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Get bytecode array and bytecode offset from the stack frame.
__ LoadP(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ LoadP(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Load the current bytecode.
__ LoadlB(r3, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
// Advance to the next bytecode.
Label if_return;
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, r3, r4,
&if_return);
// Convert new bytecode offset to a Smi and save in the stackframe.
__ SmiTag(r4, kInterpreterBytecodeOffsetRegister);
__ StoreP(r4,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
Generate_InterpreterEnterBytecode(masm);
// We should never take the if_return path.
__ bind(&if_return);
__ Abort(AbortReason::kInvalidBytecodeAdvance);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argument count (preserved for callee)
// -- r3 : new target (preserved for callee)
// -- r5 : target function (preserved for callee)
// -----------------------------------
Label failed;
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve argument count for later compare.
__ Move(r6, r2);
// Push a copy of the target function and the new target.
__ SmiTag(r2);
// Push another copy as a parameter to the runtime call.
__ Push(r2, r3, r5, r3);
// Copy arguments from caller (stdlib, foreign, heap).
Label args_done;
for (int j = 0; j < 4; ++j) {
Label over;
if (j < 3) {
__ CmpP(r6, Operand(j));
__ b(ne, &over);
}
for (int i = j - 1; i >= 0; --i) {
__ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
i * kPointerSize));
__ push(r6);
}
for (int i = 0; i < 3 - j; ++i) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
}
if (j < 3) {
__ jmp(&args_done);
__ bind(&over);
}
}
__ bind(&args_done);
// Call runtime, on success unwind frame, and parent frame.
__ CallRuntime(Runtime::kInstantiateAsmJs, 4);
// A smi 0 is returned on failure, an object on success.
__ JumpIfSmi(r2, &failed);
__ Drop(2);
__ pop(r6);
__ SmiUntag(r6);
scope.GenerateLeaveFrame();
__ AddP(r6, r6, Operand(1));
__ Drop(r6);
__ Ret();
__ bind(&failed);
// Restore target function and new target.
__ Pop(r2, r3, r5);
__ SmiUntag(r2);
}
// On failure, tail call back to regular js by re-calling the function
// which has be reset to the compile lazy builtin.
static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
__ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset));
__ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
__ JumpToJSEntry(r4);
}
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
bool java_script_builtin,
bool with_result) {
const RegisterConfiguration* config(RegisterConfiguration::Default());
int allocatable_register_count = config->num_allocatable_general_registers();
if (with_result) {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point.
__ StoreP(
r2, MemOperand(
sp, config->num_allocatable_general_registers() * kPointerSize +
BuiltinContinuationFrameConstants::kFixedFrameSize));
}
for (int i = allocatable_register_count - 1; i >= 0; --i) {
int code = config->GetAllocatableGeneralCode(i);
__ Pop(Register::from_code(code));
if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
__ SmiUntag(Register::from_code(code));
}
}
__ LoadP(
fp,
MemOperand(sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
__ Pop(ip);
__ AddP(sp, sp,
Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
__ Pop(r0);
__ LoadRR(r14, r0);
__ AddP(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(ip);
}
} // namespace
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, false);
}
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, true);
}
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, false);
}
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, true);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kNotifyDeoptimized);
}
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r2.code());
__ pop(r2);
__ Ret();
}
static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
bool has_handler_frame) {
// Lookup the function in the JavaScript frame.
if (has_handler_frame) {
__ LoadP(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ LoadP(r2, MemOperand(r2, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ LoadP(r2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ push(r2);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
// If the code object is null, just return to the caller.
Label skip;
__ CmpSmiLiteral(r2, Smi::kZero, r0);
__ bne(&skip);
__ Ret();
__ bind(&skip);
// Drop any potential handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
if (has_handler_frame) {
__ LeaveFrame(StackFrame::STUB);
}
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ LoadP(r3, FieldMemOperand(r2, Code::kDeoptimizationDataOffset));
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ LoadP(r3, FieldMemOperand(r3, FixedArray::OffsetOfElementAt(
DeoptimizationData::kOsrPcOffsetIndex)));
__ SmiUntag(r3);
// Compute the target address = code_obj + header_size + osr_offset
// <entry_addr> = <code_obj> + #header_size + <osr_offset>
__ AddP(r2, r3);
__ AddP(r0, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ LoadRR(r14, r0);
// And "return" to the OSR entry point of the function.
__ Ret();
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, false);
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, true);
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argc
// -- sp[0] : argArray
// -- sp[4] : thisArg
// -- sp[8] : receiver
// -----------------------------------
// 1. Load receiver into r3, argArray into r4 (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
Label skip;
Register arg_size = r7;
Register new_sp = r5;
Register scratch = r6;
__ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2));
__ AddP(new_sp, sp, arg_size);
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
__ LoadRR(r4, scratch);
__ LoadP(r3, MemOperand(new_sp, 0)); // receiver
__ CmpP(arg_size, Operand(kPointerSize));
__ blt(&skip);
__ LoadP(scratch, MemOperand(new_sp, 1 * -kPointerSize)); // thisArg
__ beq(&skip);
__ LoadP(r4, MemOperand(new_sp, 2 * -kPointerSize)); // argArray
__ bind(&skip);
__ LoadRR(sp, new_sp);
__ StoreP(scratch, MemOperand(sp, 0));
}
// ----------- S t a t e -------------
// -- r4 : argArray
// -- r3 : receiver
// -- sp[0] : thisArg
// -----------------------------------
// 2. We don't need to check explicitly for callable receiver here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(r4, Heap::kNullValueRootIndex, &no_arguments);
__ JumpIfRoot(r4, Heap::kUndefinedValueRootIndex, &no_arguments);
// 4a. Apply the receiver to the given argArray.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ bind(&no_arguments);
{
__ LoadImmP(r2, Operand::Zero());
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// 1. Make sure we have at least one argument.
// r2: actual number of arguments
{
Label done;
__ CmpP(r2, Operand::Zero());
__ bne(&done, Label::kNear);
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ AddP(r2, Operand(1));
__ bind(&done);
}
// r2: actual number of arguments
// 2. Get the callable to call (passed as receiver) from the stack.
__ ShiftLeftP(r4, r2, Operand(kPointerSizeLog2));
__ LoadP(r3, MemOperand(sp, r4));
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
// r2: actual number of arguments
// r3: callable
{
Label loop;
// Calculate the copy start address (destination). Copy end address is sp.
__ AddP(r4, sp, r4);
__ bind(&loop);
__ LoadP(ip, MemOperand(r4, -kPointerSize));
__ StoreP(ip, MemOperand(r4));
__ SubP(r4, Operand(kPointerSize));
__ CmpP(r4, sp);
__ bne(&loop);
// Adjust the actual number of arguments and remove the top element
// (which is a copy of the last argument).
__ SubP(r2, Operand(1));
__ pop();
}
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argc
// -- sp[0] : argumentsList
// -- sp[4] : thisArgument
// -- sp[8] : target
// -- sp[12] : receiver
// -----------------------------------
// 1. Load target into r3 (if present), argumentsList into r4 (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
Label skip;
Register arg_size = r7;
Register new_sp = r5;
Register scratch = r6;
__ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2));
__ AddP(new_sp, sp, arg_size);
__ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
__ LoadRR(scratch, r3);
__ LoadRR(r4, r3);
__ CmpP(arg_size, Operand(kPointerSize));
__ blt(&skip);
__ LoadP(r3, MemOperand(new_sp, 1 * -kPointerSize)); // target
__ beq(&skip);
__ LoadP(scratch, MemOperand(new_sp, 2 * -kPointerSize)); // thisArgument
__ CmpP(arg_size, Operand(2 * kPointerSize));
__ beq(&skip);
__ LoadP(r4, MemOperand(new_sp, 3 * -kPointerSize)); // argumentsList
__ bind(&skip);
__ LoadRR(sp, new_sp);
__ StoreP(scratch, MemOperand(sp, 0));
}
// ----------- S t a t e -------------
// -- r4 : argumentsList
// -- r3 : target
// -- sp[0] : thisArgument
// -----------------------------------
// 2. We don't need to check explicitly for callable target here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3 Apply the target to the given argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argc
// -- sp[0] : new.target (optional)
// -- sp[4] : argumentsList
// -- sp[8] : target
// -- sp[12] : receiver
// -----------------------------------
// 1. Load target into r3 (if present), argumentsList into r4 (if present),
// new.target into r5 (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
Label skip;
Register arg_size = r7;
Register new_sp = r6;
__ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2));
__ AddP(new_sp, sp, arg_size);
__ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
__ LoadRR(r4, r3);
__ LoadRR(r5, r3);
__ StoreP(r3, MemOperand(new_sp, 0)); // receiver (undefined)
__ CmpP(arg_size, Operand(kPointerSize));
__ blt(&skip);
__ LoadP(r3, MemOperand(new_sp, 1 * -kPointerSize)); // target
__ LoadRR(r5, r3); // new.target defaults to target
__ beq(&skip);
__ LoadP(r4, MemOperand(new_sp, 2 * -kPointerSize)); // argumentsList
__ CmpP(arg_size, Operand(2 * kPointerSize));
__ beq(&skip);
__ LoadP(r5, MemOperand(new_sp, 3 * -kPointerSize)); // new.target
__ bind(&skip);
__ LoadRR(sp, new_sp);
}
// ----------- S t a t e -------------
// -- r4 : argumentsList
// -- r5 : new.target
// -- r3 : target
// -- sp[0] : receiver (undefined)
// -----------------------------------
// 2. We don't need to check explicitly for constructor target here,
// since that's the first thing the Construct/ConstructWithArrayLike
// builtins will do.
// 3. We don't need to check explicitly for constructor new.target here,
// since that's the second thing the Construct/ConstructWithArrayLike
// builtins will do.
// 4. Construct the target with the given new.target and argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
RelocInfo::CODE_TARGET);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ SmiTag(r2);
__ Load(r6, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
// Stack updated as such:
// old SP --->
// R14 Return Addr
// Old FP <--- New FP
// Argument Adapter SMI
// Function
// ArgC as SMI
// Padding <--- New SP
__ lay(sp, MemOperand(sp, -5 * kPointerSize));
// Cleanse the top nibble of 31-bit pointers.
__ CleanseP(r14);
__ StoreP(r14, MemOperand(sp, 4 * kPointerSize));
__ StoreP(fp, MemOperand(sp, 3 * kPointerSize));
__ StoreP(r6, MemOperand(sp, 2 * kPointerSize));
__ StoreP(r3, MemOperand(sp, 1 * kPointerSize));
__ StoreP(r2, MemOperand(sp, 0 * kPointerSize));
__ Push(Smi::kZero); // Padding.
__ la(fp,
MemOperand(sp, ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ LoadP(r3, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
int stack_adjustment = kPointerSize; // adjust for receiver
__ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR, stack_adjustment);
__ SmiToPtrArrayOffset(r3, r3);
__ lay(sp, MemOperand(sp, r3));
}
// static
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- r3 : target
// -- r2 : number of parameters on the stack (not including the receiver)
// -- r4 : arguments list (a FixedArray)
// -- r6 : len (number of elements to push from args)
// -- r5 : new.target (for [[Construct]])
// -----------------------------------
Register scratch = ip;
if (masm->emit_debug_code()) {
// Allow r4 to be a FixedArray, or a FixedDoubleArray if r6 == 0.
Label ok, fail;
__ AssertNotSmi(r4);
__ LoadP(scratch, FieldMemOperand(r4, HeapObject::kMapOffset));
__ LoadHalfWordP(scratch,
FieldMemOperand(scratch, Map::kInstanceTypeOffset));
__ CmpP(scratch, Operand(FIXED_ARRAY_TYPE));
__ beq(&ok);
__ CmpP(scratch, Operand(FIXED_DOUBLE_ARRAY_TYPE));
__ bne(&fail);
__ CmpP(r6, Operand::Zero());
__ beq(&ok);
// Fall through.
__ bind(&fail);
__ Abort(AbortReason::kOperandIsNotAFixedArray);
__ bind(&ok);
}
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
__ LoadRoot(ip, Heap::kRealStackLimitRootIndex);
// Make ip the space we have left. The stack might already be overflowed
// here which will cause ip to become negative.
__ SubP(ip, sp, ip);
// Check if the arguments will overflow the stack.
__ ShiftLeftP(r0, r6, Operand(kPointerSizeLog2));
__ CmpP(ip, r0); // Signed comparison.
__ bgt(&done);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&done);
}
// Push arguments onto the stack (thisArgument is already on the stack).
{
Label loop, no_args, skip;
__ CmpP(r6, Operand::Zero());
__ beq(&no_args);
__ AddP(r4, r4,
Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
__ LoadRR(r1, r6);
__ bind(&loop);
__ LoadP(ip, MemOperand(r4, kPointerSize));
__ la(r4, MemOperand(r4, kPointerSize));
__ CompareRoot(ip, Heap::kTheHoleValueRootIndex);
__ bne(&skip, Label::kNear);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ bind(&skip);
__ push(ip);
__ BranchOnCount(r1, &loop);
__ bind(&no_args);
__ AddP(r2, r2, r6);
}
// Tail-call to the actual Call or Construct builtin.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
CallOrConstructMode mode,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r5 : the new.target (for [[Construct]] calls)
// -- r3 : the target to call (can be any Object)
// -- r4 : start index (to support rest parameters)
// -----------------------------------
Register scratch = r8;
if (mode == CallOrConstructMode::kConstruct) {
Label new_target_constructor, new_target_not_constructor;
__ JumpIfSmi(r5, &new_target_not_constructor);
__ LoadP(scratch, FieldMemOperand(r5, HeapObject::kMapOffset));
__ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
__ tmll(scratch, Operand(Map::IsConstructorBit::kShift));
__ bne(&new_target_constructor);
__ bind(&new_target_not_constructor);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ Push(r5);
__ CallRuntime(Runtime::kThrowNotConstructor);
}
__ bind(&new_target_constructor);
}
// Check if we have an arguments adaptor frame below the function frame.
Label arguments_adaptor, arguments_done;
__ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ LoadP(ip, MemOperand(r6, CommonFrameConstants::kContextOrFrameTypeOffset));
__ CmpP(ip, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ beq(&arguments_adaptor);
{
__ LoadP(r7, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ LoadP(r7, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset));
__ LoadLogicalHalfWordP(
r7,
FieldMemOperand(r7, SharedFunctionInfo::kFormalParameterCountOffset));
__ LoadRR(r6, fp);
}
__ b(&arguments_done);
__ bind(&arguments_adaptor);
{
// Load the length from the ArgumentsAdaptorFrame.
__ LoadP(r7, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(r7);
}
__ bind(&arguments_done);
Label stack_done, stack_overflow;
__ SubP(r7, r7, r4);
__ CmpP(r7, Operand::Zero());
__ ble(&stack_done);
{
// Check for stack overflow.
Generate_StackOverflowCheck(masm, r7, r4, &stack_overflow);
// Forward the arguments from the caller frame.
{
Label loop;
__ AddP(r6, r6, Operand(kPointerSize));
__ AddP(r2, r2, r7);
__ bind(&loop);
{
__ ShiftLeftP(ip, r7, Operand(kPointerSizeLog2));
__ LoadP(ip, MemOperand(r6, ip));
__ push(ip);
__ SubP(r7, r7, Operand(1));
__ CmpP(r7, Operand::Zero());
__ bne(&loop);
}
}
}
__ b(&stack_done);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&stack_done);
// Tail-call to the {code} handler.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(r3);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
Label class_constructor;
__ LoadP(r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ LoadlW(r5, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset));
__ TestBitMask(r5, SharedFunctionInfo::IsClassConstructorBit::kMask, r0);
__ bne(&class_constructor);
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ AndP(r0, r5,
Operand(SharedFunctionInfo::IsStrictBit::kMask |
SharedFunctionInfo::IsNativeBit::kMask));
__ bne(&done_convert);
{
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the function to call (checked to be a JSFunction)
// -- r4 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(r5);
} else {
Label convert_to_object, convert_receiver;
__ ShiftLeftP(r5, r2, Operand(kPointerSizeLog2));
__ LoadP(r5, MemOperand(sp, r5));
__ JumpIfSmi(r5, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CompareObjectType(r5, r6, r6, FIRST_JS_RECEIVER_TYPE);
__ bge(&done_convert);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(r5, Heap::kUndefinedValueRootIndex,
&convert_global_proxy);
__ JumpIfNotRoot(r5, Heap::kNullValueRootIndex, &convert_to_object);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(r5);
}
__ b(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(r2);
__ Push(r2, r3);
__ LoadRR(r2, r5);
__ Push(cp);
__ Call(BUILTIN_CODE(masm->isolate(), ToObject),
RelocInfo::CODE_TARGET);
__ Pop(cp);
__ LoadRR(r5, r2);
__ Pop(r2, r3);
__ SmiUntag(r2);
}
__ LoadP(r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ ShiftLeftP(r6, r2, Operand(kPointerSizeLog2));
__ StoreP(r5, MemOperand(sp, r6));
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the function to call (checked to be a JSFunction)
// -- r4 : the shared function info.
// -- cp : the function context.
// -----------------------------------
__ LoadLogicalHalfWordP(
r4, FieldMemOperand(r4, SharedFunctionInfo::kFormalParameterCountOffset));
ParameterCount actual(r2);
ParameterCount expected(r4);
__ InvokeFunctionCode(r3, no_reg, expected, actual, JUMP_FUNCTION);
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameAndConstantPoolScope frame(masm, StackFrame::INTERNAL);
__ push(r3);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : target (checked to be a JSBoundFunction)
// -- r5 : new.target (only in case of [[Construct]])
// -----------------------------------
// Load [[BoundArguments]] into r4 and length of that into r6.
Label no_bound_arguments;
__ LoadP(r4, FieldMemOperand(r3, JSBoundFunction::kBoundArgumentsOffset));
__ LoadP(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
__ SmiUntag(r6);
__ LoadAndTestP(r6, r6);
__ beq(&no_bound_arguments);
{
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : target (checked to be a JSBoundFunction)
// -- r4 : the [[BoundArguments]] (implemented as FixedArray)
// -- r5 : new.target (only in case of [[Construct]])
// -- r6 : the number of [[BoundArguments]]
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ LoadRR(r8, sp); // preserve previous stack pointer
__ ShiftLeftP(r9, r6, Operand(kPointerSizeLog2));
__ SubP(sp, sp, r9);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack
// limit".
__ CompareRoot(sp, Heap::kRealStackLimitRootIndex);
__ bgt(&done); // Signed comparison.
// Restore the stack pointer.
__ LoadRR(sp, r8);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Relocate arguments down the stack.
// -- r2 : the number of arguments (not including the receiver)
// -- r8 : the previous stack pointer
// -- r9: the size of the [[BoundArguments]]
{
Label skip, loop;
__ LoadImmP(r7, Operand::Zero());
__ CmpP(r2, Operand::Zero());
__ beq(&skip);
__ LoadRR(r1, r2);
__ bind(&loop);
__ LoadP(r0, MemOperand(r8, r7));
__ StoreP(r0, MemOperand(sp, r7));
__ AddP(r7, r7, Operand(kPointerSize));
__ BranchOnCount(r1, &loop);
__ bind(&skip);
}
// Copy [[BoundArguments]] to the stack (below the arguments).
{
Label loop;
__ AddP(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ AddP(r4, r4, r9);
__ LoadRR(r1, r6);
__ bind(&loop);
__ LoadP(r0, MemOperand(r4, -kPointerSize));
__ lay(r4, MemOperand(r4, -kPointerSize));
__ StoreP(r0, MemOperand(sp, r7));
__ AddP(r7, r7, Operand(kPointerSize));
__ BranchOnCount(r1, &loop);
__ AddP(r2, r2, r6);
}
}
__ bind(&no_bound_arguments);
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(r3);
// Patch the receiver to [[BoundThis]].
__ LoadP(ip, FieldMemOperand(r3, JSBoundFunction::kBoundThisOffset));
__ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2));
__ StoreP(ip, MemOperand(sp, r1));
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ LoadP(r3,
FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_function, non_smi;
__ JumpIfSmi(r3, &non_callable);
__ bind(&non_smi);
__ CompareObjectType(r3, r6, r7, JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET, eq);
__ CmpP(r7, Operand(JS_BOUND_FUNCTION_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
RelocInfo::CODE_TARGET, eq);
// Check if target has a [[Call]] internal method.
__ LoadlB(r6, FieldMemOperand(r6, Map::kBitFieldOffset));
__ TestBit(r6, Map::IsCallableBit::kShift);
__ beq(&non_callable);
// Check if target is a proxy and call CallProxy external builtin
__ CmpP(r7, Operand(JS_PROXY_TYPE));
__ bne(&non_function);
__ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET);
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Overwrite the original receiver the (original) target.
__ ShiftLeftP(r7, r2, Operand(kPointerSizeLog2));
__ StoreP(r3, MemOperand(sp, r7));
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r3);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r3);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the constructor to call (checked to be a JSFunction)
// -- r5 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertConstructor(r3, r1);
__ AssertFunction(r3);
// Calling convention for function specific ConstructStubs require
// r4 to contain either an AllocationSite or undefined.
__ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
Label call_generic_stub;
// Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
__ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ LoadlW(r6, FieldMemOperand(r6, SharedFunctionInfo::kFlagsOffset));
__ AndP(r6, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
__ beq(&call_generic_stub);
__ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
RelocInfo::CODE_TARGET);
__ bind(&call_generic_stub);
__ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the function to call (checked to be a JSBoundFunction)
// -- r5 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertConstructor(r3, r1);
__ AssertBoundFunction(r3);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
Label skip;
__ CmpP(r3, r5);
__ bne(&skip);
__ LoadP(r5,
FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset));
__ bind(&skip);
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ LoadP(r3,
FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : the number of arguments (not including the receiver)
// -- r3 : the constructor to call (can be any Object)
// -- r5 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Check if target is a Smi.
Label non_constructor, non_proxy;
__ JumpIfSmi(r3, &non_constructor);
// Check if target has a [[Construct]] internal method.
__ LoadP(r6, FieldMemOperand(r3, HeapObject::kMapOffset));
__ LoadlB(r4, FieldMemOperand(r6, Map::kBitFieldOffset));
__ TestBit(r4, Map::IsConstructorBit::kShift);
__ beq(&non_constructor);
// Dispatch based on instance type.
__ CompareInstanceType(r6, r7, JS_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
RelocInfo::CODE_TARGET, eq);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ CmpP(r7, Operand(JS_BOUND_FUNCTION_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
RelocInfo::CODE_TARGET, eq);
// Only dispatch to proxies after checking whether they are constructors.
__ CmpP(r7, Operand(JS_PROXY_TYPE));
__ bne(&non_proxy);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
RelocInfo::CODE_TARGET);
// Called Construct on an exotic Object with a [[Construct]] internal method.
__ bind(&non_proxy);
{
// Overwrite the original receiver with the (original) target.
__ ShiftLeftP(r7, r2, Operand(kPointerSizeLog2));
__ StoreP(r3, MemOperand(sp, r7));
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r3);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : actual number of arguments
// -- r3 : function (passed through to callee)
// -- r4 : expected number of arguments
// -- r5 : new target (passed through to callee)
// -----------------------------------
Label invoke, dont_adapt_arguments, stack_overflow;
Label enough, too_few;
__ tmll(r4, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ b(Condition(1), &dont_adapt_arguments);
__ CmpLogicalP(r2, r4);
__ blt(&too_few);
{ // Enough parameters: actual >= expected
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
Generate_StackOverflowCheck(masm, r4, r7, &stack_overflow);
// Calculate copy start address into r2 and copy end address into r6.
// r2: actual number of arguments as a smi
// r3: function
// r4: expected number of arguments
// r5: new target (passed through to callee)
__ SmiToPtrArrayOffset(r2, r2);
__ AddP(r2, fp);
// adjust for return address and receiver
__ AddP(r2, r2, Operand(2 * kPointerSize));
__ ShiftLeftP(r6, r4, Operand(kPointerSizeLog2));
__ SubP(r6, r2, r6);
// Copy the arguments (including the receiver) to the new stack frame.
// r2: copy start address
// r3: function
// r4: expected number of arguments
// r5: new target (passed through to callee)
// r6: copy end address
Label copy;
__ bind(©);
__ LoadP(r0, MemOperand(r2, 0));
__ push(r0);
__ CmpP(r2, r6); // Compare before moving to next argument.
__ lay(r2, MemOperand(r2, -kPointerSize));
__ bne(©);
__ b(&invoke);
}
{ // Too few parameters: Actual < expected
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
Generate_StackOverflowCheck(masm, r4, r7, &stack_overflow);
// Calculate copy start address into r0 and copy end address is fp.
// r2: actual number of arguments as a smi
// r3: function
// r4: expected number of arguments
// r5: new target (passed through to callee)
__ SmiToPtrArrayOffset(r2, r2);
__ lay(r2, MemOperand(r2, fp));
// Copy the arguments (including the receiver) to the new stack frame.
// r2: copy start address
// r3: function
// r4: expected number of arguments
// r5: new target (passed through to callee)
Label copy;
__ bind(©);
// Adjust load for return address and receiver.
__ LoadP(r0, MemOperand(r2, 2 * kPointerSize));
__ push(r0);
__ CmpP(r2, fp); // Compare before moving to next argument.
__ lay(r2, MemOperand(r2, -kPointerSize));
__ bne(©);
// Fill the remaining expected arguments with undefined.
// r3: function
// r4: expected number of argumentus
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
__ ShiftLeftP(r6, r4, Operand(kPointerSizeLog2));
__ SubP(r6, fp, r6);
// Adjust for frame.
__ SubP(r6, r6,
Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp +
kPointerSize));
Label fill;
__ bind(&fill);
__ push(r0);
__ CmpP(sp, r6);
__ bne(&fill);
}
// Call the entry point.
__ bind(&invoke);
__ LoadRR(r2, r4);
// r2 : expected number of arguments
// r3 : function (passed through to callee)
// r5 : new target (passed through to callee)
static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
__ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset));
__ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
__ CallJSEntry(r4);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Ret();
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
__ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset));
__ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
__ JumpToJSEntry(r4);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bkpt(0);
}
}
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
// The function index was put in r7 by the jump table trampoline.
// Convert to Smi for the runtime call.
__ SmiTag(r7, r7);
{
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
FrameAndConstantPoolScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
// Save all parameter registers (see wasm-linkage.cc). They might be
// overwritten in the runtime call below. We don't have any callee-saved
// registers in wasm, so no need to store anything else.
constexpr RegList gp_regs = Register::ListOf<r2, r3, r4, r5, r6>();
#if V8_TARGET_ARCH_S390X
constexpr RegList fp_regs = DoubleRegister::ListOf<d0, d2, d4, d6>();
#else
constexpr RegList fp_regs = DoubleRegister::ListOf<d0, d2>();
#endif
__ MultiPush(gp_regs);
__ MultiPushDoubles(fp_regs);
// Pass instance and function index as explicit arguments to the runtime
// function.
__ Push(kWasmInstanceRegister, r7);
// Load the correct CEntry builtin from the instance object.
__ LoadP(r4, FieldMemOperand(kWasmInstanceRegister,
WasmInstanceObject::kCEntryStubOffset));
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ LoadSmiLiteral(cp, Smi::kZero);
__ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, r4);
// The entrypoint address is the return value.
__ LoadRR(ip, r2);
// Restore registers.
__ MultiPopDoubles(fp_regs);
__ MultiPop(gp_regs);
}
// Finally, jump to the entrypoint.
__ Jump(ip);
}
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
SaveFPRegsMode save_doubles, ArgvMode argv_mode,
bool builtin_exit_frame) {
// Called from JavaScript; parameters are on stack as if calling JS function.
// r2: number of arguments including receiver
// r3: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's sp after C call)
// cp: current context (C callee-saved)
//
// If argv_mode == kArgvInRegister:
// r4: pointer to the first argument
ProfileEntryHookStub::MaybeCallEntryHook(masm);
__ LoadRR(r7, r3);
if (argv_mode == kArgvInRegister) {
// Move argv into the correct register.
__ LoadRR(r3, r4);
} else {
// Compute the argv pointer.
__ ShiftLeftP(r3, r2, Operand(kPointerSizeLog2));
__ lay(r3, MemOperand(r3, sp, -kPointerSize));
}
// Enter the exit frame that transitions from JavaScript to C++.
FrameScope scope(masm, StackFrame::MANUAL);
// Need at least one extra slot for return address location.
int arg_stack_space = 1;
// Pass buffer for return value on stack if necessary
bool needs_return_buffer =
result_size == 2 && !ABI_RETURNS_OBJECTPAIR_IN_REGS;
if (needs_return_buffer) {
arg_stack_space += result_size;
}
#if V8_TARGET_ARCH_S390X
// 64-bit linux pass Argument object by reference not value
arg_stack_space += 2;
#endif
__ EnterExitFrame(
save_doubles, arg_stack_space,
builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
// Store a copy of argc, argv in callee-saved registers for later.
__ LoadRR(r6, r2);
__ LoadRR(r8, r3);
// r2, r6: number of arguments including receiver (C callee-saved)
// r3, r8: pointer to the first argument
// r7: pointer to builtin function (C callee-saved)
// Result returned in registers or stack, depending on result size and ABI.
Register isolate_reg = r4;
if (needs_return_buffer) {
// The return value is 16-byte non-scalar value.
// Use frame storage reserved by calling function to pass return
// buffer as implicit first argument in R2. Shfit original parameters
// by one register each.
__ LoadRR(r4, r3);
__ LoadRR(r3, r2);
__ la(r2, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));
isolate_reg = r5;
}
// Call C built-in.
__ Move(isolate_reg, ExternalReference::isolate_address(masm->isolate()));
Register target = r7;
// To let the GC traverse the return address of the exit frames, we need to
// know where the return address is. The CEntryStub is unmovable, so
// we can store the address on the stack to be able to find it again and
// we never have to restore it, because it will not change.
{
Label return_label;
__ larl(r14, &return_label); // Generate the return addr of call later.
__ StoreP(r14, MemOperand(sp, kStackFrameRASlot * kPointerSize));
// zLinux ABI requires caller's frame to have sufficient space for callee
// preserved regsiter save area.
// __ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize));
__ b(target);
__ bind(&return_label);
// __ la(sp, MemOperand(sp, +kCalleeRegisterSaveAreaSize));
}
// If return value is on the stack, pop it to registers.
if (needs_return_buffer) {
__ LoadP(r3, MemOperand(r2, kPointerSize));
__ LoadP(r2, MemOperand(r2));
}
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(r2, Heap::kExceptionRootIndex);
__ beq(&exception_returned, Label::kNear);
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
Label okay;
ExternalReference pending_exception_address = ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, masm->isolate());
__ Move(r1, pending_exception_address);
__ LoadP(r1, MemOperand(r1));
__ CompareRoot(r1, Heap::kTheHoleValueRootIndex);
// Cannot use check here as it attempts to generate call into runtime.
__ beq(&okay, Label::kNear);
__ stop("Unexpected pending exception");
__ bind(&okay);
}
// Exit C frame and return.
// r2:r3: result
// sp: stack pointer
// fp: frame pointer
Register argc = argv_mode == kArgvInRegister
// We don't want to pop arguments so set argc to no_reg.
? no_reg
// r6: still holds argc (callee-saved).
: r6;
__ LeaveExitFrame(save_doubles, argc);
__ b(r14);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
ExternalReference pending_handler_entrypoint_address =
ExternalReference::Create(
IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
ExternalReference pending_handler_fp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
ExternalReference pending_handler_sp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
// Ask the runtime for help to determine the handler. This will set r3 to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler =
ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(3, 0, r2);
__ LoadImmP(r2, Operand::Zero());
__ LoadImmP(r3, Operand::Zero());
__ Move(r4, ExternalReference::isolate_address(masm->isolate()));
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ Move(cp, pending_handler_context_address);
__ LoadP(cp, MemOperand(cp));
__ Move(sp, pending_handler_sp_address);
__ LoadP(sp, MemOperand(sp));
__ Move(fp, pending_handler_fp_address);
__ LoadP(fp, MemOperand(fp));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (cp == 0) for non-JS frames.
Label skip;
__ CmpP(cp, Operand::Zero());
__ beq(&skip, Label::kNear);
__ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ bind(&skip);
// Reset the masking register.
if (FLAG_branch_load_poisoning) {
__ ResetSpeculationPoisonRegister();
}
// Compute the handler entry address and jump to it.
__ Move(r3, pending_handler_entrypoint_address);
__ LoadP(r3, MemOperand(r3));
__ Jump(r3);
}
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
Label out_of_range, only_low, negate, done, fastpath_done;
Register result_reg = r2;
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
// Immediate values for this stub fit in instructions, so it's safe to use ip.
Register scratch = GetRegisterThatIsNotOneOf(result_reg);
Register scratch_low = GetRegisterThatIsNotOneOf(result_reg, scratch);
Register scratch_high =
GetRegisterThatIsNotOneOf(result_reg, scratch, scratch_low);
DoubleRegister double_scratch = kScratchDoubleReg;
__ Push(result_reg, scratch);
// Account for saved regs.
int argument_offset = 2 * kPointerSize;
// Load double input.
__ LoadDouble(double_scratch, MemOperand(sp, argument_offset));
// Do fast-path convert from double to int.
__ ConvertDoubleToInt64(result_reg, double_scratch);
// Test for overflow
__ TestIfInt32(result_reg);
__ beq(&fastpath_done, Label::kNear);
__ Push(scratch_high, scratch_low);
// Account for saved regs.
argument_offset += 2 * kPointerSize;
__ LoadlW(scratch_high,
MemOperand(sp, argument_offset + Register::kExponentOffset));
__ LoadlW(scratch_low,
MemOperand(sp, argument_offset + Register::kMantissaOffset));
__ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
// Load scratch with exponent - 1. This is faster than loading
// with exponent because Bias + 1 = 1024 which is a *S390* immediate value.
STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
__ SubP(scratch, Operand(HeapNumber::kExponentBias + 1));
// If exponent is greater than or equal to 84, the 32 less significant
// bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
// the result is 0.
// Compare exponent with 84 (compare exponent - 1 with 83).
__ CmpP(scratch, Operand(83));
__ bge(&out_of_range, Label::kNear);
// If we reach this code, 31 <= exponent <= 83.
// So, we don't have to handle cases where 0 <= exponent <= 20 for
// which we would need to shift right the high part of the mantissa.
// Scratch contains exponent - 1.
// Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
__ Load(r0, Operand(51));
__ SubP(scratch, r0, scratch);
__ CmpP(scratch, Operand::Zero());
__ ble(&only_low, Label::kNear);
// 21 <= exponent <= 51, shift scratch_low and scratch_high
// to generate the result.
__ ShiftRight(scratch_low, scratch_low, scratch);
// Scratch contains: 52 - exponent.
// We needs: exponent - 20.
// So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
__ Load(r0, Operand(32));
__ SubP(scratch, r0, scratch);
__ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
// Set the implicit 1 before the mantissa part in scratch_high.
STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
__ Load(r0, Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16)));
__ ShiftLeftP(r0, r0, Operand(16));
__ OrP(result_reg, result_reg, r0);
__ ShiftLeft(r0, result_reg, scratch);
__ OrP(result_reg, scratch_low, r0);
__ b(&negate, Label::kNear);
__ bind(&out_of_range);
__ mov(result_reg, Operand::Zero());
__ b(&done, Label::kNear);
__ bind(&only_low);
// 52 <= exponent <= 83, shift only scratch_low.
// On entry, scratch contains: 52 - exponent.
__ LoadComplementRR(scratch, scratch);
__ ShiftLeft(result_reg, scratch_low, scratch);
__ bind(&negate);
// If input was positive, scratch_high ASR 31 equals 0 and
// scratch_high LSR 31 equals zero.
// New result = (result eor 0) + 0 = result.
// If the input was negative, we have to negate the result.
// Input_high ASR 31 equals 0xFFFFFFFF and scratch_high LSR 31 equals 1.
// New result = (result eor 0xFFFFFFFF) + 1 = 0 - result.
__ ShiftRightArith(r0, scratch_high, Operand(31));
#if V8_TARGET_ARCH_S390X
__ lgfr(r0, r0);
__ ShiftRightP(r0, r0, Operand(32));
#endif
__ XorP(result_reg, r0);
__ ShiftRight(r0, scratch_high, Operand(31));
__ AddP(result_reg, r0);
__ bind(&done);
__ Pop(scratch_high, scratch_low);
argument_offset -= 2 * kPointerSize;
__ bind(&fastpath_done);
__ StoreP(result_reg, MemOperand(sp, argument_offset));
__ Pop(result_reg, scratch);
__ Ret();
}
void Builtins::Generate_MathPowInternal(MacroAssembler* masm) {
const Register exponent = r4;
const DoubleRegister double_base = d1;
const DoubleRegister double_exponent = d2;
const DoubleRegister double_result = d3;
const DoubleRegister double_scratch = d0;
const Register scratch = r1;
const Register scratch2 = r9;
Label call_runtime, done, int_exponent;
// Detect integer exponents stored as double.
__ TryDoubleToInt32Exact(scratch, double_exponent, scratch2, double_scratch);
__ beq(&int_exponent, Label::kNear);
__ push(r14);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2, scratch);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(ExternalReference::power_double_double_function(), 0, 2);
}
__ pop(r14);
__ MovFromFloatResult(double_result);
__ b(&done);
// Calculate power with integer exponent.
__ bind(&int_exponent);
// Get two copies of exponent in the registers scratch and exponent.
// Exponent has previously been stored into scratch as untagged integer.
__ LoadRR(exponent, scratch);
__ ldr(double_scratch, double_base); // Back up base.
__ LoadImmP(scratch2, Operand(1));
__ ConvertIntToDouble(double_result, scratch2);
// Get absolute value of exponent.
Label positive_exponent;
__ CmpP(scratch, Operand::Zero());
__ bge(&positive_exponent, Label::kNear);
__ LoadComplementRR(scratch, scratch);
__ bind(&positive_exponent);
Label while_true, no_carry, loop_end;
__ bind(&while_true);
__ mov(scratch2, Operand(1));
__ AndP(scratch2, scratch);
__ beq(&no_carry, Label::kNear);
__ mdbr(double_result, double_scratch);
__ bind(&no_carry);
__ ShiftRightP(scratch, scratch, Operand(1));
__ LoadAndTestP(scratch, scratch);
__ beq(&loop_end, Label::kNear);
__ mdbr(double_scratch, double_scratch);
__ b(&while_true);
__ bind(&loop_end);
__ CmpP(exponent, Operand::Zero());
__ bge(&done);
// get 1/double_result:
__ ldr(double_scratch, double_result);
__ LoadImmP(scratch2, Operand(1));
__ ConvertIntToDouble(double_result, scratch2);
__ ddbr(double_result, double_scratch);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ lzdr(kDoubleRegZero);
__ cdbr(double_result, kDoubleRegZero);
__ bne(&done, Label::kNear);
// double_exponent may not containe the exponent value if the input was a
// smi. We set it with exponent value before bailing out.
__ ConvertIntToDouble(double_exponent, exponent);
// Returning or bailing out.
__ push(r14);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2, scratch);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(ExternalReference::power_double_double_function(), 0, 2);
}
__ pop(r14);
__ MovFromFloatResult(double_result);
__ bind(&done);
__ Ret();
}
namespace {
void GenerateInternalArrayConstructorCase(MacroAssembler* masm,
ElementsKind kind) {
__ CmpLogicalP(r2, Operand(1));
__ Jump(CodeFactory::InternalArrayNoArgumentConstructor(masm->isolate(), kind)
.code(),
RelocInfo::CODE_TARGET, lt);
__ Jump(BUILTIN_CODE(masm->isolate(), ArrayNArgumentsConstructor),
RelocInfo::CODE_TARGET, gt);
if (IsFastPackedElementsKind(kind)) {
// We might need to create a holey array
// look at the first argument
__ LoadP(r5, MemOperand(sp, 0));
__ CmpP(r5, Operand::Zero());
__ Jump(CodeFactory::InternalArraySingleArgumentConstructor(
masm->isolate(), GetHoleyElementsKind(kind))
.code(),
RelocInfo::CODE_TARGET, ne);
}
__ Jump(
CodeFactory::InternalArraySingleArgumentConstructor(masm->isolate(), kind)
.code(),
RelocInfo::CODE_TARGET);
}
} // namespace
void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : argc
// -- r3 : constructor
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a nullptr and a Smi.
__ TestIfSmi(r5);
__ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, cr0);
__ CompareObjectType(r5, r5, r6, MAP_TYPE);
__ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction);
}
// Figure out the right elements kind
__ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
// Load the map's "bit field 2" into |result|.
__ LoadlB(r5, FieldMemOperand(r5, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ DecodeField<Map::ElementsKindBits>(r5);
if (FLAG_debug_code) {
Label done;
__ CmpP(r5, Operand(PACKED_ELEMENTS));
__ beq(&done);
__ CmpP(r5, Operand(HOLEY_ELEMENTS));
__ Assert(
eq,
AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray);
__ bind(&done);
}
Label fast_elements_case;
__ CmpP(r5, Operand(PACKED_ELEMENTS));
__ beq(&fast_elements_case);
GenerateInternalArrayConstructorCase(masm, HOLEY_ELEMENTS);
__ bind(&fast_elements_case);
GenerateInternalArrayConstructorCase(masm, PACKED_ELEMENTS);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_S390