// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_S390 #include "src/assembler-inl.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/frame-constants.h" #include "src/frames.h" #include "src/objects/js-generator.h" #include "src/runtime/runtime.h" #include "src/wasm/wasm-objects.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address, ExitFrameType exit_frame_type) { __ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address)); if (exit_frame_type == BUILTIN_EXIT) { __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), RelocInfo::CODE_TARGET); } else { DCHECK(exit_frame_type == EXIT); __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame), RelocInfo::CODE_TARGET); } } void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ LoadP(r4, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset)); __ TestIfSmi(r4); __ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction, cr0); __ CompareObjectType(r4, r5, r6, MAP_TYPE); __ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. // tail call a stub __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl), RelocInfo::CODE_TARGET); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- r2 : argument count (preserved for callee) // -- r3 : target function (preserved for callee) // -- r5 : new target (preserved for callee) // ----------------------------------- { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Push the number of arguments to the callee. // Push a copy of the target function and the new target. // Push function as parameter to the runtime call. __ SmiTag(r2); __ Push(r2, r3, r5, r3); __ CallRuntime(function_id, 1); __ LoadRR(r4, r2); // Restore target function and new target. __ Pop(r2, r3, r5); __ SmiUntag(r2); } static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch"); __ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(r4); } namespace { void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { Label post_instantiation_deopt_entry; // ----------- S t a t e ------------- // -- r2 : number of arguments // -- r3 : constructor function // -- r5 : new target // -- cp : context // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ SmiTag(r2); __ Push(cp, r2); __ SmiUntag(r2); // The receiver for the builtin/api call. __ PushRoot(Heap::kTheHoleValueRootIndex); // Set up pointer to last argument. __ la(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. // r2: number of arguments // r3: constructor function // r4: address of last argument (caller sp) // r5: new target // cr0: condition indicating whether r2 is zero // sp[0]: receiver // sp[1]: receiver // sp[2]: number of arguments (smi-tagged) Label loop, no_args; __ beq(&no_args); __ ShiftLeftP(ip, r2, Operand(kPointerSizeLog2)); __ SubP(sp, sp, ip); __ LoadRR(r1, r2); __ bind(&loop); __ lay(ip, MemOperand(ip, -kPointerSize)); __ LoadP(r0, MemOperand(ip, r6)); __ StoreP(r0, MemOperand(ip, sp)); __ BranchOnCount(r1, &loop); __ bind(&no_args); // Call the function. // r2: number of arguments // r3: constructor function // r5: new target ParameterCount actual(r2); __ InvokeFunction(r3, r5, actual, CALL_FUNCTION); // Restore context from the frame. __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); // Restore smi-tagged arguments count from the frame. __ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ SmiToPtrArrayOffset(r3, r3); __ AddP(sp, sp, r3); __ AddP(sp, sp, Operand(kPointerSize)); __ Ret(); } } // namespace // The construct stub for ES5 constructor functions and ES6 class constructors. void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2: number of arguments (untagged) // -- r3: constructor function // -- r5: new target // -- cp: context // -- lr: return address // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); Label post_instantiation_deopt_entry, not_create_implicit_receiver; // Preserve the incoming parameters on the stack. __ SmiTag(r2); __ Push(cp, r2, r3); __ PushRoot(Heap::kUndefinedValueRootIndex); __ Push(r5); // ----------- S t a t e ------------- // -- sp[0*kPointerSize]: new target // -- sp[1*kPointerSize]: padding // -- r3 and sp[2*kPointerSize]: constructor function // -- sp[3*kPointerSize]: number of arguments (tagged) // -- sp[4*kPointerSize]: context // ----------------------------------- __ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset)); __ LoadlW(r6, FieldMemOperand(r6, SharedFunctionInfo::kFlagsOffset)); __ TestBitMask(r6, SharedFunctionInfo::IsDerivedConstructorBit::kMask, r0); __ bne(¬_create_implicit_receiver); // If not derived class constructor: Allocate the new receiver object. __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, r6, r7); __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); __ b(&post_instantiation_deopt_entry); // Else: use TheHoleValue as receiver for constructor call __ bind(¬_create_implicit_receiver); __ LoadRoot(r2, Heap::kTheHoleValueRootIndex); // ----------- S t a t e ------------- // -- r2: receiver // -- Slot 4 / sp[0*kPointerSize]: new target // -- Slot 3 / sp[1*kPointerSize]: padding // -- Slot 2 / sp[2*kPointerSize]: constructor function // -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged) // -- Slot 0 / sp[4*kPointerSize]: context // ----------------------------------- // Deoptimizer enters here. masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( masm->pc_offset()); __ bind(&post_instantiation_deopt_entry); // Restore new target. __ Pop(r5); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ Push(r2, r2); // ----------- S t a t e ------------- // -- r5: new target // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: implicit receiver // -- sp[2*kPointerSize]: padding // -- sp[3*kPointerSize]: constructor function // -- sp[4*kPointerSize]: number of arguments (tagged) // -- sp[5*kPointerSize]: context // ----------------------------------- // Restore constructor function and argument count. __ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); __ LoadP(r2, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); __ SmiUntag(r2); // Set up pointer to last argument. __ la(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, no_args; // ----------- S t a t e ------------- // -- r2: number of arguments (untagged) // -- r5: new target // -- r6: pointer to last argument // -- cr0: condition indicating whether r2 is zero // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: implicit receiver // -- sp[2*kPointerSize]: padding // -- r3 and sp[3*kPointerSize]: constructor function // -- sp[4*kPointerSize]: number of arguments (tagged) // -- sp[5*kPointerSize]: context // ----------------------------------- __ beq(&no_args); __ ShiftLeftP(ip, r2, Operand(kPointerSizeLog2)); __ SubP(sp, sp, ip); __ LoadRR(r1, r2); __ bind(&loop); __ lay(ip, MemOperand(ip, -kPointerSize)); __ LoadP(r0, MemOperand(ip, r6)); __ StoreP(r0, MemOperand(ip, sp)); __ BranchOnCount(r1, &loop); __ bind(&no_args); // Call the function. ParameterCount actual(r2); __ InvokeFunction(r3, r5, actual, CALL_FUNCTION); // ----------- S t a t e ------------- // -- r0: constructor result // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: padding // -- sp[2*kPointerSize]: constructor function // -- sp[3*kPointerSize]: number of arguments // -- sp[4*kPointerSize]: context // ----------------------------------- // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( masm->pc_offset()); // Restore the context from the frame. __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, do_throw, leave_frame; // If the result is undefined, we jump out to using the implicit receiver. __ JumpIfRoot(r2, Heap::kUndefinedValueRootIndex, &use_receiver); // Otherwise we do a smi check and fall through to check if the return value // is a valid receiver. // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(r2, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(r2, r6, r6, FIRST_JS_RECEIVER_TYPE); __ bge(&leave_frame); __ b(&use_receiver); __ bind(&do_throw); __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ LoadP(r2, MemOperand(sp)); __ JumpIfRoot(r2, Heap::kTheHoleValueRootIndex, &do_throw); __ bind(&leave_frame); // Restore smi-tagged arguments count from the frame. __ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ SmiToPtrArrayOffset(r3, r3); __ AddP(sp, sp, r3); __ AddP(sp, sp, Operand(kPointerSize)); __ Ret(); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSBuiltinsConstructStubHelper(masm); } static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, Register sfi_data, Register scratch1) { Label done; __ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE); __ bne(&done, Label::kNear); __ LoadP(sfi_data, FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); __ bind(&done); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : the value to pass to the generator // -- r3 : the JSGeneratorObject to resume // -- lr : return address // ----------------------------------- __ AssertGeneratorObject(r3); // Store input value into generator object. __ StoreP(r2, FieldMemOperand(r3, JSGeneratorObject::kInputOrDebugPosOffset), r0); __ RecordWriteField(r3, JSGeneratorObject::kInputOrDebugPosOffset, r2, r5, kLRHasNotBeenSaved, kDontSaveFPRegs); // Load suspended function and context. __ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset)); __ LoadP(cp, FieldMemOperand(r6, JSFunction::kContextOffset)); // Flood function if we are stepping. Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; ExternalReference debug_hook = ExternalReference::debug_hook_on_function_call_address(masm->isolate()); __ Move(ip, debug_hook); __ LoadB(ip, MemOperand(ip)); __ CmpSmiLiteral(ip, Smi::kZero, r0); __ bne(&prepare_step_in_if_stepping); // Flood function if we need to continue stepping in the suspended generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); __ Move(ip, debug_suspended_generator); __ LoadP(ip, MemOperand(ip)); __ CmpP(ip, r3); __ beq(&prepare_step_in_suspended_generator); __ bind(&stepping_prepared); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label stack_overflow; __ CompareRoot(sp, Heap::kRealStackLimitRootIndex); __ blt(&stack_overflow); // Push receiver. __ LoadP(ip, FieldMemOperand(r3, JSGeneratorObject::kReceiverOffset)); __ Push(ip); // ----------- S t a t e ------------- // -- r3 : the JSGeneratorObject to resume // -- r6 : generator function // -- cp : generator context // -- lr : return address // -- sp[0] : generator receiver // ----------------------------------- // Copy the function arguments from the generator object's register file. __ LoadP(r5, FieldMemOperand(r6, JSFunction::kSharedFunctionInfoOffset)); __ LoadLogicalHalfWordP( r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset)); __ LoadP(r4, FieldMemOperand( r3, JSGeneratorObject::kParametersAndRegistersOffset)); { Label loop, done_loop; __ ShiftLeftP(r5, r5, Operand(kPointerSizeLog2)); __ SubP(sp, r5); // ip = stack offset // r5 = parameter array offset __ LoadImmP(ip, Operand::Zero()); __ SubP(r5, Operand(kPointerSize)); __ blt(&done_loop); __ lgfi(r1, Operand(-kPointerSize)); __ bind(&loop); // parameter copy loop __ LoadP(r0, FieldMemOperand(r4, r5, FixedArray::kHeaderSize)); __ StoreP(r0, MemOperand(sp, ip)); // update offsets __ lay(ip, MemOperand(ip, kPointerSize)); __ BranchRelativeOnIdxHighP(r5, r1, &loop); __ bind(&done_loop); } // Underlying function needs to have bytecode available. if (FLAG_debug_code) { __ LoadP(r5, FieldMemOperand(r6, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(r5, FieldMemOperand(r5, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, r5, ip); __ CompareObjectType(r5, r5, r5, BYTECODE_ARRAY_TYPE); __ Assert(eq, AbortReason::kMissingBytecodeArray); } // Resume (Ignition/TurboFan) generator object. { // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. __ LoadRR(r5, r3); __ LoadRR(r3, r6); static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch"); __ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset)); __ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(r4); } __ bind(&prepare_step_in_if_stepping); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r3, r6); // Push hole as receiver since we do not use it for stepping. __ PushRoot(Heap::kTheHoleValueRootIndex); __ CallRuntime(Runtime::kDebugOnFunctionCall); __ Pop(r3); __ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset)); } __ b(&stepping_prepared); __ bind(&prepare_step_in_suspended_generator); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r3); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(r3); __ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset)); } __ b(&stepping_prepared); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ bkpt(0); // This should be unreachable. } } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ push(r3); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } // Clobbers r4; preserves all other registers. static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(r4, Heap::kRealStackLimitRootIndex); // Make r4 the space we have left. The stack might already be overflowed // here which will cause r4 to become negative. __ SubP(r4, sp, r4); // Check if the arguments will overflow the stack. __ ShiftLeftP(r0, argc, Operand(kPointerSizeLog2)); __ CmpP(r4, r0); __ bgt(&okay); // Signed comparison. // Out of stack space. __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&okay); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from Generate_JS_Entry // r2: new.target // r3: function // r4: receiver // r5: argc // r6: argv // r0,r7-r9, cp may be clobbered ProfileEntryHookStub::MaybeCallEntryHook(masm); // Enter an internal frame. { // FrameScope ends up calling MacroAssembler::EnterFrame here FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address = ExternalReference::Create( IsolateAddressId::kContextAddress, masm->isolate()); __ Move(cp, context_address); __ LoadP(cp, MemOperand(cp)); // Push the function and the receiver onto the stack. __ Push(r3, r4); // Check if we have enough stack space to push all arguments. // Clobbers r4. Generate_CheckStackOverflow(masm, r5); // Copy arguments to the stack in a loop from argv to sp. // The arguments are actually placed in reverse order on sp // compared to argv (i.e. arg1 is highest memory in sp). // r3: function // r5: argc // r6: argv, i.e. points to first arg // r7: scratch reg to hold scaled argc // r8: scratch reg to hold arg handle // r9: scratch reg to hold index into argv Label argLoop, argExit; intptr_t zero = 0; __ ShiftLeftP(r7, r5, Operand(kPointerSizeLog2)); __ SubRR(sp, r7); // Buy the stack frame to fit args __ LoadImmP(r9, Operand(zero)); // Initialize argv index __ bind(&argLoop); __ CmpPH(r7, Operand(zero)); __ beq(&argExit, Label::kNear); __ lay(r7, MemOperand(r7, -kPointerSize)); __ LoadP(r8, MemOperand(r9, r6)); // read next parameter __ la(r9, MemOperand(r9, kPointerSize)); // r9++; __ LoadP(r0, MemOperand(r8)); // dereference handle __ StoreP(r0, MemOperand(r7, sp)); // push parameter __ b(&argLoop); __ bind(&argExit); // Setup new.target and argc. __ LoadRR(r6, r2); __ LoadRR(r2, r5); __ LoadRR(r5, r6); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(r6, Heap::kUndefinedValueRootIndex); __ LoadRR(r7, r6); __ LoadRR(r8, r6); __ LoadRR(r9, r6); // Invoke the code. Handle<Code> builtin = is_construct ? BUILTIN_CODE(masm->isolate(), Construct) : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the JS frame and remove the parameters (except function), and // return. } __ b(r14); // r2: result } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } static void ReplaceClosureCodeWithOptimizedCode( MacroAssembler* masm, Register optimized_code, Register closure, Register scratch1, Register scratch2, Register scratch3) { // Store code entry in the closure. __ StoreP(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset), r0); __ LoadRR(scratch1, optimized_code); // Write barrier clobbers scratch1 below. __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) { Register args_count = scratch; // Get the arguments + receiver count. __ LoadP(args_count, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ LoadlW(args_count, FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset)); // Leave the frame (also dropping the register file). __ LeaveFrame(StackFrame::INTERPRETED); __ AddP(sp, sp, args_count); } // Tail-call |function_id| if |smi_entry| == |marker| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, Register smi_entry, OptimizationMarker marker, Runtime::FunctionId function_id) { Label no_match; __ CmpSmiLiteral(smi_entry, Smi::FromEnum(marker), r0); __ bne(&no_match); GenerateTailCallToReturnedCode(masm, function_id); __ bind(&no_match); } static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, Register feedback_vector, Register scratch1, Register scratch2, Register scratch3) { // ----------- S t a t e ------------- // -- r0 : argument count (preserved for callee if needed, and caller) // -- r3 : new target (preserved for callee if needed, and caller) // -- r1 : target function (preserved for callee if needed, and caller) // -- feedback vector (preserved for caller if needed) // ----------------------------------- DCHECK( !AreAliased(feedback_vector, r2, r3, r5, scratch1, scratch2, scratch3)); Label optimized_code_slot_is_weak_ref, fallthrough; Register closure = r3; Register optimized_code_entry = scratch1; __ LoadP( optimized_code_entry, FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset)); // Check if the code entry is a Smi. If yes, we interpret it as an // optimisation marker. Otherwise, interpret it as a weak reference to a code // object. __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref); { // Optimized code slot is a Smi optimization marker. // Fall through if no optimization trigger. __ CmpSmiLiteral(optimized_code_entry, Smi::FromEnum(OptimizationMarker::kNone), r0); __ beq(&fallthrough); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kLogFirstExecution, Runtime::kFunctionFirstExecution); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kCompileOptimized, Runtime::kCompileOptimized_NotConcurrent); TailCallRuntimeIfMarkerEquals( masm, optimized_code_entry, OptimizationMarker::kCompileOptimizedConcurrent, Runtime::kCompileOptimized_Concurrent); { // Otherwise, the marker is InOptimizationQueue, so fall through hoping // that an interrupt will eventually update the slot with optimized code. if (FLAG_debug_code) { __ CmpSmiLiteral( optimized_code_entry, Smi::FromEnum(OptimizationMarker::kInOptimizationQueue), r0); __ Assert(eq, AbortReason::kExpectedOptimizationSentinel); } __ b(&fallthrough, Label::kNear); } } { // Optimized code slot is a weak reference. __ bind(&optimized_code_slot_is_weak_ref); __ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough); // Check if the optimized code is marked for deopt. If it is, call the // runtime to clear it. Label found_deoptimized_code; __ LoadP(scratch2, FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); __ LoadW( scratch2, FieldMemOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset)); __ TestBit(scratch2, Code::kMarkedForDeoptimizationBit, r0); __ bne(&found_deoptimized_code); // Optimized code is good, get it into the closure and link the closure into // the optimized functions list, then tail call the optimized code. // The feedback vector is no longer used, so re-use it as a scratch // register. ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, scratch2, scratch3, feedback_vector); static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch"); __ AddP(r4, optimized_code_entry, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(r4); // Optimized code slot contains deoptimized code, evict it and re-enter the // closure's code. __ bind(&found_deoptimized_code); GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); } // Fall-through if the optimized code cell is clear and there is no // optimization marker. __ bind(&fallthrough); } // Advance the current bytecode offset. This simulates what all bytecode // handlers do upon completion of the underlying operation. Will bail out to a // label if the bytecode (without prefix) is a return bytecode. static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, Register bytecode_array, Register bytecode_offset, Register bytecode, Register scratch1, Label* if_return) { Register bytecode_size_table = scratch1; Register scratch2 = bytecode; DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, bytecode)); __ Move(bytecode_size_table, ExternalReference::bytecode_size_table_address()); // Check if the bytecode is a Wide or ExtraWide prefix bytecode. Label process_bytecode, extra_wide; STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide)); STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide)); STATIC_ASSERT(3 == static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide)); __ CmpP(bytecode, Operand(0x3)); __ bgt(&process_bytecode); __ tmll(bytecode, Operand(0x1)); __ bne(&extra_wide); // Load the next bytecode and update table to the wide scaled table. __ AddP(bytecode_offset, bytecode_offset, Operand(1)); __ LoadlB(bytecode, MemOperand(bytecode_array, bytecode_offset)); __ AddP(bytecode_size_table, bytecode_size_table, Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ b(&process_bytecode); __ bind(&extra_wide); // Load the next bytecode and update table to the extra wide scaled table. __ AddP(bytecode_offset, bytecode_offset, Operand(1)); __ LoadlB(bytecode, MemOperand(bytecode_array, bytecode_offset)); __ AddP(bytecode_size_table, bytecode_size_table, Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); // Load the size of the current bytecode. __ bind(&process_bytecode); // Bailout to the return label if this is a return bytecode. #define JUMP_IF_EQUAL(NAME) \ __ CmpP(bytecode, \ Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \ __ beq(if_return); RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) #undef JUMP_IF_EQUAL // Otherwise, load the size of the current bytecode and advance the offset. __ ShiftLeftP(scratch2, bytecode, Operand(2)); __ LoadlW(scratch2, MemOperand(bytecode_size_table, scratch2)); __ AddP(bytecode_offset, bytecode_offset, scratch2); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o r3: the JS function object being called. // o r5: the incoming new target or generator object // o cp: our context // o pp: the caller's constant pool pointer (if enabled) // o fp: the caller's frame pointer // o sp: stack pointer // o lr: return address // // The function builds an interpreter frame. See InterpreterFrameConstants in // frames.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { ProfileEntryHookStub::MaybeCallEntryHook(masm); Register closure = r3; Register feedback_vector = r4; // Load the feedback vector from the closure. __ LoadP(feedback_vector, FieldMemOperand(closure, JSFunction::kFeedbackCellOffset)); __ LoadP(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); // Read off the optimized code slot in the feedback vector, and if there // is optimized code or an optimization marker, call that instead. MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, r6, r8, r7); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ PushStandardFrame(closure); // Get the bytecode array from the function object and load it into // kInterpreterBytecodeArrayRegister. __ LoadP(r2, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); // Load original bytecode array or the debug copy. __ LoadP(kInterpreterBytecodeArrayRegister, FieldMemOperand(r2, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, r6); // Increment invocation count for the function. __ LoadW(r1, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); __ AddP(r1, r1, Operand(1)); __ StoreW(r1, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); // Check function data field is actually a BytecodeArray object. if (FLAG_debug_code) { __ TestIfSmi(kInterpreterBytecodeArrayRegister); __ Assert( ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); __ CompareObjectType(kInterpreterBytecodeArrayRegister, r2, no_reg, BYTECODE_ARRAY_TYPE); __ Assert( eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Reset code age. __ mov(r1, Operand(BytecodeArray::kNoAgeBytecodeAge)); __ StoreByte(r1, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kBytecodeAgeOffset), r0); // Load the initial bytecode offset. __ mov(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); // Push bytecode array and Smi tagged bytecode array offset. __ SmiTag(r4, kInterpreterBytecodeOffsetRegister); __ Push(kInterpreterBytecodeArrayRegister, r4); // Allocate the local and temporary register file on the stack. { // Load frame size (word) from the BytecodeArray object. __ LoadlW(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ SubP(r8, sp, r4); __ LoadRoot(r0, Heap::kRealStackLimitRootIndex); __ CmpLogicalP(r8, r0); __ bge(&ok); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. // TODO(rmcilroy): Consider doing more than one push per loop iteration. Label loop, no_args; __ LoadRoot(r8, Heap::kUndefinedValueRootIndex); __ ShiftRightP(r4, r4, Operand(kPointerSizeLog2)); __ LoadAndTestP(r4, r4); __ beq(&no_args); __ LoadRR(r1, r4); __ bind(&loop); __ push(r8); __ SubP(r1, Operand(1)); __ bne(&loop); __ bind(&no_args); } // If the bytecode array has a valid incoming new target or generator object // register, initialize it with incoming value which was passed in r6. Label no_incoming_new_target_or_generator_register; __ LoadW(r8, FieldMemOperand( kInterpreterBytecodeArrayRegister, BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); __ CmpP(r8, Operand::Zero()); __ beq(&no_incoming_new_target_or_generator_register); __ ShiftLeftP(r8, r8, Operand(kPointerSizeLog2)); __ StoreP(r5, MemOperand(fp, r8)); __ bind(&no_incoming_new_target_or_generator_register); // Load accumulator with undefined. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); // Load the dispatch table into a register and dispatch to the bytecode // handler at the current bytecode offset. Label do_dispatch; __ bind(&do_dispatch); __ mov(kInterpreterDispatchTableRegister, Operand(ExternalReference::interpreter_dispatch_table_address( masm->isolate()))); __ LoadlB(r5, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); __ ShiftLeftP(r5, r5, Operand(kPointerSizeLog2)); __ LoadP(kJavaScriptCallCodeStartRegister, MemOperand(kInterpreterDispatchTableRegister, r5)); __ Call(kJavaScriptCallCodeStartRegister); masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); // Any returns to the entry trampoline are either due to the return bytecode // or the interpreter tail calling a builtin and then a dispatch. // Get bytecode array and bytecode offset from the stack frame. __ LoadP(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ LoadP(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Either return, or advance to the next bytecode and dispatch. Label do_return; __ LoadlB(r3, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, r3, r4, &do_return); __ b(&do_dispatch); __ bind(&do_return); // The return value is in r2. LeaveInterpreterFrame(masm, r4); __ Ret(); } static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, Register scratch, Label* stack_overflow) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex); // Make scratch the space we have left. The stack might already be overflowed // here which will cause scratch to become negative. __ SubP(scratch, sp, scratch); // Check if the arguments will overflow the stack. __ ShiftLeftP(r0, num_args, Operand(kPointerSizeLog2)); __ CmpP(scratch, r0); __ ble(stack_overflow); // Signed comparison. } static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register num_args, Register index, Register count, Register scratch) { Label loop, skip; __ CmpP(count, Operand::Zero()); __ beq(&skip); __ AddP(index, index, Operand(kPointerSize)); // Bias up for LoadPU __ LoadRR(r0, count); __ bind(&loop); __ LoadP(scratch, MemOperand(index, -kPointerSize)); __ lay(index, MemOperand(index, -kPointerSize)); __ push(scratch); __ SubP(r0, Operand(1)); __ bne(&loop); __ bind(&skip); } // static void Builtins::Generate_InterpreterPushArgsThenCallImpl( MacroAssembler* masm, ConvertReceiverMode receiver_mode, InterpreterPushArgsMode mode) { DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); // ----------- S t a t e ------------- // -- r2 : the number of arguments (not including the receiver) // -- r4 : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- r3 : the target to call (can be any Object). // ----------------------------------- Label stack_overflow; // Calculate number of arguments (AddP one for receiver). __ AddP(r5, r2, Operand(1)); Generate_StackOverflowCheck(masm, r5, ip, &stack_overflow); // Push "undefined" as the receiver arg if we need to. if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { __ PushRoot(Heap::kUndefinedValueRootIndex); __ LoadRR(r5, r2); // Argument count is correct. } // Push the arguments. Generate_InterpreterPushArgs(masm, r5, r4, r5, r6); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(r4); // Pass the spread in a register __ SubP(r2, r2, Operand(1)); // Subtract one for spread } // Call the target. if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), RelocInfo::CODE_TARGET); } else { __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable Code. __ bkpt(0); } } // static void Builtins::Generate_InterpreterPushArgsThenConstructImpl( MacroAssembler* masm, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- r2 : argument count (not including receiver) // -- r5 : new target // -- r3 : constructor to call // -- r4 : allocation site feedback if available, undefined otherwise. // -- r6 : address of the first argument // ----------------------------------- Label stack_overflow; // Push a slot for the receiver to be constructed. __ LoadImmP(r0, Operand::Zero()); __ push(r0); // Push the arguments (skip if none). Label skip; __ CmpP(r2, Operand::Zero()); __ beq(&skip); Generate_StackOverflowCheck(masm, r2, ip, &stack_overflow); Generate_InterpreterPushArgs(masm, r2, r6, r2, r7); __ bind(&skip); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(r4); // Pass the spread in a register __ SubP(r2, r2, Operand(1)); // Subtract one for spread } else { __ AssertUndefinedOrAllocationSite(r4, r7); } if (mode == InterpreterPushArgsMode::kArrayFunction) { __ AssertFunction(r3); // Tail call to the array construct stub (still in the caller // context at this point). Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl); __ Jump(code, RelocInfo::CODE_TARGET); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Call the constructor with r2, r3, and r5 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), RelocInfo::CODE_TARGET); } else { DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); // Call the constructor with r2, r3, and r5 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable Code. __ bkpt(0); } } static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Label builtin_trampoline, trampoline_loaded; Smi* interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); // If the SFI function_data is an InterpreterData, get the trampoline stored // in it, otherwise get the trampoline from the builtins list. __ LoadP(r4, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); __ LoadP(r4, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(r4, FieldMemOperand(r4, SharedFunctionInfo::kFunctionDataOffset)); __ CompareObjectType(r4, kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister, INTERPRETER_DATA_TYPE); __ bne(&builtin_trampoline); __ LoadP(r4, FieldMemOperand(r4, InterpreterData::kInterpreterTrampolineOffset)); __ b(&trampoline_loaded); __ bind(&builtin_trampoline); __ Move(r4, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline)); __ bind(&trampoline_loaded); __ AddP(r14, r4, Operand(interpreter_entry_return_pc_offset->value() + Code::kHeaderSize - kHeapObjectTag)); // Initialize the dispatch table register. __ Move( kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); // Get the bytecode array pointer from the frame. __ LoadP(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ TestIfSmi(kInterpreterBytecodeArrayRegister); __ Assert( ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); __ CompareObjectType(kInterpreterBytecodeArrayRegister, r3, no_reg, BYTECODE_ARRAY_TYPE); __ Assert( eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Get the target bytecode offset from the frame. __ LoadP(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Dispatch to the target bytecode. __ LoadlB(ip, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); __ ShiftLeftP(ip, ip, Operand(kPointerSizeLog2)); __ LoadP(kJavaScriptCallCodeStartRegister, MemOperand(kInterpreterDispatchTableRegister, ip)); __ Jump(kJavaScriptCallCodeStartRegister); } void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { // Get bytecode array and bytecode offset from the stack frame. __ LoadP(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ LoadP(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Load the current bytecode. __ LoadlB(r3, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); // Advance to the next bytecode. Label if_return; AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, r3, r4, &if_return); // Convert new bytecode offset to a Smi and save in the stackframe. __ SmiTag(r4, kInterpreterBytecodeOffsetRegister); __ StoreP(r4, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); Generate_InterpreterEnterBytecode(masm); // We should never take the if_return path. __ bind(&if_return); __ Abort(AbortReason::kInvalidBytecodeAdvance); } void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { Generate_InterpreterEnterBytecode(masm); } void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : argument count (preserved for callee) // -- r3 : new target (preserved for callee) // -- r5 : target function (preserved for callee) // ----------------------------------- Label failed; { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve argument count for later compare. __ Move(r6, r2); // Push a copy of the target function and the new target. __ SmiTag(r2); // Push another copy as a parameter to the runtime call. __ Push(r2, r3, r5, r3); // Copy arguments from caller (stdlib, foreign, heap). Label args_done; for (int j = 0; j < 4; ++j) { Label over; if (j < 3) { __ CmpP(r6, Operand(j)); __ b(ne, &over); } for (int i = j - 1; i >= 0; --i) { __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize)); __ push(r6); } for (int i = 0; i < 3 - j; ++i) { __ PushRoot(Heap::kUndefinedValueRootIndex); } if (j < 3) { __ jmp(&args_done); __ bind(&over); } } __ bind(&args_done); // Call runtime, on success unwind frame, and parent frame. __ CallRuntime(Runtime::kInstantiateAsmJs, 4); // A smi 0 is returned on failure, an object on success. __ JumpIfSmi(r2, &failed); __ Drop(2); __ pop(r6); __ SmiUntag(r6); scope.GenerateLeaveFrame(); __ AddP(r6, r6, Operand(1)); __ Drop(r6); __ Ret(); __ bind(&failed); // Restore target function and new target. __ Pop(r2, r3, r5); __ SmiUntag(r2); } // On failure, tail call back to regular js by re-calling the function // which has be reset to the compile lazy builtin. static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch"); __ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset)); __ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(r4); } namespace { void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, bool java_script_builtin, bool with_result) { const RegisterConfiguration* config(RegisterConfiguration::Default()); int allocatable_register_count = config->num_allocatable_general_registers(); if (with_result) { // Overwrite the hole inserted by the deoptimizer with the return value from // the LAZY deopt point. __ StoreP( r2, MemOperand( sp, config->num_allocatable_general_registers() * kPointerSize + BuiltinContinuationFrameConstants::kFixedFrameSize)); } for (int i = allocatable_register_count - 1; i >= 0; --i) { int code = config->GetAllocatableGeneralCode(i); __ Pop(Register::from_code(code)); if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { __ SmiUntag(Register::from_code(code)); } } __ LoadP( fp, MemOperand(sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); __ Pop(ip); __ AddP(sp, sp, Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); __ Pop(r0); __ LoadRR(r14, r0); __ AddP(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(ip); } } // namespace void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, false); } void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, true); } void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, false); } void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, true); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kNotifyDeoptimized); } DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r2.code()); __ pop(r2); __ Ret(); } static void Generate_OnStackReplacementHelper(MacroAssembler* masm, bool has_handler_frame) { // Lookup the function in the JavaScript frame. if (has_handler_frame) { __ LoadP(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ LoadP(r2, MemOperand(r2, JavaScriptFrameConstants::kFunctionOffset)); } else { __ LoadP(r2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(r2); __ CallRuntime(Runtime::kCompileForOnStackReplacement); } // If the code object is null, just return to the caller. Label skip; __ CmpSmiLiteral(r2, Smi::kZero, r0); __ bne(&skip); __ Ret(); __ bind(&skip); // Drop any potential handler frame that is be sitting on top of the actual // JavaScript frame. This is the case then OSR is triggered from bytecode. if (has_handler_frame) { __ LeaveFrame(StackFrame::STUB); } // Load deoptimization data from the code object. // <deopt_data> = <code>[#deoptimization_data_offset] __ LoadP(r3, FieldMemOperand(r2, Code::kDeoptimizationDataOffset)); // Load the OSR entrypoint offset from the deoptimization data. // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] __ LoadP(r3, FieldMemOperand(r3, FixedArray::OffsetOfElementAt( DeoptimizationData::kOsrPcOffsetIndex))); __ SmiUntag(r3); // Compute the target address = code_obj + header_size + osr_offset // <entry_addr> = <code_obj> + #header_size + <osr_offset> __ AddP(r2, r3); __ AddP(r0, r2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ LoadRR(r14, r0); // And "return" to the OSR entry point of the function. __ Ret(); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, false); } void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, true); } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : argc // -- sp[0] : argArray // -- sp[4] : thisArg // -- sp[8] : receiver // ----------------------------------- // 1. Load receiver into r3, argArray into r4 (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { Label skip; Register arg_size = r7; Register new_sp = r5; Register scratch = r6; __ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2)); __ AddP(new_sp, sp, arg_size); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ LoadRR(r4, scratch); __ LoadP(r3, MemOperand(new_sp, 0)); // receiver __ CmpP(arg_size, Operand(kPointerSize)); __ blt(&skip); __ LoadP(scratch, MemOperand(new_sp, 1 * -kPointerSize)); // thisArg __ beq(&skip); __ LoadP(r4, MemOperand(new_sp, 2 * -kPointerSize)); // argArray __ bind(&skip); __ LoadRR(sp, new_sp); __ StoreP(scratch, MemOperand(sp, 0)); } // ----------- S t a t e ------------- // -- r4 : argArray // -- r3 : receiver // -- sp[0] : thisArg // ----------------------------------- // 2. We don't need to check explicitly for callable receiver here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(r4, Heap::kNullValueRootIndex, &no_arguments); __ JumpIfRoot(r4, Heap::kUndefinedValueRootIndex, &no_arguments); // 4a. Apply the receiver to the given argArray. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. __ bind(&no_arguments); { __ LoadImmP(r2, Operand::Zero()); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // 1. Make sure we have at least one argument. // r2: actual number of arguments { Label done; __ CmpP(r2, Operand::Zero()); __ bne(&done, Label::kNear); __ PushRoot(Heap::kUndefinedValueRootIndex); __ AddP(r2, Operand(1)); __ bind(&done); } // r2: actual number of arguments // 2. Get the callable to call (passed as receiver) from the stack. __ ShiftLeftP(r4, r2, Operand(kPointerSizeLog2)); __ LoadP(r3, MemOperand(sp, r4)); // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. // r2: actual number of arguments // r3: callable { Label loop; // Calculate the copy start address (destination). Copy end address is sp. __ AddP(r4, sp, r4); __ bind(&loop); __ LoadP(ip, MemOperand(r4, -kPointerSize)); __ StoreP(ip, MemOperand(r4)); __ SubP(r4, Operand(kPointerSize)); __ CmpP(r4, sp); __ bne(&loop); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ SubP(r2, Operand(1)); __ pop(); } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : argc // -- sp[0] : argumentsList // -- sp[4] : thisArgument // -- sp[8] : target // -- sp[12] : receiver // ----------------------------------- // 1. Load target into r3 (if present), argumentsList into r4 (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { Label skip; Register arg_size = r7; Register new_sp = r5; Register scratch = r6; __ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2)); __ AddP(new_sp, sp, arg_size); __ LoadRoot(r3, Heap::kUndefinedValueRootIndex); __ LoadRR(scratch, r3); __ LoadRR(r4, r3); __ CmpP(arg_size, Operand(kPointerSize)); __ blt(&skip); __ LoadP(r3, MemOperand(new_sp, 1 * -kPointerSize)); // target __ beq(&skip); __ LoadP(scratch, MemOperand(new_sp, 2 * -kPointerSize)); // thisArgument __ CmpP(arg_size, Operand(2 * kPointerSize)); __ beq(&skip); __ LoadP(r4, MemOperand(new_sp, 3 * -kPointerSize)); // argumentsList __ bind(&skip); __ LoadRR(sp, new_sp); __ StoreP(scratch, MemOperand(sp, 0)); } // ----------- S t a t e ------------- // -- r4 : argumentsList // -- r3 : target // -- sp[0] : thisArgument // ----------------------------------- // 2. We don't need to check explicitly for callable target here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3 Apply the target to the given argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : argc // -- sp[0] : new.target (optional) // -- sp[4] : argumentsList // -- sp[8] : target // -- sp[12] : receiver // ----------------------------------- // 1. Load target into r3 (if present), argumentsList into r4 (if present), // new.target into r5 (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { Label skip; Register arg_size = r7; Register new_sp = r6; __ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2)); __ AddP(new_sp, sp, arg_size); __ LoadRoot(r3, Heap::kUndefinedValueRootIndex); __ LoadRR(r4, r3); __ LoadRR(r5, r3); __ StoreP(r3, MemOperand(new_sp, 0)); // receiver (undefined) __ CmpP(arg_size, Operand(kPointerSize)); __ blt(&skip); __ LoadP(r3, MemOperand(new_sp, 1 * -kPointerSize)); // target __ LoadRR(r5, r3); // new.target defaults to target __ beq(&skip); __ LoadP(r4, MemOperand(new_sp, 2 * -kPointerSize)); // argumentsList __ CmpP(arg_size, Operand(2 * kPointerSize)); __ beq(&skip); __ LoadP(r5, MemOperand(new_sp, 3 * -kPointerSize)); // new.target __ bind(&skip); __ LoadRR(sp, new_sp); } // ----------- S t a t e ------------- // -- r4 : argumentsList // -- r5 : new.target // -- r3 : target // -- sp[0] : receiver (undefined) // ----------------------------------- // 2. We don't need to check explicitly for constructor target here, // since that's the first thing the Construct/ConstructWithArrayLike // builtins will do. // 3. We don't need to check explicitly for constructor new.target here, // since that's the second thing the Construct/ConstructWithArrayLike // builtins will do. // 4. Construct the target with the given new.target and argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), RelocInfo::CODE_TARGET); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ SmiTag(r2); __ Load(r6, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); // Stack updated as such: // old SP ---> // R14 Return Addr // Old FP <--- New FP // Argument Adapter SMI // Function // ArgC as SMI // Padding <--- New SP __ lay(sp, MemOperand(sp, -5 * kPointerSize)); // Cleanse the top nibble of 31-bit pointers. __ CleanseP(r14); __ StoreP(r14, MemOperand(sp, 4 * kPointerSize)); __ StoreP(fp, MemOperand(sp, 3 * kPointerSize)); __ StoreP(r6, MemOperand(sp, 2 * kPointerSize)); __ StoreP(r3, MemOperand(sp, 1 * kPointerSize)); __ StoreP(r2, MemOperand(sp, 0 * kPointerSize)); __ Push(Smi::kZero); // Padding. __ la(fp, MemOperand(sp, ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp)); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then tear down the parameters. __ LoadP(r3, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); int stack_adjustment = kPointerSize; // adjust for receiver __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR, stack_adjustment); __ SmiToPtrArrayOffset(r3, r3); __ lay(sp, MemOperand(sp, r3)); } // static void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, Handle<Code> code) { // ----------- S t a t e ------------- // -- r3 : target // -- r2 : number of parameters on the stack (not including the receiver) // -- r4 : arguments list (a FixedArray) // -- r6 : len (number of elements to push from args) // -- r5 : new.target (for [[Construct]]) // ----------------------------------- Register scratch = ip; if (masm->emit_debug_code()) { // Allow r4 to be a FixedArray, or a FixedDoubleArray if r6 == 0. Label ok, fail; __ AssertNotSmi(r4); __ LoadP(scratch, FieldMemOperand(r4, HeapObject::kMapOffset)); __ LoadHalfWordP(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); __ CmpP(scratch, Operand(FIXED_ARRAY_TYPE)); __ beq(&ok); __ CmpP(scratch, Operand(FIXED_DOUBLE_ARRAY_TYPE)); __ bne(&fail); __ CmpP(r6, Operand::Zero()); __ beq(&ok); // Fall through. __ bind(&fail); __ Abort(AbortReason::kOperandIsNotAFixedArray); __ bind(&ok); } // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label done; __ LoadRoot(ip, Heap::kRealStackLimitRootIndex); // Make ip the space we have left. The stack might already be overflowed // here which will cause ip to become negative. __ SubP(ip, sp, ip); // Check if the arguments will overflow the stack. __ ShiftLeftP(r0, r6, Operand(kPointerSizeLog2)); __ CmpP(ip, r0); // Signed comparison. __ bgt(&done); __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&done); } // Push arguments onto the stack (thisArgument is already on the stack). { Label loop, no_args, skip; __ CmpP(r6, Operand::Zero()); __ beq(&no_args); __ AddP(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize)); __ LoadRR(r1, r6); __ bind(&loop); __ LoadP(ip, MemOperand(r4, kPointerSize)); __ la(r4, MemOperand(r4, kPointerSize)); __ CompareRoot(ip, Heap::kTheHoleValueRootIndex); __ bne(&skip, Label::kNear); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ bind(&skip); __ push(ip); __ BranchOnCount(r1, &loop); __ bind(&no_args); __ AddP(r2, r2, r6); } // Tail-call to the actual Call or Construct builtin. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, CallOrConstructMode mode, Handle<Code> code) { // ----------- S t a t e ------------- // -- r2 : the number of arguments (not including the receiver) // -- r5 : the new.target (for [[Construct]] calls) // -- r3 : the target to call (can be any Object) // -- r4 : start index (to support rest parameters) // ----------------------------------- Register scratch = r8; if (mode == CallOrConstructMode::kConstruct) { Label new_target_constructor, new_target_not_constructor; __ JumpIfSmi(r5, &new_target_not_constructor); __ LoadP(scratch, FieldMemOperand(r5, HeapObject::kMapOffset)); __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); __ tmll(scratch, Operand(Map::IsConstructorBit::kShift)); __ bne(&new_target_constructor); __ bind(&new_target_not_constructor); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ Push(r5); __ CallRuntime(Runtime::kThrowNotConstructor); } __ bind(&new_target_constructor); } // Check if we have an arguments adaptor frame below the function frame. Label arguments_adaptor, arguments_done; __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ LoadP(ip, MemOperand(r6, CommonFrameConstants::kContextOrFrameTypeOffset)); __ CmpP(ip, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ beq(&arguments_adaptor); { __ LoadP(r7, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ LoadP(r7, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset)); __ LoadLogicalHalfWordP( r7, FieldMemOperand(r7, SharedFunctionInfo::kFormalParameterCountOffset)); __ LoadRR(r6, fp); } __ b(&arguments_done); __ bind(&arguments_adaptor); { // Load the length from the ArgumentsAdaptorFrame. __ LoadP(r7, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(r7); } __ bind(&arguments_done); Label stack_done, stack_overflow; __ SubP(r7, r7, r4); __ CmpP(r7, Operand::Zero()); __ ble(&stack_done); { // Check for stack overflow. Generate_StackOverflowCheck(masm, r7, r4, &stack_overflow); // Forward the arguments from the caller frame. { Label loop; __ AddP(r6, r6, Operand(kPointerSize)); __ AddP(r2, r2, r7); __ bind(&loop); { __ ShiftLeftP(ip, r7, Operand(kPointerSizeLog2)); __ LoadP(ip, MemOperand(r6, ip)); __ push(ip); __ SubP(r7, r7, Operand(1)); __ CmpP(r7, Operand::Zero()); __ bne(&loop); } } } __ b(&stack_done); __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&stack_done); // Tail-call to the {code} handler. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- r2 : the number of arguments (not including the receiver) // -- r3 : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(r3); // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that the function is not a "classConstructor". Label class_constructor; __ LoadP(r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset)); __ LoadlW(r5, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset)); __ TestBitMask(r5, SharedFunctionInfo::IsClassConstructorBit::kMask, r0); __ bne(&class_constructor); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. __ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ AndP(r0, r5, Operand(SharedFunctionInfo::IsStrictBit::kMask | SharedFunctionInfo::IsNativeBit::kMask)); __ bne(&done_convert); { // ----------- S t a t e ------------- // -- r2 : the number of arguments (not including the receiver) // -- r3 : the function to call (checked to be a JSFunction) // -- r4 : the shared function info. // -- cp : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(r5); } else { Label convert_to_object, convert_receiver; __ ShiftLeftP(r5, r2, Operand(kPointerSizeLog2)); __ LoadP(r5, MemOperand(sp, r5)); __ JumpIfSmi(r5, &convert_to_object); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(r5, r6, r6, FIRST_JS_RECEIVER_TYPE); __ bge(&done_convert); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(r5, Heap::kUndefinedValueRootIndex, &convert_global_proxy); __ JumpIfNotRoot(r5, Heap::kNullValueRootIndex, &convert_to_object); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(r5); } __ b(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ SmiTag(r2); __ Push(r2, r3); __ LoadRR(r2, r5); __ Push(cp); __ Call(BUILTIN_CODE(masm->isolate(), ToObject), RelocInfo::CODE_TARGET); __ Pop(cp); __ LoadRR(r5, r2); __ Pop(r2, r3); __ SmiUntag(r2); } __ LoadP(r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ ShiftLeftP(r6, r2, Operand(kPointerSizeLog2)); __ StoreP(r5, MemOperand(sp, r6)); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- r2 : the number of arguments (not including the receiver) // -- r3 : the function to call (checked to be a JSFunction) // -- r4 : the shared function info. // -- cp : the function context. // ----------------------------------- __ LoadLogicalHalfWordP( r4, FieldMemOperand(r4, SharedFunctionInfo::kFormalParameterCountOffset)); ParameterCount actual(r2); ParameterCount expected(r4); __ InvokeFunctionCode(r3, no_reg, expected, actual, JUMP_FUNCTION); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameAndConstantPoolScope frame(masm, StackFrame::INTERNAL); __ push(r3); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); } } namespace { void Generate_PushBoundArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : the number of arguments (not including the receiver) // -- r3 : target (checked to be a JSBoundFunction) // -- r5 : new.target (only in case of [[Construct]]) // ----------------------------------- // Load [[BoundArguments]] into r4 and length of that into r6. Label no_bound_arguments; __ LoadP(r4, FieldMemOperand(r3, JSBoundFunction::kBoundArgumentsOffset)); __ LoadP(r6, FieldMemOperand(r4, FixedArray::kLengthOffset)); __ SmiUntag(r6); __ LoadAndTestP(r6, r6); __ beq(&no_bound_arguments); { // ----------- S t a t e ------------- // -- r2 : the number of arguments (not including the receiver) // -- r3 : target (checked to be a JSBoundFunction) // -- r4 : the [[BoundArguments]] (implemented as FixedArray) // -- r5 : new.target (only in case of [[Construct]]) // -- r6 : the number of [[BoundArguments]] // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ LoadRR(r8, sp); // preserve previous stack pointer __ ShiftLeftP(r9, r6, Operand(kPointerSizeLog2)); __ SubP(sp, sp, r9); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack // limit". __ CompareRoot(sp, Heap::kRealStackLimitRootIndex); __ bgt(&done); // Signed comparison. // Restore the stack pointer. __ LoadRR(sp, r8); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Relocate arguments down the stack. // -- r2 : the number of arguments (not including the receiver) // -- r8 : the previous stack pointer // -- r9: the size of the [[BoundArguments]] { Label skip, loop; __ LoadImmP(r7, Operand::Zero()); __ CmpP(r2, Operand::Zero()); __ beq(&skip); __ LoadRR(r1, r2); __ bind(&loop); __ LoadP(r0, MemOperand(r8, r7)); __ StoreP(r0, MemOperand(sp, r7)); __ AddP(r7, r7, Operand(kPointerSize)); __ BranchOnCount(r1, &loop); __ bind(&skip); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop; __ AddP(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ AddP(r4, r4, r9); __ LoadRR(r1, r6); __ bind(&loop); __ LoadP(r0, MemOperand(r4, -kPointerSize)); __ lay(r4, MemOperand(r4, -kPointerSize)); __ StoreP(r0, MemOperand(sp, r7)); __ AddP(r7, r7, Operand(kPointerSize)); __ BranchOnCount(r1, &loop); __ AddP(r2, r2, r6); } } __ bind(&no_bound_arguments); } } // namespace // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : the number of arguments (not including the receiver) // -- r3 : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(r3); // Patch the receiver to [[BoundThis]]. __ LoadP(ip, FieldMemOperand(r3, JSBoundFunction::kBoundThisOffset)); __ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2)); __ StoreP(ip, MemOperand(sp, r1)); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Call the [[BoundTargetFunction]] via the Call builtin. __ LoadP(r3, FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- r2 : the number of arguments (not including the receiver) // -- r3 : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_function, non_smi; __ JumpIfSmi(r3, &non_callable); __ bind(&non_smi); __ CompareObjectType(r3, r6, r7, JS_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET, eq); __ CmpP(r7, Operand(JS_BOUND_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), RelocInfo::CODE_TARGET, eq); // Check if target has a [[Call]] internal method. __ LoadlB(r6, FieldMemOperand(r6, Map::kBitFieldOffset)); __ TestBit(r6, Map::IsCallableBit::kShift); __ beq(&non_callable); // Check if target is a proxy and call CallProxy external builtin __ CmpP(r7, Operand(JS_PROXY_TYPE)); __ bne(&non_function); __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ bind(&non_function); // Overwrite the original receiver the (original) target. __ ShiftLeftP(r7, r2, Operand(kPointerSizeLog2)); __ StoreP(r3, MemOperand(sp, r7)); // Let the "call_as_function_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r3); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r3); __ CallRuntime(Runtime::kThrowCalledNonCallable); } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : the number of arguments (not including the receiver) // -- r3 : the constructor to call (checked to be a JSFunction) // -- r5 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(r3, r1); __ AssertFunction(r3); // Calling convention for function specific ConstructStubs require // r4 to contain either an AllocationSite or undefined. __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); Label call_generic_stub; // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. __ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset)); __ LoadlW(r6, FieldMemOperand(r6, SharedFunctionInfo::kFlagsOffset)); __ AndP(r6, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); __ beq(&call_generic_stub); __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), RelocInfo::CODE_TARGET); __ bind(&call_generic_stub); __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : the number of arguments (not including the receiver) // -- r3 : the function to call (checked to be a JSBoundFunction) // -- r5 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(r3, r1); __ AssertBoundFunction(r3); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Patch new.target to [[BoundTargetFunction]] if new.target equals target. Label skip; __ CmpP(r3, r5); __ bne(&skip); __ LoadP(r5, FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset)); __ bind(&skip); // Construct the [[BoundTargetFunction]] via the Construct builtin. __ LoadP(r3, FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : the number of arguments (not including the receiver) // -- r3 : the constructor to call (can be any Object) // -- r5 : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Check if target is a Smi. Label non_constructor, non_proxy; __ JumpIfSmi(r3, &non_constructor); // Check if target has a [[Construct]] internal method. __ LoadP(r6, FieldMemOperand(r3, HeapObject::kMapOffset)); __ LoadlB(r4, FieldMemOperand(r6, Map::kBitFieldOffset)); __ TestBit(r4, Map::IsConstructorBit::kShift); __ beq(&non_constructor); // Dispatch based on instance type. __ CompareInstanceType(r6, r7, JS_FUNCTION_TYPE); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), RelocInfo::CODE_TARGET, eq); // Only dispatch to bound functions after checking whether they are // constructors. __ CmpP(r7, Operand(JS_BOUND_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), RelocInfo::CODE_TARGET, eq); // Only dispatch to proxies after checking whether they are constructors. __ CmpP(r7, Operand(JS_PROXY_TYPE)); __ bne(&non_proxy); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET); // Called Construct on an exotic Object with a [[Construct]] internal method. __ bind(&non_proxy); { // Overwrite the original receiver with the (original) target. __ ShiftLeftP(r7, r2, Operand(kPointerSizeLog2)); __ StoreP(r3, MemOperand(sp, r7)); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r3); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), RelocInfo::CODE_TARGET); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : actual number of arguments // -- r3 : function (passed through to callee) // -- r4 : expected number of arguments // -- r5 : new target (passed through to callee) // ----------------------------------- Label invoke, dont_adapt_arguments, stack_overflow; Label enough, too_few; __ tmll(r4, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); __ b(Condition(1), &dont_adapt_arguments); __ CmpLogicalP(r2, r4); __ blt(&too_few); { // Enough parameters: actual >= expected __ bind(&enough); EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, r4, r7, &stack_overflow); // Calculate copy start address into r2 and copy end address into r6. // r2: actual number of arguments as a smi // r3: function // r4: expected number of arguments // r5: new target (passed through to callee) __ SmiToPtrArrayOffset(r2, r2); __ AddP(r2, fp); // adjust for return address and receiver __ AddP(r2, r2, Operand(2 * kPointerSize)); __ ShiftLeftP(r6, r4, Operand(kPointerSizeLog2)); __ SubP(r6, r2, r6); // Copy the arguments (including the receiver) to the new stack frame. // r2: copy start address // r3: function // r4: expected number of arguments // r5: new target (passed through to callee) // r6: copy end address Label copy; __ bind(©); __ LoadP(r0, MemOperand(r2, 0)); __ push(r0); __ CmpP(r2, r6); // Compare before moving to next argument. __ lay(r2, MemOperand(r2, -kPointerSize)); __ bne(©); __ b(&invoke); } { // Too few parameters: Actual < expected __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, r4, r7, &stack_overflow); // Calculate copy start address into r0 and copy end address is fp. // r2: actual number of arguments as a smi // r3: function // r4: expected number of arguments // r5: new target (passed through to callee) __ SmiToPtrArrayOffset(r2, r2); __ lay(r2, MemOperand(r2, fp)); // Copy the arguments (including the receiver) to the new stack frame. // r2: copy start address // r3: function // r4: expected number of arguments // r5: new target (passed through to callee) Label copy; __ bind(©); // Adjust load for return address and receiver. __ LoadP(r0, MemOperand(r2, 2 * kPointerSize)); __ push(r0); __ CmpP(r2, fp); // Compare before moving to next argument. __ lay(r2, MemOperand(r2, -kPointerSize)); __ bne(©); // Fill the remaining expected arguments with undefined. // r3: function // r4: expected number of argumentus __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); __ ShiftLeftP(r6, r4, Operand(kPointerSizeLog2)); __ SubP(r6, fp, r6); // Adjust for frame. __ SubP(r6, r6, Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); Label fill; __ bind(&fill); __ push(r0); __ CmpP(sp, r6); __ bne(&fill); } // Call the entry point. __ bind(&invoke); __ LoadRR(r2, r4); // r2 : expected number of arguments // r3 : function (passed through to callee) // r5 : new target (passed through to callee) static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch"); __ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset)); __ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); __ CallJSEntry(r4); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ Ret(); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch"); __ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset)); __ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(r4); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ bkpt(0); } } void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { // The function index was put in r7 by the jump table trampoline. // Convert to Smi for the runtime call. __ SmiTag(r7, r7); { HardAbortScope hard_abort(masm); // Avoid calls to Abort. FrameAndConstantPoolScope scope(masm, StackFrame::WASM_COMPILE_LAZY); // Save all parameter registers (see wasm-linkage.cc). They might be // overwritten in the runtime call below. We don't have any callee-saved // registers in wasm, so no need to store anything else. constexpr RegList gp_regs = Register::ListOf<r2, r3, r4, r5, r6>(); #if V8_TARGET_ARCH_S390X constexpr RegList fp_regs = DoubleRegister::ListOf<d0, d2, d4, d6>(); #else constexpr RegList fp_regs = DoubleRegister::ListOf<d0, d2>(); #endif __ MultiPush(gp_regs); __ MultiPushDoubles(fp_regs); // Pass instance and function index as explicit arguments to the runtime // function. __ Push(kWasmInstanceRegister, r7); // Load the correct CEntry builtin from the instance object. __ LoadP(r4, FieldMemOperand(kWasmInstanceRegister, WasmInstanceObject::kCEntryStubOffset)); // Initialize the JavaScript context with 0. CEntry will use it to // set the current context on the isolate. __ LoadSmiLiteral(cp, Smi::kZero); __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, r4); // The entrypoint address is the return value. __ LoadRR(ip, r2); // Restore registers. __ MultiPopDoubles(fp_regs); __ MultiPop(gp_regs); } // Finally, jump to the entrypoint. __ Jump(ip); } void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, SaveFPRegsMode save_doubles, ArgvMode argv_mode, bool builtin_exit_frame) { // Called from JavaScript; parameters are on stack as if calling JS function. // r2: number of arguments including receiver // r3: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) // // If argv_mode == kArgvInRegister: // r4: pointer to the first argument ProfileEntryHookStub::MaybeCallEntryHook(masm); __ LoadRR(r7, r3); if (argv_mode == kArgvInRegister) { // Move argv into the correct register. __ LoadRR(r3, r4); } else { // Compute the argv pointer. __ ShiftLeftP(r3, r2, Operand(kPointerSizeLog2)); __ lay(r3, MemOperand(r3, sp, -kPointerSize)); } // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); // Need at least one extra slot for return address location. int arg_stack_space = 1; // Pass buffer for return value on stack if necessary bool needs_return_buffer = result_size == 2 && !ABI_RETURNS_OBJECTPAIR_IN_REGS; if (needs_return_buffer) { arg_stack_space += result_size; } #if V8_TARGET_ARCH_S390X // 64-bit linux pass Argument object by reference not value arg_stack_space += 2; #endif __ EnterExitFrame( save_doubles, arg_stack_space, builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); // Store a copy of argc, argv in callee-saved registers for later. __ LoadRR(r6, r2); __ LoadRR(r8, r3); // r2, r6: number of arguments including receiver (C callee-saved) // r3, r8: pointer to the first argument // r7: pointer to builtin function (C callee-saved) // Result returned in registers or stack, depending on result size and ABI. Register isolate_reg = r4; if (needs_return_buffer) { // The return value is 16-byte non-scalar value. // Use frame storage reserved by calling function to pass return // buffer as implicit first argument in R2. Shfit original parameters // by one register each. __ LoadRR(r4, r3); __ LoadRR(r3, r2); __ la(r2, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize)); isolate_reg = r5; } // Call C built-in. __ Move(isolate_reg, ExternalReference::isolate_address(masm->isolate())); Register target = r7; // To let the GC traverse the return address of the exit frames, we need to // know where the return address is. The CEntryStub is unmovable, so // we can store the address on the stack to be able to find it again and // we never have to restore it, because it will not change. { Label return_label; __ larl(r14, &return_label); // Generate the return addr of call later. __ StoreP(r14, MemOperand(sp, kStackFrameRASlot * kPointerSize)); // zLinux ABI requires caller's frame to have sufficient space for callee // preserved regsiter save area. // __ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize)); __ b(target); __ bind(&return_label); // __ la(sp, MemOperand(sp, +kCalleeRegisterSaveAreaSize)); } // If return value is on the stack, pop it to registers. if (needs_return_buffer) { __ LoadP(r3, MemOperand(r2, kPointerSize)); __ LoadP(r2, MemOperand(r2)); } // Check result for exception sentinel. Label exception_returned; __ CompareRoot(r2, Heap::kExceptionRootIndex); __ beq(&exception_returned, Label::kNear); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { Label okay; ExternalReference pending_exception_address = ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, masm->isolate()); __ Move(r1, pending_exception_address); __ LoadP(r1, MemOperand(r1)); __ CompareRoot(r1, Heap::kTheHoleValueRootIndex); // Cannot use check here as it attempts to generate call into runtime. __ beq(&okay, Label::kNear); __ stop("Unexpected pending exception"); __ bind(&okay); } // Exit C frame and return. // r2:r3: result // sp: stack pointer // fp: frame pointer Register argc = argv_mode == kArgvInRegister // We don't want to pop arguments so set argc to no_reg. ? no_reg // r6: still holds argc (callee-saved). : r6; __ LeaveExitFrame(save_doubles, argc); __ b(r14); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); ExternalReference pending_handler_entrypoint_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); ExternalReference pending_handler_fp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); ExternalReference pending_handler_sp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); // Ask the runtime for help to determine the handler. This will set r3 to // contain the current pending exception, don't clobber it. ExternalReference find_handler = ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(3, 0, r2); __ LoadImmP(r2, Operand::Zero()); __ LoadImmP(r3, Operand::Zero()); __ Move(r4, ExternalReference::isolate_address(masm->isolate())); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ Move(cp, pending_handler_context_address); __ LoadP(cp, MemOperand(cp)); __ Move(sp, pending_handler_sp_address); __ LoadP(sp, MemOperand(sp)); __ Move(fp, pending_handler_fp_address); __ LoadP(fp, MemOperand(fp)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (cp == 0) for non-JS frames. Label skip; __ CmpP(cp, Operand::Zero()); __ beq(&skip, Label::kNear); __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ bind(&skip); // Reset the masking register. if (FLAG_branch_load_poisoning) { __ ResetSpeculationPoisonRegister(); } // Compute the handler entry address and jump to it. __ Move(r3, pending_handler_entrypoint_address); __ LoadP(r3, MemOperand(r3)); __ Jump(r3); } void Builtins::Generate_DoubleToI(MacroAssembler* masm) { Label out_of_range, only_low, negate, done, fastpath_done; Register result_reg = r2; HardAbortScope hard_abort(masm); // Avoid calls to Abort. // Immediate values for this stub fit in instructions, so it's safe to use ip. Register scratch = GetRegisterThatIsNotOneOf(result_reg); Register scratch_low = GetRegisterThatIsNotOneOf(result_reg, scratch); Register scratch_high = GetRegisterThatIsNotOneOf(result_reg, scratch, scratch_low); DoubleRegister double_scratch = kScratchDoubleReg; __ Push(result_reg, scratch); // Account for saved regs. int argument_offset = 2 * kPointerSize; // Load double input. __ LoadDouble(double_scratch, MemOperand(sp, argument_offset)); // Do fast-path convert from double to int. __ ConvertDoubleToInt64(result_reg, double_scratch); // Test for overflow __ TestIfInt32(result_reg); __ beq(&fastpath_done, Label::kNear); __ Push(scratch_high, scratch_low); // Account for saved regs. argument_offset += 2 * kPointerSize; __ LoadlW(scratch_high, MemOperand(sp, argument_offset + Register::kExponentOffset)); __ LoadlW(scratch_low, MemOperand(sp, argument_offset + Register::kMantissaOffset)); __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask); // Load scratch with exponent - 1. This is faster than loading // with exponent because Bias + 1 = 1024 which is a *S390* immediate value. STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); __ SubP(scratch, Operand(HeapNumber::kExponentBias + 1)); // If exponent is greater than or equal to 84, the 32 less significant // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), // the result is 0. // Compare exponent with 84 (compare exponent - 1 with 83). __ CmpP(scratch, Operand(83)); __ bge(&out_of_range, Label::kNear); // If we reach this code, 31 <= exponent <= 83. // So, we don't have to handle cases where 0 <= exponent <= 20 for // which we would need to shift right the high part of the mantissa. // Scratch contains exponent - 1. // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). __ Load(r0, Operand(51)); __ SubP(scratch, r0, scratch); __ CmpP(scratch, Operand::Zero()); __ ble(&only_low, Label::kNear); // 21 <= exponent <= 51, shift scratch_low and scratch_high // to generate the result. __ ShiftRight(scratch_low, scratch_low, scratch); // Scratch contains: 52 - exponent. // We needs: exponent - 20. // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. __ Load(r0, Operand(32)); __ SubP(scratch, r0, scratch); __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask); // Set the implicit 1 before the mantissa part in scratch_high. STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16); __ Load(r0, Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16))); __ ShiftLeftP(r0, r0, Operand(16)); __ OrP(result_reg, result_reg, r0); __ ShiftLeft(r0, result_reg, scratch); __ OrP(result_reg, scratch_low, r0); __ b(&negate, Label::kNear); __ bind(&out_of_range); __ mov(result_reg, Operand::Zero()); __ b(&done, Label::kNear); __ bind(&only_low); // 52 <= exponent <= 83, shift only scratch_low. // On entry, scratch contains: 52 - exponent. __ LoadComplementRR(scratch, scratch); __ ShiftLeft(result_reg, scratch_low, scratch); __ bind(&negate); // If input was positive, scratch_high ASR 31 equals 0 and // scratch_high LSR 31 equals zero. // New result = (result eor 0) + 0 = result. // If the input was negative, we have to negate the result. // Input_high ASR 31 equals 0xFFFFFFFF and scratch_high LSR 31 equals 1. // New result = (result eor 0xFFFFFFFF) + 1 = 0 - result. __ ShiftRightArith(r0, scratch_high, Operand(31)); #if V8_TARGET_ARCH_S390X __ lgfr(r0, r0); __ ShiftRightP(r0, r0, Operand(32)); #endif __ XorP(result_reg, r0); __ ShiftRight(r0, scratch_high, Operand(31)); __ AddP(result_reg, r0); __ bind(&done); __ Pop(scratch_high, scratch_low); argument_offset -= 2 * kPointerSize; __ bind(&fastpath_done); __ StoreP(result_reg, MemOperand(sp, argument_offset)); __ Pop(result_reg, scratch); __ Ret(); } void Builtins::Generate_MathPowInternal(MacroAssembler* masm) { const Register exponent = r4; const DoubleRegister double_base = d1; const DoubleRegister double_exponent = d2; const DoubleRegister double_result = d3; const DoubleRegister double_scratch = d0; const Register scratch = r1; const Register scratch2 = r9; Label call_runtime, done, int_exponent; // Detect integer exponents stored as double. __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2, double_scratch); __ beq(&int_exponent, Label::kNear); __ push(r14); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2); } __ pop(r14); __ MovFromFloatResult(double_result); __ b(&done); // Calculate power with integer exponent. __ bind(&int_exponent); // Get two copies of exponent in the registers scratch and exponent. // Exponent has previously been stored into scratch as untagged integer. __ LoadRR(exponent, scratch); __ ldr(double_scratch, double_base); // Back up base. __ LoadImmP(scratch2, Operand(1)); __ ConvertIntToDouble(double_result, scratch2); // Get absolute value of exponent. Label positive_exponent; __ CmpP(scratch, Operand::Zero()); __ bge(&positive_exponent, Label::kNear); __ LoadComplementRR(scratch, scratch); __ bind(&positive_exponent); Label while_true, no_carry, loop_end; __ bind(&while_true); __ mov(scratch2, Operand(1)); __ AndP(scratch2, scratch); __ beq(&no_carry, Label::kNear); __ mdbr(double_result, double_scratch); __ bind(&no_carry); __ ShiftRightP(scratch, scratch, Operand(1)); __ LoadAndTestP(scratch, scratch); __ beq(&loop_end, Label::kNear); __ mdbr(double_scratch, double_scratch); __ b(&while_true); __ bind(&loop_end); __ CmpP(exponent, Operand::Zero()); __ bge(&done); // get 1/double_result: __ ldr(double_scratch, double_result); __ LoadImmP(scratch2, Operand(1)); __ ConvertIntToDouble(double_result, scratch2); __ ddbr(double_result, double_scratch); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ lzdr(kDoubleRegZero); __ cdbr(double_result, kDoubleRegZero); __ bne(&done, Label::kNear); // double_exponent may not containe the exponent value if the input was a // smi. We set it with exponent value before bailing out. __ ConvertIntToDouble(double_exponent, exponent); // Returning or bailing out. __ push(r14); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2); } __ pop(r14); __ MovFromFloatResult(double_result); __ bind(&done); __ Ret(); } namespace { void GenerateInternalArrayConstructorCase(MacroAssembler* masm, ElementsKind kind) { __ CmpLogicalP(r2, Operand(1)); __ Jump(CodeFactory::InternalArrayNoArgumentConstructor(masm->isolate(), kind) .code(), RelocInfo::CODE_TARGET, lt); __ Jump(BUILTIN_CODE(masm->isolate(), ArrayNArgumentsConstructor), RelocInfo::CODE_TARGET, gt); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument __ LoadP(r5, MemOperand(sp, 0)); __ CmpP(r5, Operand::Zero()); __ Jump(CodeFactory::InternalArraySingleArgumentConstructor( masm->isolate(), GetHoleyElementsKind(kind)) .code(), RelocInfo::CODE_TARGET, ne); } __ Jump( CodeFactory::InternalArraySingleArgumentConstructor(masm->isolate(), kind) .code(), RelocInfo::CODE_TARGET); } } // namespace void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : argc // -- r3 : constructor // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a nullptr and a Smi. __ TestIfSmi(r5); __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, cr0); __ CompareObjectType(r5, r5, r6, MAP_TYPE); __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction); } // Figure out the right elements kind __ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into |result|. __ LoadlB(r5, FieldMemOperand(r5, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField<Map::ElementsKindBits>(r5); if (FLAG_debug_code) { Label done; __ CmpP(r5, Operand(PACKED_ELEMENTS)); __ beq(&done); __ CmpP(r5, Operand(HOLEY_ELEMENTS)); __ Assert( eq, AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray); __ bind(&done); } Label fast_elements_case; __ CmpP(r5, Operand(PACKED_ELEMENTS)); __ beq(&fast_elements_case); GenerateInternalArrayConstructorCase(masm, HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateInternalArrayConstructorCase(masm, PACKED_ELEMENTS); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_S390