// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_ARM
#include "src/assembler-inl.h"
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/counters.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/frame-constants.h"
#include "src/frames.h"
#include "src/objects-inl.h"
#include "src/objects/js-generator.h"
#include "src/runtime/runtime.h"
#include "src/wasm/wasm-objects.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
ExitFrameType exit_frame_type) {
#if defined(__thumb__)
// Thumb mode builtin.
DCHECK_EQ(1, reinterpret_cast<uintptr_t>(
ExternalReference::Create(address).address()) &
1);
#endif
__ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
if (exit_frame_type == BUILTIN_EXIT) {
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
RelocInfo::CODE_TARGET);
} else {
DCHECK(exit_frame_type == EXIT);
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame),
RelocInfo::CODE_TARGET);
}
}
void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(r2);
__ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
__ CompareObjectType(r2, r3, r4, MAP_TYPE);
__ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
// tail call a stub
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
__ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl),
RelocInfo::CODE_TARGET);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- r0 : argument count (preserved for callee)
// -- r1 : target function (preserved for callee)
// -- r3 : new target (preserved for callee)
// -----------------------------------
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Push the number of arguments to the callee.
__ SmiTag(r0);
__ push(r0);
// Push a copy of the target function and the new target.
__ push(r1);
__ push(r3);
// Push function as parameter to the runtime call.
__ Push(r1);
__ CallRuntime(function_id, 1);
__ mov(r2, r0);
// Restore target function and new target.
__ pop(r3);
__ pop(r1);
__ pop(r0);
__ SmiUntag(r0, r0);
}
static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
__ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(r2);
}
namespace {
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- r1 : constructor function
// -- r3 : new target
// -- cp : context
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Register scratch = r2;
// Enter a construct frame.
{
FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ SmiTag(r0);
__ Push(cp, r0);
__ SmiUntag(r0);
// The receiver for the builtin/api call.
__ PushRoot(Heap::kTheHoleValueRootIndex);
// Set up pointer to last argument.
__ add(r4, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ mov(r5, r0);
// ----------- S t a t e -------------
// -- r0: number of arguments (untagged)
// -- r1: constructor function
// -- r3: new target
// -- r4: pointer to last argument
// -- r5: counter
// -- sp[0*kPointerSize]: the hole (receiver)
// -- sp[1*kPointerSize]: number of arguments (tagged)
// -- sp[2*kPointerSize]: context
// -----------------------------------
__ b(&entry);
__ bind(&loop);
__ ldr(scratch, MemOperand(r4, r5, LSL, kPointerSizeLog2));
__ push(scratch);
__ bind(&entry);
__ sub(r5, r5, Operand(1), SetCC);
__ b(ge, &loop);
// Call the function.
// r0: number of arguments (untagged)
// r1: constructor function
// r3: new target
ParameterCount actual(r0);
__ InvokeFunction(r1, r3, actual, CALL_FUNCTION);
// Restore context from the frame.
__ ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// Restore smi-tagged arguments count from the frame.
__ ldr(scratch, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ add(sp, sp, Operand(scratch, LSL, kPointerSizeLog2 - kSmiTagSize));
__ add(sp, sp, Operand(kPointerSize));
__ Jump(lr);
}
} // namespace
// The construct stub for ES5 constructor functions and ES6 class constructors.
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0: number of arguments (untagged)
// -- r1: constructor function
// -- r3: new target
// -- cp: context
// -- lr: return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
{
FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
Label post_instantiation_deopt_entry, not_create_implicit_receiver;
// Preserve the incoming parameters on the stack.
__ LoadRoot(r4, Heap::kTheHoleValueRootIndex);
__ SmiTag(r0);
__ Push(cp, r0, r1, r4, r3);
// ----------- S t a t e -------------
// -- sp[0*kPointerSize]: new target
// -- sp[1*kPointerSize]: padding
// -- r1 and sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: number of arguments (tagged)
// -- sp[4*kPointerSize]: context
// -----------------------------------
__ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset));
__ tst(r4, Operand(SharedFunctionInfo::IsDerivedConstructorBit::kMask));
__ b(ne, ¬_create_implicit_receiver);
// If not derived class constructor: Allocate the new receiver object.
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
r4, r5);
__ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
RelocInfo::CODE_TARGET);
__ b(&post_instantiation_deopt_entry);
// Else: use TheHoleValue as receiver for constructor call
__ bind(¬_create_implicit_receiver);
__ LoadRoot(r0, Heap::kTheHoleValueRootIndex);
// ----------- S t a t e -------------
// -- r0: receiver
// -- Slot 3 / sp[0*kPointerSize]: new target
// -- Slot 2 / sp[1*kPointerSize]: constructor function
// -- Slot 1 / sp[2*kPointerSize]: number of arguments (tagged)
// -- Slot 0 / sp[3*kPointerSize]: context
// -----------------------------------
// Deoptimizer enters here.
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
__ bind(&post_instantiation_deopt_entry);
// Restore new target.
__ Pop(r3);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ Push(r0, r0);
// ----------- S t a t e -------------
// -- r3: new target
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: implicit receiver
// -- sp[2*kPointerSize]: padding
// -- sp[3*kPointerSize]: constructor function
// -- sp[4*kPointerSize]: number of arguments (tagged)
// -- sp[5*kPointerSize]: context
// -----------------------------------
// Restore constructor function and argument count.
__ ldr(r1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
__ ldr(r0, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
__ SmiUntag(r0);
// Set up pointer to last argument.
__ add(r4, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ mov(r5, r0);
// ----------- S t a t e -------------
// -- r0: number of arguments (untagged)
// -- r3: new target
// -- r4: pointer to last argument
// -- r5: counter
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: implicit receiver
// -- sp[2*kPointerSize]: padding
// -- r1 and sp[3*kPointerSize]: constructor function
// -- sp[4*kPointerSize]: number of arguments (tagged)
// -- sp[5*kPointerSize]: context
// -----------------------------------
__ b(&entry);
__ bind(&loop);
__ ldr(r6, MemOperand(r4, r5, LSL, kPointerSizeLog2));
__ push(r6);
__ bind(&entry);
__ sub(r5, r5, Operand(1), SetCC);
__ b(ge, &loop);
// Call the function.
ParameterCount actual(r0);
__ InvokeFunction(r1, r3, actual, CALL_FUNCTION);
// ----------- S t a t e -------------
// -- r0: constructor result
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: padding
// -- sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: number of arguments
// -- sp[4*kPointerSize]: context
// -----------------------------------
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
// Restore the context from the frame.
__ ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, do_throw, leave_frame;
// If the result is undefined, we jump out to using the implicit receiver.
__ JumpIfRoot(r0, Heap::kUndefinedValueRootIndex, &use_receiver);
// Otherwise we do a smi check and fall through to check if the return value
// is a valid receiver.
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(r0, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CompareObjectType(r0, r4, r5, FIRST_JS_RECEIVER_TYPE);
__ b(ge, &leave_frame);
__ b(&use_receiver);
__ bind(&do_throw);
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ ldr(r0, MemOperand(sp, 0 * kPointerSize));
__ JumpIfRoot(r0, Heap::kTheHoleValueRootIndex, &do_throw);
__ bind(&leave_frame);
// Restore smi-tagged arguments count from the frame.
__ ldr(r1, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
__ add(sp, sp, Operand(kPointerSize));
__ Jump(lr);
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
Register sfi_data,
Register scratch1) {
Label done;
__ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE);
__ b(ne, &done);
__ ldr(sfi_data,
FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
__ bind(&done);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the value to pass to the generator
// -- r1 : the JSGeneratorObject to resume
// -- lr : return address
// -----------------------------------
__ AssertGeneratorObject(r1);
// Store input value into generator object.
__ str(r0, FieldMemOperand(r1, JSGeneratorObject::kInputOrDebugPosOffset));
__ RecordWriteField(r1, JSGeneratorObject::kInputOrDebugPosOffset, r0, r3,
kLRHasNotBeenSaved, kDontSaveFPRegs);
// Load suspended function and context.
__ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset));
__ ldr(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
Register scratch = r5;
// Flood function if we are stepping.
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
__ Move(scratch, debug_hook);
__ ldrsb(scratch, MemOperand(scratch));
__ cmp(scratch, Operand(0));
__ b(ne, &prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended
// generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ Move(scratch, debug_suspended_generator);
__ ldr(scratch, MemOperand(scratch));
__ cmp(scratch, Operand(r1));
__ b(eq, &prepare_step_in_suspended_generator);
__ bind(&stepping_prepared);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
__ CompareRoot(sp, Heap::kRealStackLimitRootIndex);
__ b(lo, &stack_overflow);
// Push receiver.
__ ldr(scratch, FieldMemOperand(r1, JSGeneratorObject::kReceiverOffset));
__ Push(scratch);
// ----------- S t a t e -------------
// -- r1 : the JSGeneratorObject to resume
// -- r4 : generator function
// -- cp : generator context
// -- lr : return address
// -- sp[0] : generator receiver
// -----------------------------------
// Copy the function arguments from the generator object's register file.
__ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ ldrh(r3,
FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
__ ldr(r2,
FieldMemOperand(r1, JSGeneratorObject::kParametersAndRegistersOffset));
{
Label done_loop, loop;
__ mov(r6, Operand(0));
__ bind(&loop);
__ cmp(r6, r3);
__ b(ge, &done_loop);
__ add(scratch, r2, Operand(r6, LSL, kPointerSizeLog2));
__ ldr(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize));
__ Push(scratch);
__ add(r6, r6, Operand(1));
__ b(&loop);
__ bind(&done_loop);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, r3, r0);
__ CompareObjectType(r3, r3, r3, BYTECODE_ARRAY_TYPE);
__ Assert(eq, AbortReason::kMissingBytecodeArray);
}
// Resume (Ignition/TurboFan) generator object.
{
__ ldr(r0, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ ldrh(r0, FieldMemOperand(
r0, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ Move(r3, r1);
__ Move(r1, r4);
static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
__ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset));
__ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(r2);
}
__ bind(&prepare_step_in_if_stepping);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r1, r4);
// Push hole as receiver since we do not use it for stepping.
__ PushRoot(Heap::kTheHoleValueRootIndex);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(r1);
__ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset));
}
__ b(&stepping_prepared);
__ bind(&prepare_step_in_suspended_generator);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r1);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(r1);
__ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset));
}
__ b(&stepping_prepared);
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bkpt(0); // This should be unreachable.
}
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(r1);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
Register scratch,
Label* stack_overflow) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
__ LoadRoot(scratch, Heap::kRealStackLimitRootIndex);
// Make scratch the space we have left. The stack might already be overflowed
// here which will cause scratch to become negative.
__ sub(scratch, sp, scratch);
// Check if the arguments will overflow the stack.
__ cmp(scratch, Operand(num_args, LSL, kPointerSizeLog2));
__ b(le, stack_overflow); // Signed comparison.
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from Generate_JS_Entry
// r0: new.target
// r1: function
// r2: receiver
// r3: argc
// r4: argv
// r5-r6, r8 and cp may be clobbered
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address = ExternalReference::Create(
IsolateAddressId::kContextAddress, masm->isolate());
__ Move(cp, context_address);
__ ldr(cp, MemOperand(cp));
// Push the function and the receiver onto the stack.
__ Push(r1, r2);
// Check if we have enough stack space to push all arguments.
// Clobbers r2.
Label enough_stack_space, stack_overflow;
Generate_StackOverflowCheck(masm, r3, r2, &stack_overflow);
__ b(&enough_stack_space);
__ bind(&stack_overflow);
__ CallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ bkpt(0);
__ bind(&enough_stack_space);
// Remember new.target.
__ mov(r5, r0);
// Copy arguments to the stack in a loop.
// r1: function
// r3: argc
// r4: argv, i.e. points to first arg
Label loop, entry;
__ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2));
// r2 points past last arg.
__ b(&entry);
__ bind(&loop);
__ ldr(r0, MemOperand(r4, kPointerSize, PostIndex)); // read next parameter
__ ldr(r0, MemOperand(r0)); // dereference handle
__ push(r0); // push parameter
__ bind(&entry);
__ cmp(r4, r2);
__ b(ne, &loop);
// Setup new.target and argc.
__ mov(r0, Operand(r3));
__ mov(r3, Operand(r5));
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
__ mov(r5, Operand(r4));
__ mov(r6, Operand(r4));
__ mov(r8, Operand(r4));
if (kR9Available == 1) {
__ mov(r9, Operand(r4));
}
// Invoke the code.
Handle<Code> builtin = is_construct
? BUILTIN_CODE(masm->isolate(), Construct)
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the JS frame and remove the parameters (except function), and
// return.
// Respect ABI stack constraint.
}
__ Jump(lr);
// r0: result
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
static void ReplaceClosureCodeWithOptimizedCode(
MacroAssembler* masm, Register optimized_code, Register closure,
Register scratch1, Register scratch2, Register scratch3) {
// Store code entry in the closure.
__ str(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset));
__ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below.
__ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
Register args_count = scratch;
// Get the arguments + receiver count.
__ ldr(args_count,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ ldr(args_count,
FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::INTERPRETED);
// Drop receiver + arguments.
__ add(sp, sp, args_count, LeaveCC);
}
// Tail-call |function_id| if |smi_entry| == |marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
Register smi_entry,
OptimizationMarker marker,
Runtime::FunctionId function_id) {
Label no_match;
__ cmp(smi_entry, Operand(Smi::FromEnum(marker)));
__ b(ne, &no_match);
GenerateTailCallToReturnedCode(masm, function_id);
__ bind(&no_match);
}
static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm,
Register feedback_vector,
Register scratch1, Register scratch2,
Register scratch3) {
// ----------- S t a t e -------------
// -- r0 : argument count (preserved for callee if needed, and caller)
// -- r3 : new target (preserved for callee if needed, and caller)
// -- r1 : target function (preserved for callee if needed, and caller)
// -- feedback vector (preserved for caller if needed)
// -----------------------------------
DCHECK(
!AreAliased(feedback_vector, r0, r1, r3, scratch1, scratch2, scratch3));
Label optimized_code_slot_is_weak_ref, fallthrough;
Register closure = r1;
Register optimized_code_entry = scratch1;
__ ldr(
optimized_code_entry,
FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset));
// Check if the code entry is a Smi. If yes, we interpret it as an
// optimisation marker. Otherwise, interpret it as a weak reference to a code
// object.
__ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref);
{
// Optimized code slot is a Smi optimization marker.
// Fall through if no optimization trigger.
__ cmp(optimized_code_entry,
Operand(Smi::FromEnum(OptimizationMarker::kNone)));
__ b(eq, &fallthrough);
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kLogFirstExecution,
Runtime::kFunctionFirstExecution);
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kCompileOptimized,
Runtime::kCompileOptimized_NotConcurrent);
TailCallRuntimeIfMarkerEquals(
masm, optimized_code_entry,
OptimizationMarker::kCompileOptimizedConcurrent,
Runtime::kCompileOptimized_Concurrent);
{
// Otherwise, the marker is InOptimizationQueue, so fall through hoping
// that an interrupt will eventually update the slot with optimized code.
if (FLAG_debug_code) {
__ cmp(
optimized_code_entry,
Operand(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue)));
__ Assert(eq, AbortReason::kExpectedOptimizationSentinel);
}
__ jmp(&fallthrough);
}
}
{
// Optimized code slot is a weak reference.
__ bind(&optimized_code_slot_is_weak_ref);
__ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough);
// Check if the optimized code is marked for deopt. If it is, call the
// runtime to clear it.
Label found_deoptimized_code;
__ ldr(scratch2, FieldMemOperand(optimized_code_entry,
Code::kCodeDataContainerOffset));
__ ldr(
scratch2,
FieldMemOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset));
__ tst(scratch2, Operand(1 << Code::kMarkedForDeoptimizationBit));
__ b(ne, &found_deoptimized_code);
// Optimized code is good, get it into the closure and link the closure into
// the optimized functions list, then tail call the optimized code.
// The feedback vector is no longer used, so re-use it as a scratch
// register.
ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
scratch2, scratch3, feedback_vector);
static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
__ add(r2, optimized_code_entry,
Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(r2);
// Optimized code slot contains deoptimized code, evict it and re-enter the
// closure's code.
__ bind(&found_deoptimized_code);
GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
}
// Fall-through if the optimized code cell is clear and there is no
// optimization marker.
__ bind(&fallthrough);
}
// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
Register bytecode_array,
Register bytecode_offset,
Register bytecode, Register scratch1,
Label* if_return) {
Register bytecode_size_table = scratch1;
DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
bytecode));
__ Move(bytecode_size_table,
ExternalReference::bytecode_size_table_address());
// Check if the bytecode is a Wide or ExtraWide prefix bytecode.
Label process_bytecode, extra_wide;
STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
STATIC_ASSERT(3 ==
static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
__ cmp(bytecode, Operand(0x3));
__ b(hi, &process_bytecode);
__ tst(bytecode, Operand(0x1));
__ b(ne, &extra_wide);
// Load the next bytecode and update table to the wide scaled table.
__ add(bytecode_offset, bytecode_offset, Operand(1));
__ ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset));
__ add(bytecode_size_table, bytecode_size_table,
Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ jmp(&process_bytecode);
__ bind(&extra_wide);
// Load the next bytecode and update table to the extra wide scaled table.
__ add(bytecode_offset, bytecode_offset, Operand(1));
__ ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset));
__ add(bytecode_size_table, bytecode_size_table,
Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ bind(&process_bytecode);
// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME) \
__ cmp(bytecode, Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \
__ b(if_return, eq);
RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL
// Otherwise, load the size of the current bytecode and advance the offset.
__ ldr(scratch1, MemOperand(bytecode_size_table, bytecode, LSL, 2));
__ add(bytecode_offset, bytecode_offset, scratch1);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o r1: the JS function object being called.
// o r3: the incoming new target or generator object
// o cp: our context
// o fp: the caller's frame pointer
// o sp: stack pointer
// o lr: return address
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
Register closure = r1;
Register feedback_vector = r2;
// Load the feedback vector from the closure.
__ ldr(feedback_vector,
FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
__ ldr(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
// Read off the optimized code slot in the feedback vector, and if there
// is optimized code or an optimization marker, call that instead.
MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, r4, r6, r5);
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ PushStandardFrame(closure);
// Get the bytecode array from the function object and load it into
// kInterpreterBytecodeArrayRegister.
__ ldr(r0, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ ldr(kInterpreterBytecodeArrayRegister,
FieldMemOperand(r0, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, r4);
// Increment invocation count for the function.
__ ldr(r9, FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountOffset));
__ add(r9, r9, Operand(1));
__ str(r9, FieldMemOperand(feedback_vector,
FeedbackVector::kInvocationCountOffset));
// Check function data field is actually a BytecodeArray object.
if (FLAG_debug_code) {
__ SmiTst(kInterpreterBytecodeArrayRegister);
__ Assert(
ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, r0, no_reg,
BYTECODE_ARRAY_TYPE);
__ Assert(
eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Reset code age.
__ mov(r9, Operand(BytecodeArray::kNoAgeBytecodeAge));
__ strb(r9, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kBytecodeAgeOffset));
// Load the initial bytecode offset.
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push bytecode array and Smi tagged bytecode array offset.
__ SmiTag(r0, kInterpreterBytecodeOffsetRegister);
__ Push(kInterpreterBytecodeArrayRegister, r0);
// Allocate the local and temporary register file on the stack.
{
// Load frame size from the BytecodeArray object.
__ ldr(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ sub(r9, sp, Operand(r4));
__ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
__ cmp(r9, Operand(r2));
__ b(hs, &ok);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ LoadRoot(r9, Heap::kUndefinedValueRootIndex);
__ b(&loop_check, al);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ push(r9);
// Continue loop if not done.
__ bind(&loop_check);
__ sub(r4, r4, Operand(kPointerSize), SetCC);
__ b(&loop_header, ge);
}
// If the bytecode array has a valid incoming new target or generator object
// register, initialize it with incoming value which was passed in r3.
__ ldr(r9, FieldMemOperand(
kInterpreterBytecodeArrayRegister,
BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
__ cmp(r9, Operand::Zero());
__ str(r3, MemOperand(fp, r9, LSL, kPointerSizeLog2), ne);
// Load accumulator with undefined.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
// Load the dispatch table into a register and dispatch to the bytecode
// handler at the current bytecode offset.
Label do_dispatch;
__ bind(&do_dispatch);
__ mov(kInterpreterDispatchTableRegister,
Operand(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
__ ldrb(r4, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ ldr(
kJavaScriptCallCodeStartRegister,
MemOperand(kInterpreterDispatchTableRegister, r4, LSL, kPointerSizeLog2));
__ Call(kJavaScriptCallCodeStartRegister);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// Any returns to the entry trampoline are either due to the return bytecode
// or the interpreter tail calling a builtin and then a dispatch.
// Get bytecode array and bytecode offset from the stack frame.
__ ldr(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ ldr(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Either return, or advance to the next bytecode and dispatch.
Label do_return;
__ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, r1, r2,
&do_return);
__ jmp(&do_dispatch);
__ bind(&do_return);
// The return value is in r0.
LeaveInterpreterFrame(masm, r2);
__ Jump(lr);
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register num_args, Register index,
Register limit, Register scratch) {
// Find the address of the last argument.
__ mov(limit, num_args);
__ mov(limit, Operand(limit, LSL, kPointerSizeLog2));
__ sub(limit, index, limit);
Label loop_header, loop_check;
__ b(al, &loop_check);
__ bind(&loop_header);
__ ldr(scratch, MemOperand(index, -kPointerSize, PostIndex));
__ push(scratch);
__ bind(&loop_check);
__ cmp(index, limit);
__ b(gt, &loop_header);
}
// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
MacroAssembler* masm, ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r2 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- r1 : the target to call (can be any Object).
// -----------------------------------
Label stack_overflow;
__ add(r3, r0, Operand(1)); // Add one for receiver.
Generate_StackOverflowCheck(masm, r3, r4, &stack_overflow);
// Push "undefined" as the receiver arg if we need to.
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ mov(r3, r0); // Argument count is correct.
}
// Push the arguments. r2, r4, r5 will be modified.
Generate_InterpreterPushArgs(masm, r3, r2, r4, r5);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Pop(r2); // Pass the spread in a register
__ sub(r0, r0, Operand(1)); // Subtract one for spread
}
// Call the target.
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ bkpt(0);
}
}
// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- r0 : argument count (not including receiver)
// -- r3 : new target
// -- r1 : constructor to call
// -- r2 : allocation site feedback if available, undefined otherwise.
// -- r4 : address of the first argument
// -----------------------------------
Label stack_overflow;
// Push a slot for the receiver to be constructed.
__ mov(r5, Operand::Zero());
__ push(r5);
Generate_StackOverflowCheck(masm, r0, r5, &stack_overflow);
// Push the arguments. r5, r4, r6 will be modified.
Generate_InterpreterPushArgs(masm, r0, r4, r5, r6);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Pop(r2); // Pass the spread in a register
__ sub(r0, r0, Operand(1)); // Subtract one for spread
} else {
__ AssertUndefinedOrAllocationSite(r2, r5);
}
if (mode == InterpreterPushArgsMode::kArrayFunction) {
__ AssertFunction(r1);
// Tail call to the array construct stub (still in the caller
// context at this point).
Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl);
__ Jump(code, RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Call the constructor with r0, r1, and r3 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
// Call the constructor with r0, r1, and r3 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ bkpt(0);
}
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Label builtin_trampoline, trampoline_loaded;
Smi* interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
// If the SFI function_data is an InterpreterData, get the trampoline stored
// in it, otherwise get the trampoline from the builtins list.
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
__ ldr(r2, FieldMemOperand(r2, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kFunctionDataOffset));
__ CompareObjectType(r2, kInterpreterDispatchTableRegister,
kInterpreterDispatchTableRegister,
INTERPRETER_DATA_TYPE);
__ b(ne, &builtin_trampoline);
__ ldr(r2,
FieldMemOperand(r2, InterpreterData::kInterpreterTrampolineOffset));
__ b(&trampoline_loaded);
__ bind(&builtin_trampoline);
__ Move(r2, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline));
__ bind(&trampoline_loaded);
__ add(lr, r2, Operand(interpreter_entry_return_pc_offset->value() +
Code::kHeaderSize - kHeapObjectTag));
// Initialize the dispatch table register.
__ Move(
kInterpreterDispatchTableRegister,
ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
// Get the bytecode array pointer from the frame.
__ ldr(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ SmiTst(kInterpreterBytecodeArrayRegister);
__ Assert(
ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, r1, no_reg,
BYTECODE_ARRAY_TYPE);
__ Assert(
eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ ldr(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Dispatch to the target bytecode.
UseScratchRegisterScope temps(masm);
Register scratch = temps.Acquire();
__ ldrb(scratch, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ ldr(kJavaScriptCallCodeStartRegister,
MemOperand(kInterpreterDispatchTableRegister, scratch, LSL,
kPointerSizeLog2));
__ Jump(kJavaScriptCallCodeStartRegister);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Get bytecode array and bytecode offset from the stack frame.
__ ldr(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ ldr(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Load the current bytecode.
__ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
// Advance to the next bytecode.
Label if_return;
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, r1, r2,
&if_return);
// Convert new bytecode offset to a Smi and save in the stackframe.
__ SmiTag(r2, kInterpreterBytecodeOffsetRegister);
__ str(r2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
Generate_InterpreterEnterBytecode(masm);
// We should never take the if_return path.
__ bind(&if_return);
__ Abort(AbortReason::kInvalidBytecodeAdvance);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argument count (preserved for callee)
// -- r1 : new target (preserved for callee)
// -- r3 : target function (preserved for callee)
// -----------------------------------
Label failed;
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve argument count for later compare.
__ Move(r4, r0);
// Push the number of arguments to the callee.
__ SmiTag(r0);
__ push(r0);
// Push a copy of the target function and the new target.
__ push(r1);
__ push(r3);
// The function.
__ push(r1);
// Copy arguments from caller (stdlib, foreign, heap).
Label args_done;
for (int j = 0; j < 4; ++j) {
Label over;
if (j < 3) {
__ cmp(r4, Operand(j));
__ b(ne, &over);
}
for (int i = j - 1; i >= 0; --i) {
__ ldr(r4, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
i * kPointerSize));
__ push(r4);
}
for (int i = 0; i < 3 - j; ++i) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
}
if (j < 3) {
__ jmp(&args_done);
__ bind(&over);
}
}
__ bind(&args_done);
// Call runtime, on success unwind frame, and parent frame.
__ CallRuntime(Runtime::kInstantiateAsmJs, 4);
// A smi 0 is returned on failure, an object on success.
__ JumpIfSmi(r0, &failed);
__ Drop(2);
__ pop(r4);
__ SmiUntag(r4);
scope.GenerateLeaveFrame();
__ add(r4, r4, Operand(1));
__ Drop(r4);
__ Ret();
__ bind(&failed);
// Restore target function and new target.
__ pop(r3);
__ pop(r1);
__ pop(r0);
__ SmiUntag(r0);
}
// On failure, tail call back to regular js by re-calling the function
// which has be reset to the compile lazy builtin.
static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
__ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset));
__ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(r2);
}
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
bool java_script_builtin,
bool with_result) {
const RegisterConfiguration* config(RegisterConfiguration::Default());
int allocatable_register_count = config->num_allocatable_general_registers();
if (with_result) {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point.
__ str(r0,
MemOperand(
sp, config->num_allocatable_general_registers() * kPointerSize +
BuiltinContinuationFrameConstants::kFixedFrameSize));
}
for (int i = allocatable_register_count - 1; i >= 0; --i) {
int code = config->GetAllocatableGeneralCode(i);
__ Pop(Register::from_code(code));
if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
__ SmiUntag(Register::from_code(code));
}
}
__ ldr(fp, MemOperand(
sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
UseScratchRegisterScope temps(masm);
Register scratch = temps.Acquire();
__ Pop(scratch);
__ add(sp, sp,
Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
__ Pop(lr);
__ add(pc, scratch, Operand(Code::kHeaderSize - kHeapObjectTag));
}
} // namespace
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, false);
}
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, true);
}
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, false);
}
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, true);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kNotifyDeoptimized);
}
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r0.code());
__ pop(r0);
__ Ret();
}
static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
bool has_handler_frame) {
// Lookup the function in the JavaScript frame.
if (has_handler_frame) {
__ ldr(r0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r0, MemOperand(r0, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ push(r0);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
// If the code object is null, just return to the caller.
Label skip;
__ cmp(r0, Operand(Smi::kZero));
__ b(ne, &skip);
__ Ret();
__ bind(&skip);
// Drop any potential handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
if (has_handler_frame) {
__ LeaveFrame(StackFrame::STUB);
}
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ ldr(r1, FieldMemOperand(r0, Code::kDeoptimizationDataOffset));
{
ConstantPoolUnavailableScope constant_pool_unavailable(masm);
__ add(r0, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ ldr(r1, FieldMemOperand(r1, FixedArray::OffsetOfElementAt(
DeoptimizationData::kOsrPcOffsetIndex)));
// Compute the target address = code start + osr_offset
__ add(lr, r0, Operand::SmiUntag(r1));
// And "return" to the OSR entry point of the function.
__ Ret();
}
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, false);
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, true);
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argc
// -- sp[0] : argArray
// -- sp[4] : thisArg
// -- sp[8] : receiver
// -----------------------------------
// 1. Load receiver into r1, argArray into r2 (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
__ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
__ mov(r2, r5);
__ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); // receiver
__ sub(r4, r0, Operand(1), SetCC);
__ ldr(r5, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // thisArg
__ sub(r4, r4, Operand(1), SetCC, ge);
__ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // argArray
__ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2));
__ str(r5, MemOperand(sp, 0));
}
// ----------- S t a t e -------------
// -- r2 : argArray
// -- r1 : receiver
// -- sp[0] : thisArg
// -----------------------------------
// 2. We don't need to check explicitly for callable receiver here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(r2, Heap::kNullValueRootIndex, &no_arguments);
__ JumpIfRoot(r2, Heap::kUndefinedValueRootIndex, &no_arguments);
// 4a. Apply the receiver to the given argArray.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ bind(&no_arguments);
{
__ mov(r0, Operand(0));
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// 1. Make sure we have at least one argument.
// r0: actual number of arguments
{
Label done;
__ cmp(r0, Operand::Zero());
__ b(ne, &done);
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ add(r0, r0, Operand(1));
__ bind(&done);
}
// 2. Get the callable to call (passed as receiver) from the stack.
// r0: actual number of arguments
__ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
// r0: actual number of arguments
// r1: callable
{
Register scratch = r3;
Label loop;
// Calculate the copy start address (destination). Copy end address is sp.
__ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
__ bind(&loop);
__ ldr(scratch, MemOperand(r2, -kPointerSize));
__ str(scratch, MemOperand(r2));
__ sub(r2, r2, Operand(kPointerSize));
__ cmp(r2, sp);
__ b(ne, &loop);
// Adjust the actual number of arguments and remove the top element
// (which is a copy of the last argument).
__ sub(r0, r0, Operand(1));
__ pop();
}
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argc
// -- sp[0] : argumentsList
// -- sp[4] : thisArgument
// -- sp[8] : target
// -- sp[12] : receiver
// -----------------------------------
// 1. Load target into r1 (if present), argumentsList into r2 (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
__ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
__ mov(r5, r1);
__ mov(r2, r1);
__ sub(r4, r0, Operand(1), SetCC);
__ ldr(r1, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // target
__ sub(r4, r4, Operand(1), SetCC, ge);
__ ldr(r5, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // thisArgument
__ sub(r4, r4, Operand(1), SetCC, ge);
__ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // argumentsList
__ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2));
__ str(r5, MemOperand(sp, 0));
}
// ----------- S t a t e -------------
// -- r2 : argumentsList
// -- r1 : target
// -- sp[0] : thisArgument
// -----------------------------------
// 2. We don't need to check explicitly for callable target here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Apply the target to the given argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argc
// -- sp[0] : new.target (optional)
// -- sp[4] : argumentsList
// -- sp[8] : target
// -- sp[12] : receiver
// -----------------------------------
// 1. Load target into r1 (if present), argumentsList into r2 (if present),
// new.target into r3 (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
__ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
__ mov(r2, r1);
__ str(r2, MemOperand(sp, r0, LSL, kPointerSizeLog2)); // receiver
__ sub(r4, r0, Operand(1), SetCC);
__ ldr(r1, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // target
__ mov(r3, r1); // new.target defaults to target
__ sub(r4, r4, Operand(1), SetCC, ge);
__ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // argumentsList
__ sub(r4, r4, Operand(1), SetCC, ge);
__ ldr(r3, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // new.target
__ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2));
}
// ----------- S t a t e -------------
// -- r2 : argumentsList
// -- r3 : new.target
// -- r1 : target
// -- sp[0] : receiver (undefined)
// -----------------------------------
// 2. We don't need to check explicitly for constructor target here,
// since that's the first thing the Construct/ConstructWithArrayLike
// builtins will do.
// 3. We don't need to check explicitly for constructor new.target here,
// since that's the second thing the Construct/ConstructWithArrayLike
// builtins will do.
// 4. Construct the target with the given new.target and argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
RelocInfo::CODE_TARGET);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ SmiTag(r0);
__ mov(r4, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() |
fp.bit() | lr.bit());
__ Push(Smi::kZero); // Padding.
__ add(fp, sp,
Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ ldr(r1, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR);
__ add(sp, sp, Operand::PointerOffsetFromSmiKey(r1));
__ add(sp, sp, Operand(kPointerSize)); // adjust for receiver
}
// static
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- r1 : target
// -- r0 : number of parameters on the stack (not including the receiver)
// -- r2 : arguments list (a FixedArray)
// -- r4 : len (number of elements to push from args)
// -- r3 : new.target (for [[Construct]])
// -----------------------------------
Register scratch = r8;
if (masm->emit_debug_code()) {
// Allow r2 to be a FixedArray, or a FixedDoubleArray if r4 == 0.
Label ok, fail;
__ AssertNotSmi(r2);
__ ldr(scratch, FieldMemOperand(r2, HeapObject::kMapOffset));
__ ldrh(r6, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
__ cmp(r6, Operand(FIXED_ARRAY_TYPE));
__ b(eq, &ok);
__ cmp(r6, Operand(FIXED_DOUBLE_ARRAY_TYPE));
__ b(ne, &fail);
__ cmp(r4, Operand(0));
__ b(eq, &ok);
// Fall through.
__ bind(&fail);
__ Abort(AbortReason::kOperandIsNotAFixedArray);
__ bind(&ok);
}
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
__ LoadRoot(scratch, Heap::kRealStackLimitRootIndex);
// The stack might already be overflowed here which will cause 'scratch' to
// become negative.
__ sub(scratch, sp, scratch);
// Check if the arguments will overflow the stack.
__ cmp(scratch, Operand(r4, LSL, kPointerSizeLog2));
__ b(gt, &done); // Signed comparison.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&done);
}
// Push arguments onto the stack (thisArgument is already on the stack).
{
__ mov(r6, Operand(0));
__ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
Label done, loop;
__ bind(&loop);
__ cmp(r6, r4);
__ b(eq, &done);
__ add(scratch, r2, Operand(r6, LSL, kPointerSizeLog2));
__ ldr(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize));
__ cmp(scratch, r5);
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex, eq);
__ Push(scratch);
__ add(r6, r6, Operand(1));
__ b(&loop);
__ bind(&done);
__ add(r0, r0, r6);
}
// Tail-call to the actual Call or Construct builtin.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
CallOrConstructMode mode,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r3 : the new.target (for [[Construct]] calls)
// -- r1 : the target to call (can be any Object)
// -- r2 : start index (to support rest parameters)
// -----------------------------------
Register scratch = r6;
// Check if new.target has a [[Construct]] internal method.
if (mode == CallOrConstructMode::kConstruct) {
Label new_target_constructor, new_target_not_constructor;
__ JumpIfSmi(r3, &new_target_not_constructor);
__ ldr(scratch, FieldMemOperand(r3, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
__ tst(scratch, Operand(Map::IsConstructorBit::kMask));
__ b(ne, &new_target_constructor);
__ bind(&new_target_not_constructor);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ Push(r3);
__ CallRuntime(Runtime::kThrowNotConstructor);
}
__ bind(&new_target_constructor);
}
// Check if we have an arguments adaptor frame below the function frame.
Label arguments_adaptor, arguments_done;
__ ldr(r4, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(scratch,
MemOperand(r4, CommonFrameConstants::kContextOrFrameTypeOffset));
__ cmp(scratch,
Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(eq, &arguments_adaptor);
{
__ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(r5, FieldMemOperand(r5, JSFunction::kSharedFunctionInfoOffset));
__ ldrh(r5, FieldMemOperand(
r5, SharedFunctionInfo::kFormalParameterCountOffset));
__ mov(r4, fp);
}
__ b(&arguments_done);
__ bind(&arguments_adaptor);
{
// Load the length from the ArgumentsAdaptorFrame.
__ ldr(r5, MemOperand(r4, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(r5);
}
__ bind(&arguments_done);
Label stack_done, stack_overflow;
__ sub(r5, r5, r2, SetCC);
__ b(le, &stack_done);
{
// Check for stack overflow.
Generate_StackOverflowCheck(masm, r5, r2, &stack_overflow);
// Forward the arguments from the caller frame.
{
Label loop;
__ add(r4, r4, Operand(kPointerSize));
__ add(r0, r0, r5);
__ bind(&loop);
{
__ ldr(scratch, MemOperand(r4, r5, LSL, kPointerSizeLog2));
__ push(scratch);
__ sub(r5, r5, Operand(1), SetCC);
__ b(ne, &loop);
}
}
}
__ b(&stack_done);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&stack_done);
// Tail-call to the {code} handler.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(r1);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
Label class_constructor;
__ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kFlagsOffset));
__ tst(r3, Operand(SharedFunctionInfo::IsClassConstructorBit::kMask));
__ b(ne, &class_constructor);
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kFlagsOffset));
__ tst(r3, Operand(SharedFunctionInfo::IsNativeBit::kMask |
SharedFunctionInfo::IsStrictBit::kMask));
__ b(ne, &done_convert);
{
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the function to call (checked to be a JSFunction)
// -- r2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(r3);
} else {
Label convert_to_object, convert_receiver;
__ ldr(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2));
__ JumpIfSmi(r3, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CompareObjectType(r3, r4, r4, FIRST_JS_RECEIVER_TYPE);
__ b(hs, &done_convert);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(r3, Heap::kUndefinedValueRootIndex,
&convert_global_proxy);
__ JumpIfNotRoot(r3, Heap::kNullValueRootIndex, &convert_to_object);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(r3);
}
__ b(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(r0);
__ Push(r0, r1);
__ mov(r0, r3);
__ Push(cp);
__ Call(BUILTIN_CODE(masm->isolate(), ToObject),
RelocInfo::CODE_TARGET);
__ Pop(cp);
__ mov(r3, r0);
__ Pop(r0, r1);
__ SmiUntag(r0);
}
__ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ str(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2));
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the function to call (checked to be a JSFunction)
// -- r2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
__ ldrh(r2,
FieldMemOperand(r2, SharedFunctionInfo::kFormalParameterCountOffset));
ParameterCount actual(r0);
ParameterCount expected(r2);
__ InvokeFunctionCode(r1, no_reg, expected, actual, JUMP_FUNCTION);
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ push(r1);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : target (checked to be a JSBoundFunction)
// -- r3 : new.target (only in case of [[Construct]])
// -----------------------------------
// Load [[BoundArguments]] into r2 and length of that into r4.
Label no_bound_arguments;
__ ldr(r2, FieldMemOperand(r1, JSBoundFunction::kBoundArgumentsOffset));
__ ldr(r4, FieldMemOperand(r2, FixedArray::kLengthOffset));
__ SmiUntag(r4);
__ cmp(r4, Operand(0));
__ b(eq, &no_bound_arguments);
{
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : target (checked to be a JSBoundFunction)
// -- r2 : the [[BoundArguments]] (implemented as FixedArray)
// -- r3 : new.target (only in case of [[Construct]])
// -- r4 : the number of [[BoundArguments]]
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ sub(sp, sp, Operand(r4, LSL, kPointerSizeLog2));
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack
// limit".
__ CompareRoot(sp, Heap::kRealStackLimitRootIndex);
__ b(gt, &done); // Signed comparison.
// Restore the stack pointer.
__ add(sp, sp, Operand(r4, LSL, kPointerSizeLog2));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
Register scratch = r6;
// Relocate arguments down the stack.
{
Label loop, done_loop;
__ mov(r5, Operand(0));
__ bind(&loop);
__ cmp(r5, r0);
__ b(gt, &done_loop);
__ ldr(scratch, MemOperand(sp, r4, LSL, kPointerSizeLog2));
__ str(scratch, MemOperand(sp, r5, LSL, kPointerSizeLog2));
__ add(r4, r4, Operand(1));
__ add(r5, r5, Operand(1));
__ b(&loop);
__ bind(&done_loop);
}
// Copy [[BoundArguments]] to the stack (below the arguments).
{
Label loop;
__ ldr(r4, FieldMemOperand(r2, FixedArray::kLengthOffset));
__ SmiUntag(r4);
__ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ bind(&loop);
__ sub(r4, r4, Operand(1), SetCC);
__ ldr(scratch, MemOperand(r2, r4, LSL, kPointerSizeLog2));
__ str(scratch, MemOperand(sp, r0, LSL, kPointerSizeLog2));
__ add(r0, r0, Operand(1));
__ b(gt, &loop);
}
}
__ bind(&no_bound_arguments);
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(r1);
// Patch the receiver to [[BoundThis]].
__ ldr(r3, FieldMemOperand(r1, JSBoundFunction::kBoundThisOffset));
__ str(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2));
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ ldr(r1, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_function, non_smi;
__ JumpIfSmi(r1, &non_callable);
__ bind(&non_smi);
__ CompareObjectType(r1, r4, r5, JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET, eq);
__ cmp(r5, Operand(JS_BOUND_FUNCTION_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
RelocInfo::CODE_TARGET, eq);
// Check if target has a [[Call]] internal method.
__ ldrb(r4, FieldMemOperand(r4, Map::kBitFieldOffset));
__ tst(r4, Operand(Map::IsCallableBit::kMask));
__ b(eq, &non_callable);
// Check if target is a proxy and call CallProxy external builtin
__ cmp(r5, Operand(JS_PROXY_TYPE));
__ b(ne, &non_function);
__ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET);
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Overwrite the original receiver the (original) target.
__ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r1);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r1);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the constructor to call (checked to be a JSFunction)
// -- r3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertConstructor(r1);
__ AssertFunction(r1);
// Calling convention for function specific ConstructStubs require
// r2 to contain either an AllocationSite or undefined.
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
Label call_generic_stub;
// Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
__ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset));
__ tst(r4, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
__ b(eq, &call_generic_stub);
__ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
RelocInfo::CODE_TARGET);
__ bind(&call_generic_stub);
__ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the function to call (checked to be a JSBoundFunction)
// -- r3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertConstructor(r1);
__ AssertBoundFunction(r1);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
__ cmp(r1, r3);
__ ldr(r3, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset),
eq);
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ ldr(r1, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the constructor to call (can be any Object)
// -- r3 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Check if target is a Smi.
Label non_constructor, non_proxy;
__ JumpIfSmi(r1, &non_constructor);
// Check if target has a [[Construct]] internal method.
__ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r2, FieldMemOperand(r4, Map::kBitFieldOffset));
__ tst(r2, Operand(Map::IsConstructorBit::kMask));
__ b(eq, &non_constructor);
// Dispatch based on instance type.
__ CompareInstanceType(r4, r5, JS_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
RelocInfo::CODE_TARGET, eq);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ cmp(r5, Operand(JS_BOUND_FUNCTION_TYPE));
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
RelocInfo::CODE_TARGET, eq);
// Only dispatch to proxies after checking whether they are constructors.
__ cmp(r5, Operand(JS_PROXY_TYPE));
__ b(ne, &non_proxy);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
RelocInfo::CODE_TARGET);
// Called Construct on an exotic Object with a [[Construct]] internal method.
__ bind(&non_proxy);
{
// Overwrite the original receiver with the (original) target.
__ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r1);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : actual number of arguments
// -- r1 : function (passed through to callee)
// -- r2 : expected number of arguments
// -- r3 : new target (passed through to callee)
// -----------------------------------
Label invoke, dont_adapt_arguments, stack_overflow;
Label enough, too_few;
__ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ b(eq, &dont_adapt_arguments);
__ cmp(r0, r2);
__ b(lt, &too_few);
Register scratch = r5;
{ // Enough parameters: actual >= expected
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
Generate_StackOverflowCheck(masm, r2, scratch, &stack_overflow);
// Calculate copy start address into r0 and copy end address into r4.
// r0: actual number of arguments as a smi
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
__ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0));
// adjust for return address and receiver
__ add(r0, r0, Operand(2 * kPointerSize));
__ sub(r4, r0, Operand(r2, LSL, kPointerSizeLog2));
// Copy the arguments (including the receiver) to the new stack frame.
// r0: copy start address
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
// r4: copy end address
Label copy;
__ bind(©);
__ ldr(scratch, MemOperand(r0, 0));
__ push(scratch);
__ cmp(r0, r4); // Compare before moving to next argument.
__ sub(r0, r0, Operand(kPointerSize));
__ b(ne, ©);
__ b(&invoke);
}
{ // Too few parameters: Actual < expected
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
Generate_StackOverflowCheck(masm, r2, scratch, &stack_overflow);
// Calculate copy start address into r0 and copy end address is fp.
// r0: actual number of arguments as a smi
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
__ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0));
// Copy the arguments (including the receiver) to the new stack frame.
// r0: copy start address
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
Label copy;
__ bind(©);
// Adjust load for return address and receiver.
__ ldr(scratch, MemOperand(r0, 2 * kPointerSize));
__ push(scratch);
__ cmp(r0, fp); // Compare before moving to next argument.
__ sub(r0, r0, Operand(kPointerSize));
__ b(ne, ©);
// Fill the remaining expected arguments with undefined.
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
__ sub(r4, fp, Operand(r2, LSL, kPointerSizeLog2));
// Adjust for frame.
__ sub(r4, r4,
Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp +
kPointerSize));
Label fill;
__ bind(&fill);
__ push(scratch);
__ cmp(sp, r4);
__ b(ne, &fill);
}
// Call the entry point.
__ bind(&invoke);
__ mov(r0, r2);
// r0 : expected number of arguments
// r1 : function (passed through to callee)
// r3 : new target (passed through to callee)
static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
__ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset));
__ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Call(r2);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Jump(lr);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
__ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset));
__ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(r2);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bkpt(0);
}
}
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
// The function index was put in r4 by the jump table trampoline.
// Convert to Smi for the runtime call.
__ SmiTag(r4, r4);
{
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
FrameAndConstantPoolScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
// Save all parameter registers (see wasm-linkage.cc). They might be
// overwritten in the runtime call below. We don't have any callee-saved
// registers in wasm, so no need to store anything else.
constexpr RegList gp_regs = Register::ListOf<r0, r1, r2, r3>();
constexpr DwVfpRegister lowest_fp_reg = d0;
constexpr DwVfpRegister highest_fp_reg = d7;
__ stm(db_w, sp, gp_regs);
__ vstm(db_w, sp, lowest_fp_reg, highest_fp_reg);
// Pass instance and function index as explicit arguments to the runtime
// function.
__ push(kWasmInstanceRegister);
__ push(r4);
// Load the correct CEntry builtin from the instance object.
__ ldr(r2, FieldMemOperand(kWasmInstanceRegister,
WasmInstanceObject::kCEntryStubOffset));
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ Move(cp, Smi::kZero);
__ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, r2);
// The entrypoint address is the return value.
__ mov(r8, kReturnRegister0);
// Restore registers.
__ vldm(ia_w, sp, lowest_fp_reg, highest_fp_reg);
__ ldm(ia_w, sp, gp_regs);
}
// Finally, jump to the entrypoint.
__ Jump(r8);
}
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
SaveFPRegsMode save_doubles, ArgvMode argv_mode,
bool builtin_exit_frame) {
// Called from JavaScript; parameters are on stack as if calling JS function.
// r0: number of arguments including receiver
// r1: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's sp after C call)
// cp: current context (C callee-saved)
//
// If argv_mode == kArgvInRegister:
// r2: pointer to the first argument
ProfileEntryHookStub::MaybeCallEntryHook(masm);
__ mov(r5, Operand(r1));
if (argv_mode == kArgvInRegister) {
// Move argv into the correct register.
__ mov(r1, Operand(r2));
} else {
// Compute the argv pointer in a callee-saved register.
__ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2));
__ sub(r1, r1, Operand(kPointerSize));
}
// Enter the exit frame that transitions from JavaScript to C++.
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(
save_doubles == kSaveFPRegs, 0,
builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
// Store a copy of argc in callee-saved registers for later.
__ mov(r4, Operand(r0));
// r0, r4: number of arguments including receiver (C callee-saved)
// r1: pointer to the first argument (C callee-saved)
// r5: pointer to builtin function (C callee-saved)
#if V8_HOST_ARCH_ARM
int frame_alignment = MacroAssembler::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
if (FLAG_debug_code) {
if (frame_alignment > kPointerSize) {
Label alignment_as_expected;
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
__ tst(sp, Operand(frame_alignment_mask));
__ b(eq, &alignment_as_expected);
// Don't use Check here, as it will call Runtime_Abort re-entering here.
__ stop("Unexpected alignment");
__ bind(&alignment_as_expected);
}
}
#endif
// Call C built-in.
// r0 = argc, r1 = argv, r2 = isolate
__ Move(r2, ExternalReference::isolate_address(masm->isolate()));
// To let the GC traverse the return address of the exit frames, we need to
// know where the return address is. CEntry is unmovable, so
// we can store the address on the stack to be able to find it again and
// we never have to restore it, because it will not change.
// Compute the return address in lr to return to after the jump below. Pc is
// already at '+ 8' from the current instruction but return is after three
// instructions so add another 4 to pc to get the return address.
{
// Prevent literal pool emission before return address.
Assembler::BlockConstPoolScope block_const_pool(masm);
__ add(lr, pc, Operand(4));
__ str(lr, MemOperand(sp));
__ Call(r5);
}
// Result returned in r0 or r1:r0 - do not destroy these registers!
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(r0, Heap::kExceptionRootIndex);
__ b(eq, &exception_returned);
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
Label okay;
ExternalReference pending_exception_address = ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, masm->isolate());
__ Move(r3, pending_exception_address);
__ ldr(r3, MemOperand(r3));
__ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
// Cannot use check here as it attempts to generate call into runtime.
__ b(eq, &okay);
__ stop("Unexpected pending exception");
__ bind(&okay);
}
// Exit C frame and return.
// r0:r1: result
// sp: stack pointer
// fp: frame pointer
Register argc = argv_mode == kArgvInRegister
// We don't want to pop arguments so set argc to no_reg.
? no_reg
// Callee-saved register r4 still holds argc.
: r4;
__ LeaveExitFrame(save_doubles == kSaveFPRegs, argc);
__ mov(pc, lr);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
ExternalReference pending_handler_entrypoint_address =
ExternalReference::Create(
IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
ExternalReference pending_handler_fp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
ExternalReference pending_handler_sp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
// Ask the runtime for help to determine the handler. This will set r0 to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler =
ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(3, 0);
__ mov(r0, Operand(0));
__ mov(r1, Operand(0));
__ Move(r2, ExternalReference::isolate_address(masm->isolate()));
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ Move(cp, pending_handler_context_address);
__ ldr(cp, MemOperand(cp));
__ Move(sp, pending_handler_sp_address);
__ ldr(sp, MemOperand(sp));
__ Move(fp, pending_handler_fp_address);
__ ldr(fp, MemOperand(fp));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (cp == 0) for non-JS frames.
__ cmp(cp, Operand(0));
__ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
// Reset the masking register. This is done independent of the underlying
// feature flag {FLAG_branch_load_poisoning} to make the snapshot work with
// both configurations. It is safe to always do this, because the underlying
// register is caller-saved and can be arbitrarily clobbered.
__ ResetSpeculationPoisonRegister();
// Compute the handler entry address and jump to it.
ConstantPoolUnavailableScope constant_pool_unavailable(masm);
__ Move(r1, pending_handler_entrypoint_address);
__ ldr(r1, MemOperand(r1));
__ Jump(r1);
}
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
Label negate, done;
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
UseScratchRegisterScope temps(masm);
Register result_reg = r7;
Register double_low = GetRegisterThatIsNotOneOf(result_reg);
Register double_high = GetRegisterThatIsNotOneOf(result_reg, double_low);
LowDwVfpRegister double_scratch = temps.AcquireLowD();
// Save the old values from these temporary registers on the stack.
__ Push(result_reg, double_high, double_low);
// Account for saved regs.
const int kArgumentOffset = 3 * kPointerSize;
MemOperand input_operand(sp, kArgumentOffset);
MemOperand result_operand = input_operand;
// Load double input.
__ vldr(double_scratch, input_operand);
__ vmov(double_low, double_high, double_scratch);
// Try to convert with a FPU convert instruction. This handles all
// non-saturating cases.
__ TryInlineTruncateDoubleToI(result_reg, double_scratch, &done);
Register scratch = temps.Acquire();
__ Ubfx(scratch, double_high, HeapNumber::kExponentShift,
HeapNumber::kExponentBits);
// Load scratch with exponent - 1. This is faster than loading
// with exponent because Bias + 1 = 1024 which is an *ARM* immediate value.
STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
__ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
// If exponent is greater than or equal to 84, the 32 less significant
// bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
// the result is 0.
// Compare exponent with 84 (compare exponent - 1 with 83). If the exponent is
// greater than this, the conversion is out of range, so return zero.
__ cmp(scratch, Operand(83));
__ mov(result_reg, Operand::Zero(), LeaveCC, ge);
__ b(ge, &done);
// If we reach this code, 30 <= exponent <= 83.
// `TryInlineTruncateDoubleToI` above will have truncated any double with an
// exponent lower than 30.
if (masm->emit_debug_code()) {
// Scratch is exponent - 1.
__ cmp(scratch, Operand(30 - 1));
__ Check(ge, AbortReason::kUnexpectedValue);
}
// We don't have to handle cases where 0 <= exponent <= 20 for which we would
// need to shift right the high part of the mantissa.
// Scratch contains exponent - 1.
// Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
__ rsb(scratch, scratch, Operand(51), SetCC);
// 52 <= exponent <= 83, shift only double_low.
// On entry, scratch contains: 52 - exponent.
__ rsb(scratch, scratch, Operand::Zero(), LeaveCC, ls);
__ mov(result_reg, Operand(double_low, LSL, scratch), LeaveCC, ls);
__ b(ls, &negate);
// 21 <= exponent <= 51, shift double_low and double_high
// to generate the result.
__ mov(double_low, Operand(double_low, LSR, scratch));
// Scratch contains: 52 - exponent.
// We needs: exponent - 20.
// So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
__ rsb(scratch, scratch, Operand(32));
__ Ubfx(result_reg, double_high, 0, HeapNumber::kMantissaBitsInTopWord);
// Set the implicit 1 before the mantissa part in double_high.
__ orr(result_reg, result_reg,
Operand(1 << HeapNumber::kMantissaBitsInTopWord));
__ orr(result_reg, double_low, Operand(result_reg, LSL, scratch));
__ bind(&negate);
// If input was positive, double_high ASR 31 equals 0 and
// double_high LSR 31 equals zero.
// New result = (result eor 0) + 0 = result.
// If the input was negative, we have to negate the result.
// Input_high ASR 31 equals 0xFFFFFFFF and double_high LSR 31 equals 1.
// New result = (result eor 0xFFFFFFFF) + 1 = 0 - result.
__ eor(result_reg, result_reg, Operand(double_high, ASR, 31));
__ add(result_reg, result_reg, Operand(double_high, LSR, 31));
__ bind(&done);
__ str(result_reg, result_operand);
// Restore registers corrupted in this routine and return.
__ Pop(result_reg, double_high, double_low);
__ Ret();
}
void Builtins::Generate_MathPowInternal(MacroAssembler* masm) {
const LowDwVfpRegister double_base = d0;
const LowDwVfpRegister double_exponent = d1;
const LowDwVfpRegister double_result = d2;
const LowDwVfpRegister double_scratch = d3;
const SwVfpRegister single_scratch = s6;
// Avoid using Registers r0-r3 as they may be needed when calling to C if the
// ABI is softfloat.
const Register integer_exponent = r4;
const Register scratch = r5;
Label call_runtime, done, int_exponent;
// Detect integer exponents stored as double.
__ TryDoubleToInt32Exact(integer_exponent, double_exponent, double_scratch);
__ b(eq, &int_exponent);
__ push(lr);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(ExternalReference::power_double_double_function(), 0, 2);
}
__ pop(lr);
__ MovFromFloatResult(double_result);
__ b(&done);
// Calculate power with integer exponent.
__ bind(&int_exponent);
__ vmov(double_scratch, double_base); // Back up base.
__ vmov(double_result, Double(1.0), scratch);
// Get absolute value of exponent.
__ cmp(integer_exponent, Operand::Zero());
__ mov(scratch, integer_exponent);
__ rsb(scratch, integer_exponent, Operand::Zero(), LeaveCC, mi);
Label while_true;
__ bind(&while_true);
__ mov(scratch, Operand(scratch, LSR, 1), SetCC);
__ vmul(double_result, double_result, double_scratch, cs);
__ vmul(double_scratch, double_scratch, double_scratch, ne);
__ b(ne, &while_true);
__ cmp(integer_exponent, Operand::Zero());
__ b(ge, &done);
__ vmov(double_scratch, Double(1.0), scratch);
__ vdiv(double_result, double_scratch, double_result);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ VFPCompareAndSetFlags(double_result, 0.0);
__ b(ne, &done);
// double_exponent may not containe the exponent value if the input was a
// smi. We set it with exponent value before bailing out.
__ vmov(single_scratch, integer_exponent);
__ vcvt_f64_s32(double_exponent, single_scratch);
// Returning or bailing out.
__ push(lr);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(ExternalReference::power_double_double_function(), 0, 2);
}
__ pop(lr);
__ MovFromFloatResult(double_result);
__ bind(&done);
__ Ret();
}
namespace {
void GenerateInternalArrayConstructorCase(MacroAssembler* masm,
ElementsKind kind) {
__ cmp(r0, Operand(1));
__ Jump(CodeFactory::InternalArrayNoArgumentConstructor(masm->isolate(), kind)
.code(),
RelocInfo::CODE_TARGET, lo);
Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayNArgumentsConstructor);
__ Jump(code, RelocInfo::CODE_TARGET, hi);
if (IsFastPackedElementsKind(kind)) {
// We might need to create a holey array
// look at the first argument
__ ldr(r3, MemOperand(sp, 0));
__ cmp(r3, Operand::Zero());
__ Jump(CodeFactory::InternalArraySingleArgumentConstructor(
masm->isolate(), GetHoleyElementsKind(kind))
.code(),
RelocInfo::CODE_TARGET, ne);
}
__ Jump(
CodeFactory::InternalArraySingleArgumentConstructor(masm->isolate(), kind)
.code(),
RelocInfo::CODE_TARGET);
}
} // namespace
void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argc
// -- r1 : constructor
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a nullptr and a Smi.
__ tst(r3, Operand(kSmiTagMask));
__ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction);
__ CompareObjectType(r3, r3, r4, MAP_TYPE);
__ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction);
}
// Figure out the right elements kind
__ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
// Load the map's "bit field 2" into |result|. We only need the first byte,
// but the following bit field extraction takes care of that anyway.
__ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ DecodeField<Map::ElementsKindBits>(r3);
if (FLAG_debug_code) {
Label done;
__ cmp(r3, Operand(PACKED_ELEMENTS));
__ b(eq, &done);
__ cmp(r3, Operand(HOLEY_ELEMENTS));
__ Assert(
eq,
AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray);
__ bind(&done);
}
Label fast_elements_case;
__ cmp(r3, Operand(PACKED_ELEMENTS));
__ b(eq, &fast_elements_case);
GenerateInternalArrayConstructorCase(masm, HOLEY_ELEMENTS);
__ bind(&fast_elements_case);
GenerateInternalArrayConstructorCase(masm, PACKED_ELEMENTS);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_ARM