// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_ARM #include "src/assembler-inl.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/counters.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/frame-constants.h" #include "src/frames.h" #include "src/objects-inl.h" #include "src/objects/js-generator.h" #include "src/runtime/runtime.h" #include "src/wasm/wasm-objects.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address, ExitFrameType exit_frame_type) { #if defined(__thumb__) // Thumb mode builtin. DCHECK_EQ(1, reinterpret_cast<uintptr_t>( ExternalReference::Create(address).address()) & 1); #endif __ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address)); if (exit_frame_type == BUILTIN_EXIT) { __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), RelocInfo::CODE_TARGET); } else { DCHECK(exit_frame_type == EXIT); __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame), RelocInfo::CODE_TARGET); } } void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); __ SmiTst(r2); __ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); __ CompareObjectType(r2, r3, r4, MAP_TYPE); __ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. // tail call a stub __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl), RelocInfo::CODE_TARGET); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- r0 : argument count (preserved for callee) // -- r1 : target function (preserved for callee) // -- r3 : new target (preserved for callee) // ----------------------------------- { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Push the number of arguments to the callee. __ SmiTag(r0); __ push(r0); // Push a copy of the target function and the new target. __ push(r1); __ push(r3); // Push function as parameter to the runtime call. __ Push(r1); __ CallRuntime(function_id, 1); __ mov(r2, r0); // Restore target function and new target. __ pop(r3); __ pop(r1); __ pop(r0); __ SmiUntag(r0, r0); } static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch"); __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(r2); } namespace { void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : number of arguments // -- r1 : constructor function // -- r3 : new target // -- cp : context // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Register scratch = r2; // Enter a construct frame. { FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ SmiTag(r0); __ Push(cp, r0); __ SmiUntag(r0); // The receiver for the builtin/api call. __ PushRoot(Heap::kTheHoleValueRootIndex); // Set up pointer to last argument. __ add(r4, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(r5, r0); // ----------- S t a t e ------------- // -- r0: number of arguments (untagged) // -- r1: constructor function // -- r3: new target // -- r4: pointer to last argument // -- r5: counter // -- sp[0*kPointerSize]: the hole (receiver) // -- sp[1*kPointerSize]: number of arguments (tagged) // -- sp[2*kPointerSize]: context // ----------------------------------- __ b(&entry); __ bind(&loop); __ ldr(scratch, MemOperand(r4, r5, LSL, kPointerSizeLog2)); __ push(scratch); __ bind(&entry); __ sub(r5, r5, Operand(1), SetCC); __ b(ge, &loop); // Call the function. // r0: number of arguments (untagged) // r1: constructor function // r3: new target ParameterCount actual(r0); __ InvokeFunction(r1, r3, actual, CALL_FUNCTION); // Restore context from the frame. __ ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); // Restore smi-tagged arguments count from the frame. __ ldr(scratch, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ add(sp, sp, Operand(scratch, LSL, kPointerSizeLog2 - kSmiTagSize)); __ add(sp, sp, Operand(kPointerSize)); __ Jump(lr); } } // namespace // The construct stub for ES5 constructor functions and ES6 class constructors. void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0: number of arguments (untagged) // -- r1: constructor function // -- r3: new target // -- cp: context // -- lr: return address // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); Label post_instantiation_deopt_entry, not_create_implicit_receiver; // Preserve the incoming parameters on the stack. __ LoadRoot(r4, Heap::kTheHoleValueRootIndex); __ SmiTag(r0); __ Push(cp, r0, r1, r4, r3); // ----------- S t a t e ------------- // -- sp[0*kPointerSize]: new target // -- sp[1*kPointerSize]: padding // -- r1 and sp[2*kPointerSize]: constructor function // -- sp[3*kPointerSize]: number of arguments (tagged) // -- sp[4*kPointerSize]: context // ----------------------------------- __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset)); __ tst(r4, Operand(SharedFunctionInfo::IsDerivedConstructorBit::kMask)); __ b(ne, ¬_create_implicit_receiver); // If not derived class constructor: Allocate the new receiver object. __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, r4, r5); __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); __ b(&post_instantiation_deopt_entry); // Else: use TheHoleValue as receiver for constructor call __ bind(¬_create_implicit_receiver); __ LoadRoot(r0, Heap::kTheHoleValueRootIndex); // ----------- S t a t e ------------- // -- r0: receiver // -- Slot 3 / sp[0*kPointerSize]: new target // -- Slot 2 / sp[1*kPointerSize]: constructor function // -- Slot 1 / sp[2*kPointerSize]: number of arguments (tagged) // -- Slot 0 / sp[3*kPointerSize]: context // ----------------------------------- // Deoptimizer enters here. masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( masm->pc_offset()); __ bind(&post_instantiation_deopt_entry); // Restore new target. __ Pop(r3); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ Push(r0, r0); // ----------- S t a t e ------------- // -- r3: new target // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: implicit receiver // -- sp[2*kPointerSize]: padding // -- sp[3*kPointerSize]: constructor function // -- sp[4*kPointerSize]: number of arguments (tagged) // -- sp[5*kPointerSize]: context // ----------------------------------- // Restore constructor function and argument count. __ ldr(r1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); __ ldr(r0, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); __ SmiUntag(r0); // Set up pointer to last argument. __ add(r4, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(r5, r0); // ----------- S t a t e ------------- // -- r0: number of arguments (untagged) // -- r3: new target // -- r4: pointer to last argument // -- r5: counter // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: implicit receiver // -- sp[2*kPointerSize]: padding // -- r1 and sp[3*kPointerSize]: constructor function // -- sp[4*kPointerSize]: number of arguments (tagged) // -- sp[5*kPointerSize]: context // ----------------------------------- __ b(&entry); __ bind(&loop); __ ldr(r6, MemOperand(r4, r5, LSL, kPointerSizeLog2)); __ push(r6); __ bind(&entry); __ sub(r5, r5, Operand(1), SetCC); __ b(ge, &loop); // Call the function. ParameterCount actual(r0); __ InvokeFunction(r1, r3, actual, CALL_FUNCTION); // ----------- S t a t e ------------- // -- r0: constructor result // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: padding // -- sp[2*kPointerSize]: constructor function // -- sp[3*kPointerSize]: number of arguments // -- sp[4*kPointerSize]: context // ----------------------------------- // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( masm->pc_offset()); // Restore the context from the frame. __ ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, do_throw, leave_frame; // If the result is undefined, we jump out to using the implicit receiver. __ JumpIfRoot(r0, Heap::kUndefinedValueRootIndex, &use_receiver); // Otherwise we do a smi check and fall through to check if the return value // is a valid receiver. // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(r0, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(r0, r4, r5, FIRST_JS_RECEIVER_TYPE); __ b(ge, &leave_frame); __ b(&use_receiver); __ bind(&do_throw); __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ ldr(r0, MemOperand(sp, 0 * kPointerSize)); __ JumpIfRoot(r0, Heap::kTheHoleValueRootIndex, &do_throw); __ bind(&leave_frame); // Restore smi-tagged arguments count from the frame. __ ldr(r1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); __ add(sp, sp, Operand(kPointerSize)); __ Jump(lr); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSBuiltinsConstructStubHelper(masm); } static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, Register sfi_data, Register scratch1) { Label done; __ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE); __ b(ne, &done); __ ldr(sfi_data, FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); __ bind(&done); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : the value to pass to the generator // -- r1 : the JSGeneratorObject to resume // -- lr : return address // ----------------------------------- __ AssertGeneratorObject(r1); // Store input value into generator object. __ str(r0, FieldMemOperand(r1, JSGeneratorObject::kInputOrDebugPosOffset)); __ RecordWriteField(r1, JSGeneratorObject::kInputOrDebugPosOffset, r0, r3, kLRHasNotBeenSaved, kDontSaveFPRegs); // Load suspended function and context. __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset)); __ ldr(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; Register scratch = r5; // Flood function if we are stepping. ExternalReference debug_hook = ExternalReference::debug_hook_on_function_call_address(masm->isolate()); __ Move(scratch, debug_hook); __ ldrsb(scratch, MemOperand(scratch)); __ cmp(scratch, Operand(0)); __ b(ne, &prepare_step_in_if_stepping); // Flood function if we need to continue stepping in the suspended // generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); __ Move(scratch, debug_suspended_generator); __ ldr(scratch, MemOperand(scratch)); __ cmp(scratch, Operand(r1)); __ b(eq, &prepare_step_in_suspended_generator); __ bind(&stepping_prepared); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label stack_overflow; __ CompareRoot(sp, Heap::kRealStackLimitRootIndex); __ b(lo, &stack_overflow); // Push receiver. __ ldr(scratch, FieldMemOperand(r1, JSGeneratorObject::kReceiverOffset)); __ Push(scratch); // ----------- S t a t e ------------- // -- r1 : the JSGeneratorObject to resume // -- r4 : generator function // -- cp : generator context // -- lr : return address // -- sp[0] : generator receiver // ----------------------------------- // Copy the function arguments from the generator object's register file. __ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ ldrh(r3, FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset)); __ ldr(r2, FieldMemOperand(r1, JSGeneratorObject::kParametersAndRegistersOffset)); { Label done_loop, loop; __ mov(r6, Operand(0)); __ bind(&loop); __ cmp(r6, r3); __ b(ge, &done_loop); __ add(scratch, r2, Operand(r6, LSL, kPointerSizeLog2)); __ ldr(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize)); __ Push(scratch); __ add(r6, r6, Operand(1)); __ b(&loop); __ bind(&done_loop); } // Underlying function needs to have bytecode available. if (FLAG_debug_code) { __ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, r3, r0); __ CompareObjectType(r3, r3, r3, BYTECODE_ARRAY_TYPE); __ Assert(eq, AbortReason::kMissingBytecodeArray); } // Resume (Ignition/TurboFan) generator object. { __ ldr(r0, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ ldrh(r0, FieldMemOperand( r0, SharedFunctionInfo::kFormalParameterCountOffset)); // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. __ Move(r3, r1); __ Move(r1, r4); static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch"); __ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset)); __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(r2); } __ bind(&prepare_step_in_if_stepping); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r1, r4); // Push hole as receiver since we do not use it for stepping. __ PushRoot(Heap::kTheHoleValueRootIndex); __ CallRuntime(Runtime::kDebugOnFunctionCall); __ Pop(r1); __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset)); } __ b(&stepping_prepared); __ bind(&prepare_step_in_suspended_generator); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r1); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(r1); __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset)); } __ b(&stepping_prepared); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ bkpt(0); // This should be unreachable. } } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameScope scope(masm, StackFrame::INTERNAL); __ push(r1); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, Register scratch, Label* stack_overflow) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex); // Make scratch the space we have left. The stack might already be overflowed // here which will cause scratch to become negative. __ sub(scratch, sp, scratch); // Check if the arguments will overflow the stack. __ cmp(scratch, Operand(num_args, LSL, kPointerSizeLog2)); __ b(le, stack_overflow); // Signed comparison. } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from Generate_JS_Entry // r0: new.target // r1: function // r2: receiver // r3: argc // r4: argv // r5-r6, r8 and cp may be clobbered ProfileEntryHookStub::MaybeCallEntryHook(masm); // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address = ExternalReference::Create( IsolateAddressId::kContextAddress, masm->isolate()); __ Move(cp, context_address); __ ldr(cp, MemOperand(cp)); // Push the function and the receiver onto the stack. __ Push(r1, r2); // Check if we have enough stack space to push all arguments. // Clobbers r2. Label enough_stack_space, stack_overflow; Generate_StackOverflowCheck(masm, r3, r2, &stack_overflow); __ b(&enough_stack_space); __ bind(&stack_overflow); __ CallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ bkpt(0); __ bind(&enough_stack_space); // Remember new.target. __ mov(r5, r0); // Copy arguments to the stack in a loop. // r1: function // r3: argc // r4: argv, i.e. points to first arg Label loop, entry; __ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2)); // r2 points past last arg. __ b(&entry); __ bind(&loop); __ ldr(r0, MemOperand(r4, kPointerSize, PostIndex)); // read next parameter __ ldr(r0, MemOperand(r0)); // dereference handle __ push(r0); // push parameter __ bind(&entry); __ cmp(r4, r2); __ b(ne, &loop); // Setup new.target and argc. __ mov(r0, Operand(r3)); __ mov(r3, Operand(r5)); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); __ mov(r5, Operand(r4)); __ mov(r6, Operand(r4)); __ mov(r8, Operand(r4)); if (kR9Available == 1) { __ mov(r9, Operand(r4)); } // Invoke the code. Handle<Code> builtin = is_construct ? BUILTIN_CODE(masm->isolate(), Construct) : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the JS frame and remove the parameters (except function), and // return. // Respect ABI stack constraint. } __ Jump(lr); // r0: result } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } static void ReplaceClosureCodeWithOptimizedCode( MacroAssembler* masm, Register optimized_code, Register closure, Register scratch1, Register scratch2, Register scratch3) { // Store code entry in the closure. __ str(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset)); __ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below. __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) { Register args_count = scratch; // Get the arguments + receiver count. __ ldr(args_count, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ ldr(args_count, FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset)); // Leave the frame (also dropping the register file). __ LeaveFrame(StackFrame::INTERPRETED); // Drop receiver + arguments. __ add(sp, sp, args_count, LeaveCC); } // Tail-call |function_id| if |smi_entry| == |marker| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, Register smi_entry, OptimizationMarker marker, Runtime::FunctionId function_id) { Label no_match; __ cmp(smi_entry, Operand(Smi::FromEnum(marker))); __ b(ne, &no_match); GenerateTailCallToReturnedCode(masm, function_id); __ bind(&no_match); } static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, Register feedback_vector, Register scratch1, Register scratch2, Register scratch3) { // ----------- S t a t e ------------- // -- r0 : argument count (preserved for callee if needed, and caller) // -- r3 : new target (preserved for callee if needed, and caller) // -- r1 : target function (preserved for callee if needed, and caller) // -- feedback vector (preserved for caller if needed) // ----------------------------------- DCHECK( !AreAliased(feedback_vector, r0, r1, r3, scratch1, scratch2, scratch3)); Label optimized_code_slot_is_weak_ref, fallthrough; Register closure = r1; Register optimized_code_entry = scratch1; __ ldr( optimized_code_entry, FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset)); // Check if the code entry is a Smi. If yes, we interpret it as an // optimisation marker. Otherwise, interpret it as a weak reference to a code // object. __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref); { // Optimized code slot is a Smi optimization marker. // Fall through if no optimization trigger. __ cmp(optimized_code_entry, Operand(Smi::FromEnum(OptimizationMarker::kNone))); __ b(eq, &fallthrough); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kLogFirstExecution, Runtime::kFunctionFirstExecution); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kCompileOptimized, Runtime::kCompileOptimized_NotConcurrent); TailCallRuntimeIfMarkerEquals( masm, optimized_code_entry, OptimizationMarker::kCompileOptimizedConcurrent, Runtime::kCompileOptimized_Concurrent); { // Otherwise, the marker is InOptimizationQueue, so fall through hoping // that an interrupt will eventually update the slot with optimized code. if (FLAG_debug_code) { __ cmp( optimized_code_entry, Operand(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue))); __ Assert(eq, AbortReason::kExpectedOptimizationSentinel); } __ jmp(&fallthrough); } } { // Optimized code slot is a weak reference. __ bind(&optimized_code_slot_is_weak_ref); __ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough); // Check if the optimized code is marked for deopt. If it is, call the // runtime to clear it. Label found_deoptimized_code; __ ldr(scratch2, FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); __ ldr( scratch2, FieldMemOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset)); __ tst(scratch2, Operand(1 << Code::kMarkedForDeoptimizationBit)); __ b(ne, &found_deoptimized_code); // Optimized code is good, get it into the closure and link the closure into // the optimized functions list, then tail call the optimized code. // The feedback vector is no longer used, so re-use it as a scratch // register. ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, scratch2, scratch3, feedback_vector); static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch"); __ add(r2, optimized_code_entry, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(r2); // Optimized code slot contains deoptimized code, evict it and re-enter the // closure's code. __ bind(&found_deoptimized_code); GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); } // Fall-through if the optimized code cell is clear and there is no // optimization marker. __ bind(&fallthrough); } // Advance the current bytecode offset. This simulates what all bytecode // handlers do upon completion of the underlying operation. Will bail out to a // label if the bytecode (without prefix) is a return bytecode. static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, Register bytecode_array, Register bytecode_offset, Register bytecode, Register scratch1, Label* if_return) { Register bytecode_size_table = scratch1; DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, bytecode)); __ Move(bytecode_size_table, ExternalReference::bytecode_size_table_address()); // Check if the bytecode is a Wide or ExtraWide prefix bytecode. Label process_bytecode, extra_wide; STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide)); STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide)); STATIC_ASSERT(3 == static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide)); __ cmp(bytecode, Operand(0x3)); __ b(hi, &process_bytecode); __ tst(bytecode, Operand(0x1)); __ b(ne, &extra_wide); // Load the next bytecode and update table to the wide scaled table. __ add(bytecode_offset, bytecode_offset, Operand(1)); __ ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset)); __ add(bytecode_size_table, bytecode_size_table, Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ jmp(&process_bytecode); __ bind(&extra_wide); // Load the next bytecode and update table to the extra wide scaled table. __ add(bytecode_offset, bytecode_offset, Operand(1)); __ ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset)); __ add(bytecode_size_table, bytecode_size_table, Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ bind(&process_bytecode); // Bailout to the return label if this is a return bytecode. #define JUMP_IF_EQUAL(NAME) \ __ cmp(bytecode, Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \ __ b(if_return, eq); RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) #undef JUMP_IF_EQUAL // Otherwise, load the size of the current bytecode and advance the offset. __ ldr(scratch1, MemOperand(bytecode_size_table, bytecode, LSL, 2)); __ add(bytecode_offset, bytecode_offset, scratch1); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o r1: the JS function object being called. // o r3: the incoming new target or generator object // o cp: our context // o fp: the caller's frame pointer // o sp: stack pointer // o lr: return address // // The function builds an interpreter frame. See InterpreterFrameConstants in // frames.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { ProfileEntryHookStub::MaybeCallEntryHook(masm); Register closure = r1; Register feedback_vector = r2; // Load the feedback vector from the closure. __ ldr(feedback_vector, FieldMemOperand(closure, JSFunction::kFeedbackCellOffset)); __ ldr(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); // Read off the optimized code slot in the feedback vector, and if there // is optimized code or an optimization marker, call that instead. MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, r4, r6, r5); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ PushStandardFrame(closure); // Get the bytecode array from the function object and load it into // kInterpreterBytecodeArrayRegister. __ ldr(r0, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); __ ldr(kInterpreterBytecodeArrayRegister, FieldMemOperand(r0, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, r4); // Increment invocation count for the function. __ ldr(r9, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); __ add(r9, r9, Operand(1)); __ str(r9, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); // Check function data field is actually a BytecodeArray object. if (FLAG_debug_code) { __ SmiTst(kInterpreterBytecodeArrayRegister); __ Assert( ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); __ CompareObjectType(kInterpreterBytecodeArrayRegister, r0, no_reg, BYTECODE_ARRAY_TYPE); __ Assert( eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Reset code age. __ mov(r9, Operand(BytecodeArray::kNoAgeBytecodeAge)); __ strb(r9, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kBytecodeAgeOffset)); // Load the initial bytecode offset. __ mov(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); // Push bytecode array and Smi tagged bytecode array offset. __ SmiTag(r0, kInterpreterBytecodeOffsetRegister); __ Push(kInterpreterBytecodeArrayRegister, r0); // Allocate the local and temporary register file on the stack. { // Load frame size from the BytecodeArray object. __ ldr(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ sub(r9, sp, Operand(r4)); __ LoadRoot(r2, Heap::kRealStackLimitRootIndex); __ cmp(r9, Operand(r2)); __ b(hs, &ok); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. Label loop_header; Label loop_check; __ LoadRoot(r9, Heap::kUndefinedValueRootIndex); __ b(&loop_check, al); __ bind(&loop_header); // TODO(rmcilroy): Consider doing more than one push per loop iteration. __ push(r9); // Continue loop if not done. __ bind(&loop_check); __ sub(r4, r4, Operand(kPointerSize), SetCC); __ b(&loop_header, ge); } // If the bytecode array has a valid incoming new target or generator object // register, initialize it with incoming value which was passed in r3. __ ldr(r9, FieldMemOperand( kInterpreterBytecodeArrayRegister, BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); __ cmp(r9, Operand::Zero()); __ str(r3, MemOperand(fp, r9, LSL, kPointerSizeLog2), ne); // Load accumulator with undefined. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); // Load the dispatch table into a register and dispatch to the bytecode // handler at the current bytecode offset. Label do_dispatch; __ bind(&do_dispatch); __ mov(kInterpreterDispatchTableRegister, Operand(ExternalReference::interpreter_dispatch_table_address( masm->isolate()))); __ ldrb(r4, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); __ ldr( kJavaScriptCallCodeStartRegister, MemOperand(kInterpreterDispatchTableRegister, r4, LSL, kPointerSizeLog2)); __ Call(kJavaScriptCallCodeStartRegister); masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); // Any returns to the entry trampoline are either due to the return bytecode // or the interpreter tail calling a builtin and then a dispatch. // Get bytecode array and bytecode offset from the stack frame. __ ldr(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ ldr(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Either return, or advance to the next bytecode and dispatch. Label do_return; __ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, r1, r2, &do_return); __ jmp(&do_dispatch); __ bind(&do_return); // The return value is in r0. LeaveInterpreterFrame(masm, r2); __ Jump(lr); } static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register num_args, Register index, Register limit, Register scratch) { // Find the address of the last argument. __ mov(limit, num_args); __ mov(limit, Operand(limit, LSL, kPointerSizeLog2)); __ sub(limit, index, limit); Label loop_header, loop_check; __ b(al, &loop_check); __ bind(&loop_header); __ ldr(scratch, MemOperand(index, -kPointerSize, PostIndex)); __ push(scratch); __ bind(&loop_check); __ cmp(index, limit); __ b(gt, &loop_header); } // static void Builtins::Generate_InterpreterPushArgsThenCallImpl( MacroAssembler* masm, ConvertReceiverMode receiver_mode, InterpreterPushArgsMode mode) { DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r2 : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- r1 : the target to call (can be any Object). // ----------------------------------- Label stack_overflow; __ add(r3, r0, Operand(1)); // Add one for receiver. Generate_StackOverflowCheck(masm, r3, r4, &stack_overflow); // Push "undefined" as the receiver arg if we need to. if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { __ PushRoot(Heap::kUndefinedValueRootIndex); __ mov(r3, r0); // Argument count is correct. } // Push the arguments. r2, r4, r5 will be modified. Generate_InterpreterPushArgs(masm, r3, r2, r4, r5); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(r2); // Pass the spread in a register __ sub(r0, r0, Operand(1)); // Subtract one for spread } // Call the target. if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), RelocInfo::CODE_TARGET); } else { __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ bkpt(0); } } // static void Builtins::Generate_InterpreterPushArgsThenConstructImpl( MacroAssembler* masm, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- r0 : argument count (not including receiver) // -- r3 : new target // -- r1 : constructor to call // -- r2 : allocation site feedback if available, undefined otherwise. // -- r4 : address of the first argument // ----------------------------------- Label stack_overflow; // Push a slot for the receiver to be constructed. __ mov(r5, Operand::Zero()); __ push(r5); Generate_StackOverflowCheck(masm, r0, r5, &stack_overflow); // Push the arguments. r5, r4, r6 will be modified. Generate_InterpreterPushArgs(masm, r0, r4, r5, r6); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(r2); // Pass the spread in a register __ sub(r0, r0, Operand(1)); // Subtract one for spread } else { __ AssertUndefinedOrAllocationSite(r2, r5); } if (mode == InterpreterPushArgsMode::kArrayFunction) { __ AssertFunction(r1); // Tail call to the array construct stub (still in the caller // context at this point). Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl); __ Jump(code, RelocInfo::CODE_TARGET); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Call the constructor with r0, r1, and r3 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), RelocInfo::CODE_TARGET); } else { DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); // Call the constructor with r0, r1, and r3 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ bkpt(0); } } static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Label builtin_trampoline, trampoline_loaded; Smi* interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); // If the SFI function_data is an InterpreterData, get the trampoline stored // in it, otherwise get the trampoline from the builtins list. __ ldr(r2, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); __ ldr(r2, FieldMemOperand(r2, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kFunctionDataOffset)); __ CompareObjectType(r2, kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister, INTERPRETER_DATA_TYPE); __ b(ne, &builtin_trampoline); __ ldr(r2, FieldMemOperand(r2, InterpreterData::kInterpreterTrampolineOffset)); __ b(&trampoline_loaded); __ bind(&builtin_trampoline); __ Move(r2, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline)); __ bind(&trampoline_loaded); __ add(lr, r2, Operand(interpreter_entry_return_pc_offset->value() + Code::kHeaderSize - kHeapObjectTag)); // Initialize the dispatch table register. __ Move( kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); // Get the bytecode array pointer from the frame. __ ldr(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ SmiTst(kInterpreterBytecodeArrayRegister); __ Assert( ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); __ CompareObjectType(kInterpreterBytecodeArrayRegister, r1, no_reg, BYTECODE_ARRAY_TYPE); __ Assert( eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Get the target bytecode offset from the frame. __ ldr(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Dispatch to the target bytecode. UseScratchRegisterScope temps(masm); Register scratch = temps.Acquire(); __ ldrb(scratch, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); __ ldr(kJavaScriptCallCodeStartRegister, MemOperand(kInterpreterDispatchTableRegister, scratch, LSL, kPointerSizeLog2)); __ Jump(kJavaScriptCallCodeStartRegister); } void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { // Get bytecode array and bytecode offset from the stack frame. __ ldr(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ ldr(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Load the current bytecode. __ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); // Advance to the next bytecode. Label if_return; AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, r1, r2, &if_return); // Convert new bytecode offset to a Smi and save in the stackframe. __ SmiTag(r2, kInterpreterBytecodeOffsetRegister); __ str(r2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); Generate_InterpreterEnterBytecode(masm); // We should never take the if_return path. __ bind(&if_return); __ Abort(AbortReason::kInvalidBytecodeAdvance); } void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { Generate_InterpreterEnterBytecode(masm); } void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : argument count (preserved for callee) // -- r1 : new target (preserved for callee) // -- r3 : target function (preserved for callee) // ----------------------------------- Label failed; { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve argument count for later compare. __ Move(r4, r0); // Push the number of arguments to the callee. __ SmiTag(r0); __ push(r0); // Push a copy of the target function and the new target. __ push(r1); __ push(r3); // The function. __ push(r1); // Copy arguments from caller (stdlib, foreign, heap). Label args_done; for (int j = 0; j < 4; ++j) { Label over; if (j < 3) { __ cmp(r4, Operand(j)); __ b(ne, &over); } for (int i = j - 1; i >= 0; --i) { __ ldr(r4, MemOperand(fp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize)); __ push(r4); } for (int i = 0; i < 3 - j; ++i) { __ PushRoot(Heap::kUndefinedValueRootIndex); } if (j < 3) { __ jmp(&args_done); __ bind(&over); } } __ bind(&args_done); // Call runtime, on success unwind frame, and parent frame. __ CallRuntime(Runtime::kInstantiateAsmJs, 4); // A smi 0 is returned on failure, an object on success. __ JumpIfSmi(r0, &failed); __ Drop(2); __ pop(r4); __ SmiUntag(r4); scope.GenerateLeaveFrame(); __ add(r4, r4, Operand(1)); __ Drop(r4); __ Ret(); __ bind(&failed); // Restore target function and new target. __ pop(r3); __ pop(r1); __ pop(r0); __ SmiUntag(r0); } // On failure, tail call back to regular js by re-calling the function // which has be reset to the compile lazy builtin. static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch"); __ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset)); __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(r2); } namespace { void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, bool java_script_builtin, bool with_result) { const RegisterConfiguration* config(RegisterConfiguration::Default()); int allocatable_register_count = config->num_allocatable_general_registers(); if (with_result) { // Overwrite the hole inserted by the deoptimizer with the return value from // the LAZY deopt point. __ str(r0, MemOperand( sp, config->num_allocatable_general_registers() * kPointerSize + BuiltinContinuationFrameConstants::kFixedFrameSize)); } for (int i = allocatable_register_count - 1; i >= 0; --i) { int code = config->GetAllocatableGeneralCode(i); __ Pop(Register::from_code(code)); if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { __ SmiUntag(Register::from_code(code)); } } __ ldr(fp, MemOperand( sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); UseScratchRegisterScope temps(masm); Register scratch = temps.Acquire(); __ Pop(scratch); __ add(sp, sp, Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); __ Pop(lr); __ add(pc, scratch, Operand(Code::kHeaderSize - kHeapObjectTag)); } } // namespace void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, false); } void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, true); } void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, false); } void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, true); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kNotifyDeoptimized); } DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r0.code()); __ pop(r0); __ Ret(); } static void Generate_OnStackReplacementHelper(MacroAssembler* masm, bool has_handler_frame) { // Lookup the function in the JavaScript frame. if (has_handler_frame) { __ ldr(r0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ldr(r0, MemOperand(r0, JavaScriptFrameConstants::kFunctionOffset)); } else { __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(r0); __ CallRuntime(Runtime::kCompileForOnStackReplacement); } // If the code object is null, just return to the caller. Label skip; __ cmp(r0, Operand(Smi::kZero)); __ b(ne, &skip); __ Ret(); __ bind(&skip); // Drop any potential handler frame that is be sitting on top of the actual // JavaScript frame. This is the case then OSR is triggered from bytecode. if (has_handler_frame) { __ LeaveFrame(StackFrame::STUB); } // Load deoptimization data from the code object. // <deopt_data> = <code>[#deoptimization_data_offset] __ ldr(r1, FieldMemOperand(r0, Code::kDeoptimizationDataOffset)); { ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ add(r0, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start // Load the OSR entrypoint offset from the deoptimization data. // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] __ ldr(r1, FieldMemOperand(r1, FixedArray::OffsetOfElementAt( DeoptimizationData::kOsrPcOffsetIndex))); // Compute the target address = code start + osr_offset __ add(lr, r0, Operand::SmiUntag(r1)); // And "return" to the OSR entry point of the function. __ Ret(); } } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, false); } void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, true); } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : argc // -- sp[0] : argArray // -- sp[4] : thisArg // -- sp[8] : receiver // ----------------------------------- // 1. Load receiver into r1, argArray into r2 (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); __ mov(r2, r5); __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); // receiver __ sub(r4, r0, Operand(1), SetCC); __ ldr(r5, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // thisArg __ sub(r4, r4, Operand(1), SetCC, ge); __ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // argArray __ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2)); __ str(r5, MemOperand(sp, 0)); } // ----------- S t a t e ------------- // -- r2 : argArray // -- r1 : receiver // -- sp[0] : thisArg // ----------------------------------- // 2. We don't need to check explicitly for callable receiver here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(r2, Heap::kNullValueRootIndex, &no_arguments); __ JumpIfRoot(r2, Heap::kUndefinedValueRootIndex, &no_arguments); // 4a. Apply the receiver to the given argArray. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. __ bind(&no_arguments); { __ mov(r0, Operand(0)); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // 1. Make sure we have at least one argument. // r0: actual number of arguments { Label done; __ cmp(r0, Operand::Zero()); __ b(ne, &done); __ PushRoot(Heap::kUndefinedValueRootIndex); __ add(r0, r0, Operand(1)); __ bind(&done); } // 2. Get the callable to call (passed as receiver) from the stack. // r0: actual number of arguments __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. // r0: actual number of arguments // r1: callable { Register scratch = r3; Label loop; // Calculate the copy start address (destination). Copy end address is sp. __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2)); __ bind(&loop); __ ldr(scratch, MemOperand(r2, -kPointerSize)); __ str(scratch, MemOperand(r2)); __ sub(r2, r2, Operand(kPointerSize)); __ cmp(r2, sp); __ b(ne, &loop); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ sub(r0, r0, Operand(1)); __ pop(); } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : argc // -- sp[0] : argumentsList // -- sp[4] : thisArgument // -- sp[8] : target // -- sp[12] : receiver // ----------------------------------- // 1. Load target into r1 (if present), argumentsList into r2 (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); __ mov(r5, r1); __ mov(r2, r1); __ sub(r4, r0, Operand(1), SetCC); __ ldr(r1, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // target __ sub(r4, r4, Operand(1), SetCC, ge); __ ldr(r5, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // thisArgument __ sub(r4, r4, Operand(1), SetCC, ge); __ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // argumentsList __ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2)); __ str(r5, MemOperand(sp, 0)); } // ----------- S t a t e ------------- // -- r2 : argumentsList // -- r1 : target // -- sp[0] : thisArgument // ----------------------------------- // 2. We don't need to check explicitly for callable target here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Apply the target to the given argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : argc // -- sp[0] : new.target (optional) // -- sp[4] : argumentsList // -- sp[8] : target // -- sp[12] : receiver // ----------------------------------- // 1. Load target into r1 (if present), argumentsList into r2 (if present), // new.target into r3 (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); __ mov(r2, r1); __ str(r2, MemOperand(sp, r0, LSL, kPointerSizeLog2)); // receiver __ sub(r4, r0, Operand(1), SetCC); __ ldr(r1, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // target __ mov(r3, r1); // new.target defaults to target __ sub(r4, r4, Operand(1), SetCC, ge); __ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // argumentsList __ sub(r4, r4, Operand(1), SetCC, ge); __ ldr(r3, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // new.target __ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2)); } // ----------- S t a t e ------------- // -- r2 : argumentsList // -- r3 : new.target // -- r1 : target // -- sp[0] : receiver (undefined) // ----------------------------------- // 2. We don't need to check explicitly for constructor target here, // since that's the first thing the Construct/ConstructWithArrayLike // builtins will do. // 3. We don't need to check explicitly for constructor new.target here, // since that's the second thing the Construct/ConstructWithArrayLike // builtins will do. // 4. Construct the target with the given new.target and argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), RelocInfo::CODE_TARGET); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ SmiTag(r0); __ mov(r4, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | fp.bit() | lr.bit()); __ Push(Smi::kZero); // Padding. __ add(fp, sp, Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp)); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then tear down the parameters. __ ldr(r1, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR); __ add(sp, sp, Operand::PointerOffsetFromSmiKey(r1)); __ add(sp, sp, Operand(kPointerSize)); // adjust for receiver } // static void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, Handle<Code> code) { // ----------- S t a t e ------------- // -- r1 : target // -- r0 : number of parameters on the stack (not including the receiver) // -- r2 : arguments list (a FixedArray) // -- r4 : len (number of elements to push from args) // -- r3 : new.target (for [[Construct]]) // ----------------------------------- Register scratch = r8; if (masm->emit_debug_code()) { // Allow r2 to be a FixedArray, or a FixedDoubleArray if r4 == 0. Label ok, fail; __ AssertNotSmi(r2); __ ldr(scratch, FieldMemOperand(r2, HeapObject::kMapOffset)); __ ldrh(r6, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); __ cmp(r6, Operand(FIXED_ARRAY_TYPE)); __ b(eq, &ok); __ cmp(r6, Operand(FIXED_DOUBLE_ARRAY_TYPE)); __ b(ne, &fail); __ cmp(r4, Operand(0)); __ b(eq, &ok); // Fall through. __ bind(&fail); __ Abort(AbortReason::kOperandIsNotAFixedArray); __ bind(&ok); } // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label done; __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex); // The stack might already be overflowed here which will cause 'scratch' to // become negative. __ sub(scratch, sp, scratch); // Check if the arguments will overflow the stack. __ cmp(scratch, Operand(r4, LSL, kPointerSizeLog2)); __ b(gt, &done); // Signed comparison. __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&done); } // Push arguments onto the stack (thisArgument is already on the stack). { __ mov(r6, Operand(0)); __ LoadRoot(r5, Heap::kTheHoleValueRootIndex); Label done, loop; __ bind(&loop); __ cmp(r6, r4); __ b(eq, &done); __ add(scratch, r2, Operand(r6, LSL, kPointerSizeLog2)); __ ldr(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize)); __ cmp(scratch, r5); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex, eq); __ Push(scratch); __ add(r6, r6, Operand(1)); __ b(&loop); __ bind(&done); __ add(r0, r0, r6); } // Tail-call to the actual Call or Construct builtin. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, CallOrConstructMode mode, Handle<Code> code) { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r3 : the new.target (for [[Construct]] calls) // -- r1 : the target to call (can be any Object) // -- r2 : start index (to support rest parameters) // ----------------------------------- Register scratch = r6; // Check if new.target has a [[Construct]] internal method. if (mode == CallOrConstructMode::kConstruct) { Label new_target_constructor, new_target_not_constructor; __ JumpIfSmi(r3, &new_target_not_constructor); __ ldr(scratch, FieldMemOperand(r3, HeapObject::kMapOffset)); __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); __ tst(scratch, Operand(Map::IsConstructorBit::kMask)); __ b(ne, &new_target_constructor); __ bind(&new_target_not_constructor); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ Push(r3); __ CallRuntime(Runtime::kThrowNotConstructor); } __ bind(&new_target_constructor); } // Check if we have an arguments adaptor frame below the function frame. Label arguments_adaptor, arguments_done; __ ldr(r4, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ldr(scratch, MemOperand(r4, CommonFrameConstants::kContextOrFrameTypeOffset)); __ cmp(scratch, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ b(eq, &arguments_adaptor); { __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ ldr(r5, FieldMemOperand(r5, JSFunction::kSharedFunctionInfoOffset)); __ ldrh(r5, FieldMemOperand( r5, SharedFunctionInfo::kFormalParameterCountOffset)); __ mov(r4, fp); } __ b(&arguments_done); __ bind(&arguments_adaptor); { // Load the length from the ArgumentsAdaptorFrame. __ ldr(r5, MemOperand(r4, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(r5); } __ bind(&arguments_done); Label stack_done, stack_overflow; __ sub(r5, r5, r2, SetCC); __ b(le, &stack_done); { // Check for stack overflow. Generate_StackOverflowCheck(masm, r5, r2, &stack_overflow); // Forward the arguments from the caller frame. { Label loop; __ add(r4, r4, Operand(kPointerSize)); __ add(r0, r0, r5); __ bind(&loop); { __ ldr(scratch, MemOperand(r4, r5, LSL, kPointerSizeLog2)); __ push(scratch); __ sub(r5, r5, Operand(1), SetCC); __ b(ne, &loop); } } } __ b(&stack_done); __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&stack_done); // Tail-call to the {code} handler. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(r1); // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that the function is not a "classConstructor". Label class_constructor; __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kFlagsOffset)); __ tst(r3, Operand(SharedFunctionInfo::IsClassConstructorBit::kMask)); __ b(ne, &class_constructor); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kFlagsOffset)); __ tst(r3, Operand(SharedFunctionInfo::IsNativeBit::kMask | SharedFunctionInfo::IsStrictBit::kMask)); __ b(ne, &done_convert); { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : the function to call (checked to be a JSFunction) // -- r2 : the shared function info. // -- cp : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(r3); } else { Label convert_to_object, convert_receiver; __ ldr(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2)); __ JumpIfSmi(r3, &convert_to_object); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(r3, r4, r4, FIRST_JS_RECEIVER_TYPE); __ b(hs, &done_convert); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(r3, Heap::kUndefinedValueRootIndex, &convert_global_proxy); __ JumpIfNotRoot(r3, Heap::kNullValueRootIndex, &convert_to_object); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(r3); } __ b(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ SmiTag(r0); __ Push(r0, r1); __ mov(r0, r3); __ Push(cp); __ Call(BUILTIN_CODE(masm->isolate(), ToObject), RelocInfo::CODE_TARGET); __ Pop(cp); __ mov(r3, r0); __ Pop(r0, r1); __ SmiUntag(r0); } __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ str(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2)); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : the function to call (checked to be a JSFunction) // -- r2 : the shared function info. // -- cp : the function context. // ----------------------------------- __ ldrh(r2, FieldMemOperand(r2, SharedFunctionInfo::kFormalParameterCountOffset)); ParameterCount actual(r0); ParameterCount expected(r2); __ InvokeFunctionCode(r1, no_reg, expected, actual, JUMP_FUNCTION); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ push(r1); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); } } namespace { void Generate_PushBoundArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : target (checked to be a JSBoundFunction) // -- r3 : new.target (only in case of [[Construct]]) // ----------------------------------- // Load [[BoundArguments]] into r2 and length of that into r4. Label no_bound_arguments; __ ldr(r2, FieldMemOperand(r1, JSBoundFunction::kBoundArgumentsOffset)); __ ldr(r4, FieldMemOperand(r2, FixedArray::kLengthOffset)); __ SmiUntag(r4); __ cmp(r4, Operand(0)); __ b(eq, &no_bound_arguments); { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : target (checked to be a JSBoundFunction) // -- r2 : the [[BoundArguments]] (implemented as FixedArray) // -- r3 : new.target (only in case of [[Construct]]) // -- r4 : the number of [[BoundArguments]] // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ sub(sp, sp, Operand(r4, LSL, kPointerSizeLog2)); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack // limit". __ CompareRoot(sp, Heap::kRealStackLimitRootIndex); __ b(gt, &done); // Signed comparison. // Restore the stack pointer. __ add(sp, sp, Operand(r4, LSL, kPointerSizeLog2)); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } Register scratch = r6; // Relocate arguments down the stack. { Label loop, done_loop; __ mov(r5, Operand(0)); __ bind(&loop); __ cmp(r5, r0); __ b(gt, &done_loop); __ ldr(scratch, MemOperand(sp, r4, LSL, kPointerSizeLog2)); __ str(scratch, MemOperand(sp, r5, LSL, kPointerSizeLog2)); __ add(r4, r4, Operand(1)); __ add(r5, r5, Operand(1)); __ b(&loop); __ bind(&done_loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop; __ ldr(r4, FieldMemOperand(r2, FixedArray::kLengthOffset)); __ SmiUntag(r4); __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ bind(&loop); __ sub(r4, r4, Operand(1), SetCC); __ ldr(scratch, MemOperand(r2, r4, LSL, kPointerSizeLog2)); __ str(scratch, MemOperand(sp, r0, LSL, kPointerSizeLog2)); __ add(r0, r0, Operand(1)); __ b(gt, &loop); } } __ bind(&no_bound_arguments); } } // namespace // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(r1); // Patch the receiver to [[BoundThis]]. __ ldr(r3, FieldMemOperand(r1, JSBoundFunction::kBoundThisOffset)); __ str(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2)); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Call the [[BoundTargetFunction]] via the Call builtin. __ ldr(r1, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_function, non_smi; __ JumpIfSmi(r1, &non_callable); __ bind(&non_smi); __ CompareObjectType(r1, r4, r5, JS_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET, eq); __ cmp(r5, Operand(JS_BOUND_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), RelocInfo::CODE_TARGET, eq); // Check if target has a [[Call]] internal method. __ ldrb(r4, FieldMemOperand(r4, Map::kBitFieldOffset)); __ tst(r4, Operand(Map::IsCallableBit::kMask)); __ b(eq, &non_callable); // Check if target is a proxy and call CallProxy external builtin __ cmp(r5, Operand(JS_PROXY_TYPE)); __ b(ne, &non_function); __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ bind(&non_function); // Overwrite the original receiver the (original) target. __ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); // Let the "call_as_function_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r1); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r1); __ CallRuntime(Runtime::kThrowCalledNonCallable); } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : the constructor to call (checked to be a JSFunction) // -- r3 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(r1); __ AssertFunction(r1); // Calling convention for function specific ConstructStubs require // r2 to contain either an AllocationSite or undefined. __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); Label call_generic_stub; // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset)); __ tst(r4, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); __ b(eq, &call_generic_stub); __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), RelocInfo::CODE_TARGET); __ bind(&call_generic_stub); __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : the function to call (checked to be a JSBoundFunction) // -- r3 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(r1); __ AssertBoundFunction(r1); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Patch new.target to [[BoundTargetFunction]] if new.target equals target. __ cmp(r1, r3); __ ldr(r3, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset), eq); // Construct the [[BoundTargetFunction]] via the Construct builtin. __ ldr(r1, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : the constructor to call (can be any Object) // -- r3 : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Check if target is a Smi. Label non_constructor, non_proxy; __ JumpIfSmi(r1, &non_constructor); // Check if target has a [[Construct]] internal method. __ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset)); __ ldrb(r2, FieldMemOperand(r4, Map::kBitFieldOffset)); __ tst(r2, Operand(Map::IsConstructorBit::kMask)); __ b(eq, &non_constructor); // Dispatch based on instance type. __ CompareInstanceType(r4, r5, JS_FUNCTION_TYPE); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), RelocInfo::CODE_TARGET, eq); // Only dispatch to bound functions after checking whether they are // constructors. __ cmp(r5, Operand(JS_BOUND_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), RelocInfo::CODE_TARGET, eq); // Only dispatch to proxies after checking whether they are constructors. __ cmp(r5, Operand(JS_PROXY_TYPE)); __ b(ne, &non_proxy); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET); // Called Construct on an exotic Object with a [[Construct]] internal method. __ bind(&non_proxy); { // Overwrite the original receiver with the (original) target. __ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r1); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), RelocInfo::CODE_TARGET); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : actual number of arguments // -- r1 : function (passed through to callee) // -- r2 : expected number of arguments // -- r3 : new target (passed through to callee) // ----------------------------------- Label invoke, dont_adapt_arguments, stack_overflow; Label enough, too_few; __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); __ b(eq, &dont_adapt_arguments); __ cmp(r0, r2); __ b(lt, &too_few); Register scratch = r5; { // Enough parameters: actual >= expected __ bind(&enough); EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, r2, scratch, &stack_overflow); // Calculate copy start address into r0 and copy end address into r4. // r0: actual number of arguments as a smi // r1: function // r2: expected number of arguments // r3: new target (passed through to callee) __ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0)); // adjust for return address and receiver __ add(r0, r0, Operand(2 * kPointerSize)); __ sub(r4, r0, Operand(r2, LSL, kPointerSizeLog2)); // Copy the arguments (including the receiver) to the new stack frame. // r0: copy start address // r1: function // r2: expected number of arguments // r3: new target (passed through to callee) // r4: copy end address Label copy; __ bind(©); __ ldr(scratch, MemOperand(r0, 0)); __ push(scratch); __ cmp(r0, r4); // Compare before moving to next argument. __ sub(r0, r0, Operand(kPointerSize)); __ b(ne, ©); __ b(&invoke); } { // Too few parameters: Actual < expected __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, r2, scratch, &stack_overflow); // Calculate copy start address into r0 and copy end address is fp. // r0: actual number of arguments as a smi // r1: function // r2: expected number of arguments // r3: new target (passed through to callee) __ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0)); // Copy the arguments (including the receiver) to the new stack frame. // r0: copy start address // r1: function // r2: expected number of arguments // r3: new target (passed through to callee) Label copy; __ bind(©); // Adjust load for return address and receiver. __ ldr(scratch, MemOperand(r0, 2 * kPointerSize)); __ push(scratch); __ cmp(r0, fp); // Compare before moving to next argument. __ sub(r0, r0, Operand(kPointerSize)); __ b(ne, ©); // Fill the remaining expected arguments with undefined. // r1: function // r2: expected number of arguments // r3: new target (passed through to callee) __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ sub(r4, fp, Operand(r2, LSL, kPointerSizeLog2)); // Adjust for frame. __ sub(r4, r4, Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); Label fill; __ bind(&fill); __ push(scratch); __ cmp(sp, r4); __ b(ne, &fill); } // Call the entry point. __ bind(&invoke); __ mov(r0, r2); // r0 : expected number of arguments // r1 : function (passed through to callee) // r3 : new target (passed through to callee) static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch"); __ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset)); __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Call(r2); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ Jump(lr); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch"); __ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset)); __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(r2); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ bkpt(0); } } void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { // The function index was put in r4 by the jump table trampoline. // Convert to Smi for the runtime call. __ SmiTag(r4, r4); { HardAbortScope hard_abort(masm); // Avoid calls to Abort. FrameAndConstantPoolScope scope(masm, StackFrame::WASM_COMPILE_LAZY); // Save all parameter registers (see wasm-linkage.cc). They might be // overwritten in the runtime call below. We don't have any callee-saved // registers in wasm, so no need to store anything else. constexpr RegList gp_regs = Register::ListOf<r0, r1, r2, r3>(); constexpr DwVfpRegister lowest_fp_reg = d0; constexpr DwVfpRegister highest_fp_reg = d7; __ stm(db_w, sp, gp_regs); __ vstm(db_w, sp, lowest_fp_reg, highest_fp_reg); // Pass instance and function index as explicit arguments to the runtime // function. __ push(kWasmInstanceRegister); __ push(r4); // Load the correct CEntry builtin from the instance object. __ ldr(r2, FieldMemOperand(kWasmInstanceRegister, WasmInstanceObject::kCEntryStubOffset)); // Initialize the JavaScript context with 0. CEntry will use it to // set the current context on the isolate. __ Move(cp, Smi::kZero); __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, r2); // The entrypoint address is the return value. __ mov(r8, kReturnRegister0); // Restore registers. __ vldm(ia_w, sp, lowest_fp_reg, highest_fp_reg); __ ldm(ia_w, sp, gp_regs); } // Finally, jump to the entrypoint. __ Jump(r8); } void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, SaveFPRegsMode save_doubles, ArgvMode argv_mode, bool builtin_exit_frame) { // Called from JavaScript; parameters are on stack as if calling JS function. // r0: number of arguments including receiver // r1: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) // // If argv_mode == kArgvInRegister: // r2: pointer to the first argument ProfileEntryHookStub::MaybeCallEntryHook(masm); __ mov(r5, Operand(r1)); if (argv_mode == kArgvInRegister) { // Move argv into the correct register. __ mov(r1, Operand(r2)); } else { // Compute the argv pointer in a callee-saved register. __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2)); __ sub(r1, r1, Operand(kPointerSize)); } // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); __ EnterExitFrame( save_doubles == kSaveFPRegs, 0, builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); // Store a copy of argc in callee-saved registers for later. __ mov(r4, Operand(r0)); // r0, r4: number of arguments including receiver (C callee-saved) // r1: pointer to the first argument (C callee-saved) // r5: pointer to builtin function (C callee-saved) #if V8_HOST_ARCH_ARM int frame_alignment = MacroAssembler::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (FLAG_debug_code) { if (frame_alignment > kPointerSize) { Label alignment_as_expected; DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); __ tst(sp, Operand(frame_alignment_mask)); __ b(eq, &alignment_as_expected); // Don't use Check here, as it will call Runtime_Abort re-entering here. __ stop("Unexpected alignment"); __ bind(&alignment_as_expected); } } #endif // Call C built-in. // r0 = argc, r1 = argv, r2 = isolate __ Move(r2, ExternalReference::isolate_address(masm->isolate())); // To let the GC traverse the return address of the exit frames, we need to // know where the return address is. CEntry is unmovable, so // we can store the address on the stack to be able to find it again and // we never have to restore it, because it will not change. // Compute the return address in lr to return to after the jump below. Pc is // already at '+ 8' from the current instruction but return is after three // instructions so add another 4 to pc to get the return address. { // Prevent literal pool emission before return address. Assembler::BlockConstPoolScope block_const_pool(masm); __ add(lr, pc, Operand(4)); __ str(lr, MemOperand(sp)); __ Call(r5); } // Result returned in r0 or r1:r0 - do not destroy these registers! // Check result for exception sentinel. Label exception_returned; __ CompareRoot(r0, Heap::kExceptionRootIndex); __ b(eq, &exception_returned); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { Label okay; ExternalReference pending_exception_address = ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, masm->isolate()); __ Move(r3, pending_exception_address); __ ldr(r3, MemOperand(r3)); __ CompareRoot(r3, Heap::kTheHoleValueRootIndex); // Cannot use check here as it attempts to generate call into runtime. __ b(eq, &okay); __ stop("Unexpected pending exception"); __ bind(&okay); } // Exit C frame and return. // r0:r1: result // sp: stack pointer // fp: frame pointer Register argc = argv_mode == kArgvInRegister // We don't want to pop arguments so set argc to no_reg. ? no_reg // Callee-saved register r4 still holds argc. : r4; __ LeaveExitFrame(save_doubles == kSaveFPRegs, argc); __ mov(pc, lr); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); ExternalReference pending_handler_entrypoint_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); ExternalReference pending_handler_fp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); ExternalReference pending_handler_sp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); // Ask the runtime for help to determine the handler. This will set r0 to // contain the current pending exception, don't clobber it. ExternalReference find_handler = ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(3, 0); __ mov(r0, Operand(0)); __ mov(r1, Operand(0)); __ Move(r2, ExternalReference::isolate_address(masm->isolate())); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ Move(cp, pending_handler_context_address); __ ldr(cp, MemOperand(cp)); __ Move(sp, pending_handler_sp_address); __ ldr(sp, MemOperand(sp)); __ Move(fp, pending_handler_fp_address); __ ldr(fp, MemOperand(fp)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (cp == 0) for non-JS frames. __ cmp(cp, Operand(0)); __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne); // Reset the masking register. This is done independent of the underlying // feature flag {FLAG_branch_load_poisoning} to make the snapshot work with // both configurations. It is safe to always do this, because the underlying // register is caller-saved and can be arbitrarily clobbered. __ ResetSpeculationPoisonRegister(); // Compute the handler entry address and jump to it. ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ Move(r1, pending_handler_entrypoint_address); __ ldr(r1, MemOperand(r1)); __ Jump(r1); } void Builtins::Generate_DoubleToI(MacroAssembler* masm) { Label negate, done; HardAbortScope hard_abort(masm); // Avoid calls to Abort. UseScratchRegisterScope temps(masm); Register result_reg = r7; Register double_low = GetRegisterThatIsNotOneOf(result_reg); Register double_high = GetRegisterThatIsNotOneOf(result_reg, double_low); LowDwVfpRegister double_scratch = temps.AcquireLowD(); // Save the old values from these temporary registers on the stack. __ Push(result_reg, double_high, double_low); // Account for saved regs. const int kArgumentOffset = 3 * kPointerSize; MemOperand input_operand(sp, kArgumentOffset); MemOperand result_operand = input_operand; // Load double input. __ vldr(double_scratch, input_operand); __ vmov(double_low, double_high, double_scratch); // Try to convert with a FPU convert instruction. This handles all // non-saturating cases. __ TryInlineTruncateDoubleToI(result_reg, double_scratch, &done); Register scratch = temps.Acquire(); __ Ubfx(scratch, double_high, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // Load scratch with exponent - 1. This is faster than loading // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value. STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); // If exponent is greater than or equal to 84, the 32 less significant // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), // the result is 0. // Compare exponent with 84 (compare exponent - 1 with 83). If the exponent is // greater than this, the conversion is out of range, so return zero. __ cmp(scratch, Operand(83)); __ mov(result_reg, Operand::Zero(), LeaveCC, ge); __ b(ge, &done); // If we reach this code, 30 <= exponent <= 83. // `TryInlineTruncateDoubleToI` above will have truncated any double with an // exponent lower than 30. if (masm->emit_debug_code()) { // Scratch is exponent - 1. __ cmp(scratch, Operand(30 - 1)); __ Check(ge, AbortReason::kUnexpectedValue); } // We don't have to handle cases where 0 <= exponent <= 20 for which we would // need to shift right the high part of the mantissa. // Scratch contains exponent - 1. // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). __ rsb(scratch, scratch, Operand(51), SetCC); // 52 <= exponent <= 83, shift only double_low. // On entry, scratch contains: 52 - exponent. __ rsb(scratch, scratch, Operand::Zero(), LeaveCC, ls); __ mov(result_reg, Operand(double_low, LSL, scratch), LeaveCC, ls); __ b(ls, &negate); // 21 <= exponent <= 51, shift double_low and double_high // to generate the result. __ mov(double_low, Operand(double_low, LSR, scratch)); // Scratch contains: 52 - exponent. // We needs: exponent - 20. // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. __ rsb(scratch, scratch, Operand(32)); __ Ubfx(result_reg, double_high, 0, HeapNumber::kMantissaBitsInTopWord); // Set the implicit 1 before the mantissa part in double_high. __ orr(result_reg, result_reg, Operand(1 << HeapNumber::kMantissaBitsInTopWord)); __ orr(result_reg, double_low, Operand(result_reg, LSL, scratch)); __ bind(&negate); // If input was positive, double_high ASR 31 equals 0 and // double_high LSR 31 equals zero. // New result = (result eor 0) + 0 = result. // If the input was negative, we have to negate the result. // Input_high ASR 31 equals 0xFFFFFFFF and double_high LSR 31 equals 1. // New result = (result eor 0xFFFFFFFF) + 1 = 0 - result. __ eor(result_reg, result_reg, Operand(double_high, ASR, 31)); __ add(result_reg, result_reg, Operand(double_high, LSR, 31)); __ bind(&done); __ str(result_reg, result_operand); // Restore registers corrupted in this routine and return. __ Pop(result_reg, double_high, double_low); __ Ret(); } void Builtins::Generate_MathPowInternal(MacroAssembler* masm) { const LowDwVfpRegister double_base = d0; const LowDwVfpRegister double_exponent = d1; const LowDwVfpRegister double_result = d2; const LowDwVfpRegister double_scratch = d3; const SwVfpRegister single_scratch = s6; // Avoid using Registers r0-r3 as they may be needed when calling to C if the // ABI is softfloat. const Register integer_exponent = r4; const Register scratch = r5; Label call_runtime, done, int_exponent; // Detect integer exponents stored as double. __ TryDoubleToInt32Exact(integer_exponent, double_exponent, double_scratch); __ b(eq, &int_exponent); __ push(lr); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2); } __ pop(lr); __ MovFromFloatResult(double_result); __ b(&done); // Calculate power with integer exponent. __ bind(&int_exponent); __ vmov(double_scratch, double_base); // Back up base. __ vmov(double_result, Double(1.0), scratch); // Get absolute value of exponent. __ cmp(integer_exponent, Operand::Zero()); __ mov(scratch, integer_exponent); __ rsb(scratch, integer_exponent, Operand::Zero(), LeaveCC, mi); Label while_true; __ bind(&while_true); __ mov(scratch, Operand(scratch, LSR, 1), SetCC); __ vmul(double_result, double_result, double_scratch, cs); __ vmul(double_scratch, double_scratch, double_scratch, ne); __ b(ne, &while_true); __ cmp(integer_exponent, Operand::Zero()); __ b(ge, &done); __ vmov(double_scratch, Double(1.0), scratch); __ vdiv(double_result, double_scratch, double_result); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ VFPCompareAndSetFlags(double_result, 0.0); __ b(ne, &done); // double_exponent may not containe the exponent value if the input was a // smi. We set it with exponent value before bailing out. __ vmov(single_scratch, integer_exponent); __ vcvt_f64_s32(double_exponent, single_scratch); // Returning or bailing out. __ push(lr); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2); } __ pop(lr); __ MovFromFloatResult(double_result); __ bind(&done); __ Ret(); } namespace { void GenerateInternalArrayConstructorCase(MacroAssembler* masm, ElementsKind kind) { __ cmp(r0, Operand(1)); __ Jump(CodeFactory::InternalArrayNoArgumentConstructor(masm->isolate(), kind) .code(), RelocInfo::CODE_TARGET, lo); Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayNArgumentsConstructor); __ Jump(code, RelocInfo::CODE_TARGET, hi); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument __ ldr(r3, MemOperand(sp, 0)); __ cmp(r3, Operand::Zero()); __ Jump(CodeFactory::InternalArraySingleArgumentConstructor( masm->isolate(), GetHoleyElementsKind(kind)) .code(), RelocInfo::CODE_TARGET, ne); } __ Jump( CodeFactory::InternalArraySingleArgumentConstructor(masm->isolate(), kind) .code(), RelocInfo::CODE_TARGET); } } // namespace void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : argc // -- r1 : constructor // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a nullptr and a Smi. __ tst(r3, Operand(kSmiTagMask)); __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction); __ CompareObjectType(r3, r3, r4, MAP_TYPE); __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction); } // Figure out the right elements kind __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into |result|. We only need the first byte, // but the following bit field extraction takes care of that anyway. __ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField<Map::ElementsKindBits>(r3); if (FLAG_debug_code) { Label done; __ cmp(r3, Operand(PACKED_ELEMENTS)); __ b(eq, &done); __ cmp(r3, Operand(HOLEY_ELEMENTS)); __ Assert( eq, AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray); __ bind(&done); } Label fast_elements_case; __ cmp(r3, Operand(PACKED_ELEMENTS)); __ b(eq, &fast_elements_case); GenerateInternalArrayConstructorCase(masm, HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateInternalArrayConstructorCase(masm, PACKED_ELEMENTS); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM