// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_BASE_UTILS_RANDOM_NUMBER_GENERATOR_H_
#define V8_BASE_UTILS_RANDOM_NUMBER_GENERATOR_H_
#include <unordered_set>
#include <vector>
#include "src/base/base-export.h"
#include "src/base/macros.h"
namespace v8 {
namespace base {
// -----------------------------------------------------------------------------
// RandomNumberGenerator
// This class is used to generate a stream of pseudo-random numbers. The class
// uses a 64-bit seed, which is passed through MurmurHash3 to create two 64-bit
// state values. This pair of state values is then used in xorshift128+.
// The resulting stream of pseudo-random numbers has a period length of 2^128-1.
// See Marsaglia: http://www.jstatsoft.org/v08/i14/paper
// And Vigna: http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf
// NOTE: Any changes to the algorithm must be tested against TestU01.
// Please find instructions for this in the internal repository.
// If two instances of RandomNumberGenerator are created with the same seed, and
// the same sequence of method calls is made for each, they will generate and
// return identical sequences of numbers.
// This class uses (probably) weak entropy by default, but it's sufficient,
// because it is the responsibility of the embedder to install an entropy source
// using v8::V8::SetEntropySource(), which provides reasonable entropy, see:
// https://code.google.com/p/v8/issues/detail?id=2905
// This class is neither reentrant nor threadsafe.
class V8_BASE_EXPORT RandomNumberGenerator final {
public:
// EntropySource is used as a callback function when V8 needs a source of
// entropy.
typedef bool (*EntropySource)(unsigned char* buffer, size_t buflen);
static void SetEntropySource(EntropySource entropy_source);
RandomNumberGenerator();
explicit RandomNumberGenerator(int64_t seed) { SetSeed(seed); }
// Returns the next pseudorandom, uniformly distributed int value from this
// random number generator's sequence. The general contract of |NextInt()| is
// that one int value is pseudorandomly generated and returned.
// All 2^32 possible integer values are produced with (approximately) equal
// probability.
V8_INLINE int NextInt() V8_WARN_UNUSED_RESULT { return Next(32); }
// Returns a pseudorandom, uniformly distributed int value between 0
// (inclusive) and the specified max value (exclusive), drawn from this random
// number generator's sequence. The general contract of |NextInt(int)| is that
// one int value in the specified range is pseudorandomly generated and
// returned. All max possible int values are produced with (approximately)
// equal probability.
int NextInt(int max) V8_WARN_UNUSED_RESULT;
// Returns the next pseudorandom, uniformly distributed boolean value from
// this random number generator's sequence. The general contract of
// |NextBoolean()| is that one boolean value is pseudorandomly generated and
// returned. The values true and false are produced with (approximately) equal
// probability.
V8_INLINE bool NextBool() V8_WARN_UNUSED_RESULT { return Next(1) != 0; }
// Returns the next pseudorandom, uniformly distributed double value between
// 0.0 and 1.0 from this random number generator's sequence.
// The general contract of |NextDouble()| is that one double value, chosen
// (approximately) uniformly from the range 0.0 (inclusive) to 1.0
// (exclusive), is pseudorandomly generated and returned.
double NextDouble() V8_WARN_UNUSED_RESULT;
// Returns the next pseudorandom, uniformly distributed int64 value from this
// random number generator's sequence. The general contract of |NextInt64()|
// is that one 64-bit int value is pseudorandomly generated and returned.
// All 2^64 possible integer values are produced with (approximately) equal
// probability.
int64_t NextInt64() V8_WARN_UNUSED_RESULT;
// Fills the elements of a specified array of bytes with random numbers.
void NextBytes(void* buffer, size_t buflen);
// Returns the next pseudorandom set of n unique uint64 values smaller than
// max.
// n must be less or equal to max.
std::vector<uint64_t> NextSample(uint64_t max,
size_t n) V8_WARN_UNUSED_RESULT;
// Returns the next pseudorandom set of n unique uint64 values smaller than
// max.
// n must be less or equal to max.
// max - |excluded| must be less or equal to n.
//
// Generates list of all possible values and removes random values from it
// until size reaches n.
std::vector<uint64_t> NextSampleSlow(
uint64_t max, size_t n,
const std::unordered_set<uint64_t>& excluded =
std::unordered_set<uint64_t>{}) V8_WARN_UNUSED_RESULT;
// Override the current ssed.
void SetSeed(int64_t seed);
int64_t initial_seed() const { return initial_seed_; }
// Static and exposed for external use.
static inline double ToDouble(uint64_t state0, uint64_t state1) {
// Exponent for double values for [1.0 .. 2.0)
static const uint64_t kExponentBits = uint64_t{0x3FF0000000000000};
static const uint64_t kMantissaMask = uint64_t{0x000FFFFFFFFFFFFF};
uint64_t random = ((state0 + state1) & kMantissaMask) | kExponentBits;
return bit_cast<double>(random) - 1;
}
// Static and exposed for external use.
static inline void XorShift128(uint64_t* state0, uint64_t* state1) {
uint64_t s1 = *state0;
uint64_t s0 = *state1;
*state0 = s0;
s1 ^= s1 << 23;
s1 ^= s1 >> 17;
s1 ^= s0;
s1 ^= s0 >> 26;
*state1 = s1;
}
private:
static const int64_t kMultiplier = V8_2PART_UINT64_C(0x5, deece66d);
static const int64_t kAddend = 0xb;
static const int64_t kMask = V8_2PART_UINT64_C(0xffff, ffffffff);
int Next(int bits) V8_WARN_UNUSED_RESULT;
static uint64_t MurmurHash3(uint64_t);
int64_t initial_seed_;
uint64_t state0_;
uint64_t state1_;
};
} // namespace base
} // namespace v8
#endif // V8_BASE_UTILS_RANDOM_NUMBER_GENERATOR_H_