// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_BASE_UTILS_RANDOM_NUMBER_GENERATOR_H_ #define V8_BASE_UTILS_RANDOM_NUMBER_GENERATOR_H_ #include <unordered_set> #include <vector> #include "src/base/base-export.h" #include "src/base/macros.h" namespace v8 { namespace base { // ----------------------------------------------------------------------------- // RandomNumberGenerator // This class is used to generate a stream of pseudo-random numbers. The class // uses a 64-bit seed, which is passed through MurmurHash3 to create two 64-bit // state values. This pair of state values is then used in xorshift128+. // The resulting stream of pseudo-random numbers has a period length of 2^128-1. // See Marsaglia: http://www.jstatsoft.org/v08/i14/paper // And Vigna: http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf // NOTE: Any changes to the algorithm must be tested against TestU01. // Please find instructions for this in the internal repository. // If two instances of RandomNumberGenerator are created with the same seed, and // the same sequence of method calls is made for each, they will generate and // return identical sequences of numbers. // This class uses (probably) weak entropy by default, but it's sufficient, // because it is the responsibility of the embedder to install an entropy source // using v8::V8::SetEntropySource(), which provides reasonable entropy, see: // https://code.google.com/p/v8/issues/detail?id=2905 // This class is neither reentrant nor threadsafe. class V8_BASE_EXPORT RandomNumberGenerator final { public: // EntropySource is used as a callback function when V8 needs a source of // entropy. typedef bool (*EntropySource)(unsigned char* buffer, size_t buflen); static void SetEntropySource(EntropySource entropy_source); RandomNumberGenerator(); explicit RandomNumberGenerator(int64_t seed) { SetSeed(seed); } // Returns the next pseudorandom, uniformly distributed int value from this // random number generator's sequence. The general contract of |NextInt()| is // that one int value is pseudorandomly generated and returned. // All 2^32 possible integer values are produced with (approximately) equal // probability. V8_INLINE int NextInt() V8_WARN_UNUSED_RESULT { return Next(32); } // Returns a pseudorandom, uniformly distributed int value between 0 // (inclusive) and the specified max value (exclusive), drawn from this random // number generator's sequence. The general contract of |NextInt(int)| is that // one int value in the specified range is pseudorandomly generated and // returned. All max possible int values are produced with (approximately) // equal probability. int NextInt(int max) V8_WARN_UNUSED_RESULT; // Returns the next pseudorandom, uniformly distributed boolean value from // this random number generator's sequence. The general contract of // |NextBoolean()| is that one boolean value is pseudorandomly generated and // returned. The values true and false are produced with (approximately) equal // probability. V8_INLINE bool NextBool() V8_WARN_UNUSED_RESULT { return Next(1) != 0; } // Returns the next pseudorandom, uniformly distributed double value between // 0.0 and 1.0 from this random number generator's sequence. // The general contract of |NextDouble()| is that one double value, chosen // (approximately) uniformly from the range 0.0 (inclusive) to 1.0 // (exclusive), is pseudorandomly generated and returned. double NextDouble() V8_WARN_UNUSED_RESULT; // Returns the next pseudorandom, uniformly distributed int64 value from this // random number generator's sequence. The general contract of |NextInt64()| // is that one 64-bit int value is pseudorandomly generated and returned. // All 2^64 possible integer values are produced with (approximately) equal // probability. int64_t NextInt64() V8_WARN_UNUSED_RESULT; // Fills the elements of a specified array of bytes with random numbers. void NextBytes(void* buffer, size_t buflen); // Returns the next pseudorandom set of n unique uint64 values smaller than // max. // n must be less or equal to max. std::vector<uint64_t> NextSample(uint64_t max, size_t n) V8_WARN_UNUSED_RESULT; // Returns the next pseudorandom set of n unique uint64 values smaller than // max. // n must be less or equal to max. // max - |excluded| must be less or equal to n. // // Generates list of all possible values and removes random values from it // until size reaches n. std::vector<uint64_t> NextSampleSlow( uint64_t max, size_t n, const std::unordered_set<uint64_t>& excluded = std::unordered_set<uint64_t>{}) V8_WARN_UNUSED_RESULT; // Override the current ssed. void SetSeed(int64_t seed); int64_t initial_seed() const { return initial_seed_; } // Static and exposed for external use. static inline double ToDouble(uint64_t state0, uint64_t state1) { // Exponent for double values for [1.0 .. 2.0) static const uint64_t kExponentBits = uint64_t{0x3FF0000000000000}; static const uint64_t kMantissaMask = uint64_t{0x000FFFFFFFFFFFFF}; uint64_t random = ((state0 + state1) & kMantissaMask) | kExponentBits; return bit_cast<double>(random) - 1; } // Static and exposed for external use. static inline void XorShift128(uint64_t* state0, uint64_t* state1) { uint64_t s1 = *state0; uint64_t s0 = *state1; *state0 = s0; s1 ^= s1 << 23; s1 ^= s1 >> 17; s1 ^= s0; s1 ^= s0 >> 26; *state1 = s1; } private: static const int64_t kMultiplier = V8_2PART_UINT64_C(0x5, deece66d); static const int64_t kAddend = 0xb; static const int64_t kMask = V8_2PART_UINT64_C(0xffff, ffffffff); int Next(int bits) V8_WARN_UNUSED_RESULT; static uint64_t MurmurHash3(uint64_t); int64_t initial_seed_; uint64_t state0_; uint64_t state1_; }; } // namespace base } // namespace v8 #endif // V8_BASE_UTILS_RANDOM_NUMBER_GENERATOR_H_