/*
* (C) Copyright 2018, Linaro Limited
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <avb_verify.h>
#include <command.h>
#include <image.h>
#include <malloc.h>
#include <mmc.h>
#define AVB_BOOTARGS "avb_bootargs"
static struct AvbOps *avb_ops;
static const char * const requested_partitions[] = {"boot",
"system",
"vendor",
NULL};
int do_avb_init(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
unsigned long mmc_dev;
if (argc != 2)
return CMD_RET_USAGE;
mmc_dev = simple_strtoul(argv[1], NULL, 16);
if (avb_ops)
avb_ops_free(avb_ops);
avb_ops = avb_ops_alloc(mmc_dev);
if (avb_ops)
return CMD_RET_SUCCESS;
return CMD_RET_FAILURE;
}
int do_avb_read_part(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
const char *part;
s64 offset;
size_t bytes, bytes_read = 0;
void *buffer;
if (!avb_ops) {
printf("AVB 2.0 is not initialized, please run 'avb init'\n");
return CMD_RET_USAGE;
}
if (argc != 5)
return CMD_RET_USAGE;
part = argv[1];
offset = simple_strtoul(argv[2], NULL, 16);
bytes = simple_strtoul(argv[3], NULL, 16);
buffer = (void *)simple_strtoul(argv[4], NULL, 16);
if (avb_ops->read_from_partition(avb_ops, part, offset, bytes,
buffer, &bytes_read) ==
AVB_IO_RESULT_OK) {
printf("Read %zu bytes\n", bytes_read);
return CMD_RET_SUCCESS;
}
return CMD_RET_FAILURE;
}
int do_avb_read_part_hex(cmd_tbl_t *cmdtp, int flag, int argc,
char *const argv[])
{
const char *part;
s64 offset;
size_t bytes, bytes_read = 0;
char *buffer;
if (!avb_ops) {
printf("AVB 2.0 is not initialized, please run 'avb init'\n");
return CMD_RET_USAGE;
}
if (argc != 4)
return CMD_RET_USAGE;
part = argv[1];
offset = simple_strtoul(argv[2], NULL, 16);
bytes = simple_strtoul(argv[3], NULL, 16);
buffer = malloc(bytes);
if (!buffer) {
printf("Failed to tlb_allocate buffer for data\n");
return CMD_RET_FAILURE;
}
memset(buffer, 0, bytes);
if (avb_ops->read_from_partition(avb_ops, part, offset, bytes, buffer,
&bytes_read) == AVB_IO_RESULT_OK) {
printf("Requested %zu, read %zu bytes\n", bytes, bytes_read);
printf("Data: ");
for (int i = 0; i < bytes_read; i++)
printf("%02X", buffer[i]);
printf("\n");
free(buffer);
return CMD_RET_SUCCESS;
}
free(buffer);
return CMD_RET_FAILURE;
}
int do_avb_write_part(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
const char *part;
s64 offset;
size_t bytes;
void *buffer;
if (!avb_ops) {
printf("AVB 2.0 is not initialized, run 'avb init' first\n");
return CMD_RET_FAILURE;
}
if (argc != 5)
return CMD_RET_USAGE;
part = argv[1];
offset = simple_strtoul(argv[2], NULL, 16);
bytes = simple_strtoul(argv[3], NULL, 16);
buffer = (void *)simple_strtoul(argv[4], NULL, 16);
if (avb_ops->write_to_partition(avb_ops, part, offset, bytes, buffer) ==
AVB_IO_RESULT_OK) {
printf("Wrote %zu bytes\n", bytes);
return CMD_RET_SUCCESS;
}
return CMD_RET_FAILURE;
}
int do_avb_read_rb(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
size_t index;
u64 rb_idx;
if (!avb_ops) {
printf("AVB 2.0 is not initialized, run 'avb init' first\n");
return CMD_RET_FAILURE;
}
if (argc != 2)
return CMD_RET_USAGE;
index = (size_t)simple_strtoul(argv[1], NULL, 16);
if (avb_ops->read_rollback_index(avb_ops, index, &rb_idx) ==
AVB_IO_RESULT_OK) {
printf("Rollback index: %llu\n", rb_idx);
return CMD_RET_SUCCESS;
}
return CMD_RET_FAILURE;
}
int do_avb_write_rb(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
size_t index;
u64 rb_idx;
if (!avb_ops) {
printf("AVB 2.0 is not initialized, run 'avb init' first\n");
return CMD_RET_FAILURE;
}
if (argc != 3)
return CMD_RET_USAGE;
index = (size_t)simple_strtoul(argv[1], NULL, 16);
rb_idx = simple_strtoul(argv[2], NULL, 16);
if (avb_ops->write_rollback_index(avb_ops, index, rb_idx) ==
AVB_IO_RESULT_OK)
return CMD_RET_SUCCESS;
return CMD_RET_FAILURE;
}
int do_avb_get_uuid(cmd_tbl_t *cmdtp, int flag,
int argc, char * const argv[])
{
const char *part;
char buffer[UUID_STR_LEN + 1];
if (!avb_ops) {
printf("AVB 2.0 is not initialized, run 'avb init' first\n");
return CMD_RET_FAILURE;
}
if (argc != 2)
return CMD_RET_USAGE;
part = argv[1];
if (avb_ops->get_unique_guid_for_partition(avb_ops, part, buffer,
UUID_STR_LEN + 1) ==
AVB_IO_RESULT_OK) {
printf("'%s' UUID: %s\n", part, buffer);
return CMD_RET_SUCCESS;
}
return CMD_RET_FAILURE;
}
int do_avb_verify_part(cmd_tbl_t *cmdtp, int flag,
int argc, char *const argv[])
{
AvbSlotVerifyResult slot_result;
AvbSlotVerifyData *out_data;
char *cmdline;
char *extra_args;
bool unlocked = false;
int res = CMD_RET_FAILURE;
if (!avb_ops) {
printf("AVB 2.0 is not initialized, run 'avb init' first\n");
return CMD_RET_FAILURE;
}
if (argc != 1)
return CMD_RET_USAGE;
printf("## Android Verified Boot 2.0 version %s\n",
avb_version_string());
if (avb_ops->read_is_device_unlocked(avb_ops, &unlocked) !=
AVB_IO_RESULT_OK) {
printf("Can't determine device lock state.\n");
return CMD_RET_FAILURE;
}
slot_result =
avb_slot_verify(avb_ops,
requested_partitions,
"",
unlocked,
AVB_HASHTREE_ERROR_MODE_RESTART_AND_INVALIDATE,
&out_data);
switch (slot_result) {
case AVB_SLOT_VERIFY_RESULT_OK:
/* Until we don't have support of changing unlock states, we
* assume that we are by default in locked state.
* So in this case we can boot only when verification is
* successful; we also supply in cmdline GREEN boot state
*/
printf("Verification passed successfully\n");
/* export additional bootargs to AVB_BOOTARGS env var */
extra_args = avb_set_state(avb_ops, AVB_GREEN);
if (extra_args)
cmdline = append_cmd_line(out_data->cmdline,
extra_args);
else
cmdline = out_data->cmdline;
env_set(AVB_BOOTARGS, cmdline);
res = CMD_RET_SUCCESS;
break;
case AVB_SLOT_VERIFY_RESULT_ERROR_VERIFICATION:
printf("Verification failed\n");
break;
case AVB_SLOT_VERIFY_RESULT_ERROR_IO:
printf("I/O error occurred during verification\n");
break;
case AVB_SLOT_VERIFY_RESULT_ERROR_OOM:
printf("OOM error occurred during verification\n");
break;
case AVB_SLOT_VERIFY_RESULT_ERROR_INVALID_METADATA:
printf("Corrupted dm-verity metadata detected\n");
break;
case AVB_SLOT_VERIFY_RESULT_ERROR_UNSUPPORTED_VERSION:
printf("Unsupported version avbtool was used\n");
break;
case AVB_SLOT_VERIFY_RESULT_ERROR_ROLLBACK_INDEX:
printf("Checking rollback index failed\n");
break;
case AVB_SLOT_VERIFY_RESULT_ERROR_PUBLIC_KEY_REJECTED:
printf("Public key was rejected\n");
break;
default:
printf("Unknown error occurred\n");
}
return res;
}
int do_avb_is_unlocked(cmd_tbl_t *cmdtp, int flag,
int argc, char * const argv[])
{
bool unlock;
if (!avb_ops) {
printf("AVB not initialized, run 'avb init' first\n");
return CMD_RET_FAILURE;
}
if (argc != 1) {
printf("--%s(-1)\n", __func__);
return CMD_RET_USAGE;
}
if (avb_ops->read_is_device_unlocked(avb_ops, &unlock) ==
AVB_IO_RESULT_OK) {
printf("Unlocked = %d\n", unlock);
return CMD_RET_SUCCESS;
}
return CMD_RET_FAILURE;
}
static cmd_tbl_t cmd_avb[] = {
U_BOOT_CMD_MKENT(init, 2, 0, do_avb_init, "", ""),
U_BOOT_CMD_MKENT(read_rb, 2, 0, do_avb_read_rb, "", ""),
U_BOOT_CMD_MKENT(write_rb, 3, 0, do_avb_write_rb, "", ""),
U_BOOT_CMD_MKENT(is_unlocked, 1, 0, do_avb_is_unlocked, "", ""),
U_BOOT_CMD_MKENT(get_uuid, 2, 0, do_avb_get_uuid, "", ""),
U_BOOT_CMD_MKENT(read_part, 5, 0, do_avb_read_part, "", ""),
U_BOOT_CMD_MKENT(read_part_hex, 4, 0, do_avb_read_part_hex, "", ""),
U_BOOT_CMD_MKENT(write_part, 5, 0, do_avb_write_part, "", ""),
U_BOOT_CMD_MKENT(verify, 1, 0, do_avb_verify_part, "", ""),
};
static int do_avb(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
cmd_tbl_t *cp;
cp = find_cmd_tbl(argv[1], cmd_avb, ARRAY_SIZE(cmd_avb));
argc--;
argv++;
if (!cp || argc > cp->maxargs)
return CMD_RET_USAGE;
if (flag == CMD_FLAG_REPEAT)
return CMD_RET_FAILURE;
return cp->cmd(cmdtp, flag, argc, argv);
}
U_BOOT_CMD(
avb, 29, 0, do_avb,
"Provides commands for testing Android Verified Boot 2.0 functionality",
"init <dev> - initialize avb2 for <dev>\n"
"avb read_rb <num> - read rollback index at location <num>\n"
"avb write_rb <num> <rb> - write rollback index <rb> to <num>\n"
"avb is_unlocked - returns unlock status of the device\n"
"avb get_uuid <partname> - read and print uuid of partition <part>\n"
"avb read_part <partname> <offset> <num> <addr> - read <num> bytes from\n"
" partition <partname> to buffer <addr>\n"
"avb read_part_hex <partname> <offset> <num> - read <num> bytes from\n"
" partition <partname> and print to stdout\n"
"avb write_part <partname> <offset> <num> <addr> - write <num> bytes to\n"
" <partname> by <offset> using data from <addr>\n"
"avb verify - run verification process using hash data\n"
" from vbmeta structure\n"
);