/* * (C) Copyright 2018, Linaro Limited * * SPDX-License-Identifier: GPL-2.0+ */ #include <avb_verify.h> #include <command.h> #include <image.h> #include <malloc.h> #include <mmc.h> #define AVB_BOOTARGS "avb_bootargs" static struct AvbOps *avb_ops; static const char * const requested_partitions[] = {"boot", "system", "vendor", NULL}; int do_avb_init(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { unsigned long mmc_dev; if (argc != 2) return CMD_RET_USAGE; mmc_dev = simple_strtoul(argv[1], NULL, 16); if (avb_ops) avb_ops_free(avb_ops); avb_ops = avb_ops_alloc(mmc_dev); if (avb_ops) return CMD_RET_SUCCESS; return CMD_RET_FAILURE; } int do_avb_read_part(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { const char *part; s64 offset; size_t bytes, bytes_read = 0; void *buffer; if (!avb_ops) { printf("AVB 2.0 is not initialized, please run 'avb init'\n"); return CMD_RET_USAGE; } if (argc != 5) return CMD_RET_USAGE; part = argv[1]; offset = simple_strtoul(argv[2], NULL, 16); bytes = simple_strtoul(argv[3], NULL, 16); buffer = (void *)simple_strtoul(argv[4], NULL, 16); if (avb_ops->read_from_partition(avb_ops, part, offset, bytes, buffer, &bytes_read) == AVB_IO_RESULT_OK) { printf("Read %zu bytes\n", bytes_read); return CMD_RET_SUCCESS; } return CMD_RET_FAILURE; } int do_avb_read_part_hex(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) { const char *part; s64 offset; size_t bytes, bytes_read = 0; char *buffer; if (!avb_ops) { printf("AVB 2.0 is not initialized, please run 'avb init'\n"); return CMD_RET_USAGE; } if (argc != 4) return CMD_RET_USAGE; part = argv[1]; offset = simple_strtoul(argv[2], NULL, 16); bytes = simple_strtoul(argv[3], NULL, 16); buffer = malloc(bytes); if (!buffer) { printf("Failed to tlb_allocate buffer for data\n"); return CMD_RET_FAILURE; } memset(buffer, 0, bytes); if (avb_ops->read_from_partition(avb_ops, part, offset, bytes, buffer, &bytes_read) == AVB_IO_RESULT_OK) { printf("Requested %zu, read %zu bytes\n", bytes, bytes_read); printf("Data: "); for (int i = 0; i < bytes_read; i++) printf("%02X", buffer[i]); printf("\n"); free(buffer); return CMD_RET_SUCCESS; } free(buffer); return CMD_RET_FAILURE; } int do_avb_write_part(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { const char *part; s64 offset; size_t bytes; void *buffer; if (!avb_ops) { printf("AVB 2.0 is not initialized, run 'avb init' first\n"); return CMD_RET_FAILURE; } if (argc != 5) return CMD_RET_USAGE; part = argv[1]; offset = simple_strtoul(argv[2], NULL, 16); bytes = simple_strtoul(argv[3], NULL, 16); buffer = (void *)simple_strtoul(argv[4], NULL, 16); if (avb_ops->write_to_partition(avb_ops, part, offset, bytes, buffer) == AVB_IO_RESULT_OK) { printf("Wrote %zu bytes\n", bytes); return CMD_RET_SUCCESS; } return CMD_RET_FAILURE; } int do_avb_read_rb(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { size_t index; u64 rb_idx; if (!avb_ops) { printf("AVB 2.0 is not initialized, run 'avb init' first\n"); return CMD_RET_FAILURE; } if (argc != 2) return CMD_RET_USAGE; index = (size_t)simple_strtoul(argv[1], NULL, 16); if (avb_ops->read_rollback_index(avb_ops, index, &rb_idx) == AVB_IO_RESULT_OK) { printf("Rollback index: %llu\n", rb_idx); return CMD_RET_SUCCESS; } return CMD_RET_FAILURE; } int do_avb_write_rb(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { size_t index; u64 rb_idx; if (!avb_ops) { printf("AVB 2.0 is not initialized, run 'avb init' first\n"); return CMD_RET_FAILURE; } if (argc != 3) return CMD_RET_USAGE; index = (size_t)simple_strtoul(argv[1], NULL, 16); rb_idx = simple_strtoul(argv[2], NULL, 16); if (avb_ops->write_rollback_index(avb_ops, index, rb_idx) == AVB_IO_RESULT_OK) return CMD_RET_SUCCESS; return CMD_RET_FAILURE; } int do_avb_get_uuid(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { const char *part; char buffer[UUID_STR_LEN + 1]; if (!avb_ops) { printf("AVB 2.0 is not initialized, run 'avb init' first\n"); return CMD_RET_FAILURE; } if (argc != 2) return CMD_RET_USAGE; part = argv[1]; if (avb_ops->get_unique_guid_for_partition(avb_ops, part, buffer, UUID_STR_LEN + 1) == AVB_IO_RESULT_OK) { printf("'%s' UUID: %s\n", part, buffer); return CMD_RET_SUCCESS; } return CMD_RET_FAILURE; } int do_avb_verify_part(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) { AvbSlotVerifyResult slot_result; AvbSlotVerifyData *out_data; char *cmdline; char *extra_args; bool unlocked = false; int res = CMD_RET_FAILURE; if (!avb_ops) { printf("AVB 2.0 is not initialized, run 'avb init' first\n"); return CMD_RET_FAILURE; } if (argc != 1) return CMD_RET_USAGE; printf("## Android Verified Boot 2.0 version %s\n", avb_version_string()); if (avb_ops->read_is_device_unlocked(avb_ops, &unlocked) != AVB_IO_RESULT_OK) { printf("Can't determine device lock state.\n"); return CMD_RET_FAILURE; } slot_result = avb_slot_verify(avb_ops, requested_partitions, "", unlocked, AVB_HASHTREE_ERROR_MODE_RESTART_AND_INVALIDATE, &out_data); switch (slot_result) { case AVB_SLOT_VERIFY_RESULT_OK: /* Until we don't have support of changing unlock states, we * assume that we are by default in locked state. * So in this case we can boot only when verification is * successful; we also supply in cmdline GREEN boot state */ printf("Verification passed successfully\n"); /* export additional bootargs to AVB_BOOTARGS env var */ extra_args = avb_set_state(avb_ops, AVB_GREEN); if (extra_args) cmdline = append_cmd_line(out_data->cmdline, extra_args); else cmdline = out_data->cmdline; env_set(AVB_BOOTARGS, cmdline); res = CMD_RET_SUCCESS; break; case AVB_SLOT_VERIFY_RESULT_ERROR_VERIFICATION: printf("Verification failed\n"); break; case AVB_SLOT_VERIFY_RESULT_ERROR_IO: printf("I/O error occurred during verification\n"); break; case AVB_SLOT_VERIFY_RESULT_ERROR_OOM: printf("OOM error occurred during verification\n"); break; case AVB_SLOT_VERIFY_RESULT_ERROR_INVALID_METADATA: printf("Corrupted dm-verity metadata detected\n"); break; case AVB_SLOT_VERIFY_RESULT_ERROR_UNSUPPORTED_VERSION: printf("Unsupported version avbtool was used\n"); break; case AVB_SLOT_VERIFY_RESULT_ERROR_ROLLBACK_INDEX: printf("Checking rollback index failed\n"); break; case AVB_SLOT_VERIFY_RESULT_ERROR_PUBLIC_KEY_REJECTED: printf("Public key was rejected\n"); break; default: printf("Unknown error occurred\n"); } return res; } int do_avb_is_unlocked(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { bool unlock; if (!avb_ops) { printf("AVB not initialized, run 'avb init' first\n"); return CMD_RET_FAILURE; } if (argc != 1) { printf("--%s(-1)\n", __func__); return CMD_RET_USAGE; } if (avb_ops->read_is_device_unlocked(avb_ops, &unlock) == AVB_IO_RESULT_OK) { printf("Unlocked = %d\n", unlock); return CMD_RET_SUCCESS; } return CMD_RET_FAILURE; } static cmd_tbl_t cmd_avb[] = { U_BOOT_CMD_MKENT(init, 2, 0, do_avb_init, "", ""), U_BOOT_CMD_MKENT(read_rb, 2, 0, do_avb_read_rb, "", ""), U_BOOT_CMD_MKENT(write_rb, 3, 0, do_avb_write_rb, "", ""), U_BOOT_CMD_MKENT(is_unlocked, 1, 0, do_avb_is_unlocked, "", ""), U_BOOT_CMD_MKENT(get_uuid, 2, 0, do_avb_get_uuid, "", ""), U_BOOT_CMD_MKENT(read_part, 5, 0, do_avb_read_part, "", ""), U_BOOT_CMD_MKENT(read_part_hex, 4, 0, do_avb_read_part_hex, "", ""), U_BOOT_CMD_MKENT(write_part, 5, 0, do_avb_write_part, "", ""), U_BOOT_CMD_MKENT(verify, 1, 0, do_avb_verify_part, "", ""), }; static int do_avb(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { cmd_tbl_t *cp; cp = find_cmd_tbl(argv[1], cmd_avb, ARRAY_SIZE(cmd_avb)); argc--; argv++; if (!cp || argc > cp->maxargs) return CMD_RET_USAGE; if (flag == CMD_FLAG_REPEAT) return CMD_RET_FAILURE; return cp->cmd(cmdtp, flag, argc, argv); } U_BOOT_CMD( avb, 29, 0, do_avb, "Provides commands for testing Android Verified Boot 2.0 functionality", "init <dev> - initialize avb2 for <dev>\n" "avb read_rb <num> - read rollback index at location <num>\n" "avb write_rb <num> <rb> - write rollback index <rb> to <num>\n" "avb is_unlocked - returns unlock status of the device\n" "avb get_uuid <partname> - read and print uuid of partition <part>\n" "avb read_part <partname> <offset> <num> <addr> - read <num> bytes from\n" " partition <partname> to buffer <addr>\n" "avb read_part_hex <partname> <offset> <num> - read <num> bytes from\n" " partition <partname> and print to stdout\n" "avb write_part <partname> <offset> <num> <addr> - write <num> bytes to\n" " <partname> by <offset> using data from <addr>\n" "avb verify - run verification process using hash data\n" " from vbmeta structure\n" );