/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrVkUniformHandler.h"
#include "GrTexturePriv.h"
#include "GrVkGpu.h"
#include "GrVkPipelineStateBuilder.h"
#include "GrVkTexture.h"
#include "glsl/GrGLSLProgramBuilder.h"
// To determine whether a current offset is aligned, we can just 'and' the lowest bits with the
// alignment mask. A value of 0 means aligned, any other value is how many bytes past alignment we
// are. This works since all alignments are powers of 2. The mask is always (alignment - 1).
// This alignment mask will give correct alignments for using the std430 block layout. If you want
// the std140 alignment, you can use this, but then make sure if you have an array type it is
// aligned to 16 bytes (i.e. has mask of 0xF).
// These are designated in the Vulkan spec, section 14.5.4 "Offset and Stride Assignment".
// https://www.khronos.org/registry/vulkan/specs/1.0-wsi_extensions/html/vkspec.html#interfaces-resources-layout
static uint32_t grsltype_to_alignment_mask(GrSLType type) {
switch(type) {
case kByte_GrSLType: // fall through
case kUByte_GrSLType:
return 0x0;
case kByte2_GrSLType: // fall through
case kUByte2_GrSLType:
return 0x1;
case kByte3_GrSLType: // fall through
case kByte4_GrSLType:
case kUByte3_GrSLType:
case kUByte4_GrSLType:
return 0x3;
case kShort_GrSLType: // fall through
case kUShort_GrSLType:
return 0x1;
case kShort2_GrSLType: // fall through
case kUShort2_GrSLType:
return 0x3;
case kShort3_GrSLType: // fall through
case kShort4_GrSLType:
case kUShort3_GrSLType:
case kUShort4_GrSLType:
return 0x7;
case kInt_GrSLType:
case kUint_GrSLType:
return 0x3;
case kHalf_GrSLType: // fall through
case kFloat_GrSLType:
return 0x3;
case kHalf2_GrSLType: // fall through
case kFloat2_GrSLType:
return 0x7;
case kHalf3_GrSLType: // fall through
case kFloat3_GrSLType:
return 0xF;
case kHalf4_GrSLType: // fall through
case kFloat4_GrSLType:
return 0xF;
case kUint2_GrSLType:
return 0x7;
case kInt2_GrSLType:
return 0x7;
case kInt3_GrSLType:
return 0xF;
case kInt4_GrSLType:
return 0xF;
case kHalf2x2_GrSLType: // fall through
case kFloat2x2_GrSLType:
return 0x7;
case kHalf3x3_GrSLType: // fall through
case kFloat3x3_GrSLType:
return 0xF;
case kHalf4x4_GrSLType: // fall through
case kFloat4x4_GrSLType:
return 0xF;
// This query is only valid for certain types.
case kVoid_GrSLType:
case kBool_GrSLType:
case kTexture2DSampler_GrSLType:
case kTextureExternalSampler_GrSLType:
case kTexture2DRectSampler_GrSLType:
break;
}
SK_ABORT("Unexpected type");
return 0;
}
/** Returns the size in bytes taken up in vulkanbuffers for GrSLTypes. */
static inline uint32_t grsltype_to_vk_size(GrSLType type) {
switch(type) {
case kByte_GrSLType:
return sizeof(int8_t);
case kByte2_GrSLType:
return 2 * sizeof(int8_t);
case kByte3_GrSLType:
return 3 * sizeof(int8_t);
case kByte4_GrSLType:
return 4 * sizeof(int8_t);
case kUByte_GrSLType:
return sizeof(uint8_t);
case kUByte2_GrSLType:
return 2 * sizeof(uint8_t);
case kUByte3_GrSLType:
return 3 * sizeof(uint8_t);
case kUByte4_GrSLType:
return 4 * sizeof(uint8_t);
case kShort_GrSLType:
return sizeof(int16_t);
case kShort2_GrSLType:
return 2 * sizeof(int16_t);
case kShort3_GrSLType:
return 3 * sizeof(int16_t);
case kShort4_GrSLType:
return 4 * sizeof(int16_t);
case kUShort_GrSLType:
return sizeof(uint16_t);
case kUShort2_GrSLType:
return 2 * sizeof(uint16_t);
case kUShort3_GrSLType:
return 3 * sizeof(uint16_t);
case kUShort4_GrSLType:
return 4 * sizeof(uint16_t);
case kInt_GrSLType:
return sizeof(int32_t);
case kUint_GrSLType:
return sizeof(int32_t);
case kHalf_GrSLType: // fall through
case kFloat_GrSLType:
return sizeof(float);
case kHalf2_GrSLType: // fall through
case kFloat2_GrSLType:
return 2 * sizeof(float);
case kHalf3_GrSLType: // fall through
case kFloat3_GrSLType:
return 3 * sizeof(float);
case kHalf4_GrSLType: // fall through
case kFloat4_GrSLType:
return 4 * sizeof(float);
case kUint2_GrSLType:
return 2 * sizeof(uint32_t);
case kInt2_GrSLType:
return 2 * sizeof(int32_t);
case kInt3_GrSLType:
return 3 * sizeof(int32_t);
case kInt4_GrSLType:
return 4 * sizeof(int32_t);
case kHalf2x2_GrSLType: // fall through
case kFloat2x2_GrSLType:
//TODO: this will be 4 * szof(float) on std430.
return 8 * sizeof(float);
case kHalf3x3_GrSLType: // fall through
case kFloat3x3_GrSLType:
return 12 * sizeof(float);
case kHalf4x4_GrSLType: // fall through
case kFloat4x4_GrSLType:
return 16 * sizeof(float);
// This query is only valid for certain types.
case kVoid_GrSLType:
case kBool_GrSLType:
case kTexture2DSampler_GrSLType:
case kTextureExternalSampler_GrSLType:
case kTexture2DRectSampler_GrSLType:
break;
}
SK_ABORT("Unexpected type");
return 0;
}
// Given the current offset into the ubo, calculate the offset for the uniform we're trying to add
// taking into consideration all alignment requirements. The uniformOffset is set to the offset for
// the new uniform, and currentOffset is updated to be the offset to the end of the new uniform.
static void get_ubo_aligned_offset(uint32_t* uniformOffset,
uint32_t* currentOffset,
GrSLType type,
int arrayCount) {
uint32_t alignmentMask = grsltype_to_alignment_mask(type);
// We want to use the std140 layout here, so we must make arrays align to 16 bytes.
if (arrayCount || type == kFloat2x2_GrSLType) {
alignmentMask = 0xF;
}
uint32_t offsetDiff = *currentOffset & alignmentMask;
if (offsetDiff != 0) {
offsetDiff = alignmentMask - offsetDiff + 1;
}
*uniformOffset = *currentOffset + offsetDiff;
SkASSERT(sizeof(float) == 4);
if (arrayCount) {
uint32_t elementSize = SkTMax<uint32_t>(16, grsltype_to_vk_size(type));
SkASSERT(0 == (elementSize & 0xF));
*currentOffset = *uniformOffset + elementSize * arrayCount;
} else {
*currentOffset = *uniformOffset + grsltype_to_vk_size(type);
}
}
GrGLSLUniformHandler::UniformHandle GrVkUniformHandler::internalAddUniformArray(
uint32_t visibility,
GrSLType type,
GrSLPrecision precision,
const char* name,
bool mangleName,
int arrayCount,
const char** outName) {
SkASSERT(name && strlen(name));
// For now asserting the the visibility is either geometry types (vertex, tesselation, geometry,
// etc.) or only fragment.
SkASSERT(kVertex_GrShaderFlag == visibility ||
kGeometry_GrShaderFlag == visibility ||
(kVertex_GrShaderFlag | kGeometry_GrShaderFlag) == visibility ||
kFragment_GrShaderFlag == visibility);
SkASSERT(kDefault_GrSLPrecision == precision || GrSLTypeIsFloatType(type));
GrSLTypeIsFloatType(type);
UniformInfo& uni = fUniforms.push_back();
uni.fVariable.setType(type);
// TODO this is a bit hacky, lets think of a better way. Basically we need to be able to use
// the uniform view matrix name in the GP, and the GP is immutable so it has to tell the PB
// exactly what name it wants to use for the uniform view matrix. If we prefix anythings, then
// the names will mismatch. I think the correct solution is to have all GPs which need the
// uniform view matrix, they should upload the view matrix in their setData along with regular
// uniforms.
char prefix = 'u';
if ('u' == name[0] || !strncmp(name, GR_NO_MANGLE_PREFIX, strlen(GR_NO_MANGLE_PREFIX))) {
prefix = '\0';
}
fProgramBuilder->nameVariable(uni.fVariable.accessName(), prefix, name, mangleName);
uni.fVariable.setArrayCount(arrayCount);
uni.fVisibility = visibility;
uni.fVariable.setPrecision(precision);
// When outputing the GLSL, only the outer uniform block will get the Uniform modifier. Thus
// we set the modifier to none for all uniforms declared inside the block.
uni.fVariable.setTypeModifier(GrShaderVar::kNone_TypeModifier);
uint32_t* currentOffset;
uint32_t geomStages = kVertex_GrShaderFlag | kGeometry_GrShaderFlag;
if (geomStages & visibility) {
currentOffset = &fCurrentGeometryUBOOffset;
} else {
SkASSERT(kFragment_GrShaderFlag == visibility);
currentOffset = &fCurrentFragmentUBOOffset;
}
get_ubo_aligned_offset(&uni.fUBOffset, currentOffset, type, arrayCount);
SkString layoutQualifier;
layoutQualifier.appendf("offset=%d", uni.fUBOffset);
uni.fVariable.addLayoutQualifier(layoutQualifier.c_str());
if (outName) {
*outName = uni.fVariable.c_str();
}
return GrGLSLUniformHandler::UniformHandle(fUniforms.count() - 1);
}
GrGLSLUniformHandler::SamplerHandle GrVkUniformHandler::addSampler(const GrTexture* texture,
const GrSamplerState& state,
const char* name,
const GrShaderCaps* shaderCaps) {
SkASSERT(name && strlen(name));
SkString mangleName;
char prefix = 'u';
fProgramBuilder->nameVariable(&mangleName, prefix, name, true);
GrSLPrecision precision = GrSLSamplerPrecision(texture->config());
GrSwizzle swizzle = shaderCaps->configTextureSwizzle(texture->config());
GrTextureType type = texture->texturePriv().textureType();
UniformInfo& info = fSamplers.push_back();
info.fVariable.setType(GrSLCombinedSamplerTypeForTextureType(type));
info.fVariable.setTypeModifier(GrShaderVar::kUniform_TypeModifier);
info.fVariable.setPrecision(precision);
info.fVariable.setName(mangleName);
SkString layoutQualifier;
layoutQualifier.appendf("set=%d, binding=%d", kSamplerDescSet, fSamplers.count() - 1);
info.fVariable.addLayoutQualifier(layoutQualifier.c_str());
info.fVisibility = kFragment_GrShaderFlag;
info.fUBOffset = 0;
// Check if we are dealing with an external texture and store the needed information if so
const GrVkTexture* vkTexture = static_cast<const GrVkTexture*>(texture);
if (vkTexture->ycbcrConversionInfo().isValid()) {
SkASSERT(type == GrTextureType::kExternal);
GrVkGpu* gpu = static_cast<GrVkPipelineStateBuilder*>(fProgramBuilder)->gpu();
info.fImmutableSampler = gpu->resourceProvider().findOrCreateCompatibleSampler(
state, vkTexture->ycbcrConversionInfo());
SkASSERT(info.fImmutableSampler);
}
fSamplerSwizzles.push_back(swizzle);
SkASSERT(fSamplerSwizzles.count() == fSamplers.count());
return GrGLSLUniformHandler::SamplerHandle(fSamplers.count() - 1);
}
void GrVkUniformHandler::appendUniformDecls(GrShaderFlags visibility, SkString* out) const {
SkASSERT(kVertex_GrShaderFlag == visibility ||
kGeometry_GrShaderFlag == visibility ||
kFragment_GrShaderFlag == visibility);
for (int i = 0; i < fSamplers.count(); ++i) {
const UniformInfo& sampler = fSamplers[i];
SkASSERT(sampler.fVariable.getType() == kTexture2DSampler_GrSLType);
if (visibility == sampler.fVisibility) {
sampler.fVariable.appendDecl(fProgramBuilder->shaderCaps(), out);
out->append(";\n");
}
}
#ifdef SK_DEBUG
bool firstGeomOffsetCheck = false;
bool firstFragOffsetCheck = false;
for (int i = 0; i < fUniforms.count(); ++i) {
const UniformInfo& localUniform = fUniforms[i];
if (kVertex_GrShaderFlag == localUniform.fVisibility ||
kGeometry_GrShaderFlag == localUniform.fVisibility ||
(kVertex_GrShaderFlag | kGeometry_GrShaderFlag) == localUniform.fVisibility) {
if (!firstGeomOffsetCheck) {
// Check to make sure we are starting our offset at 0 so the offset qualifier we
// set on each variable in the uniform block is valid.
SkASSERT(0 == localUniform.fUBOffset);
firstGeomOffsetCheck = true;
}
} else {
SkASSERT(kFragment_GrShaderFlag == localUniform.fVisibility);
if (!firstFragOffsetCheck) {
// Check to make sure we are starting our offset at 0 so the offset qualifier we
// set on each variable in the uniform block is valid.
SkASSERT(0 == localUniform.fUBOffset);
firstFragOffsetCheck = true;
}
}
}
#endif
SkString uniformsString;
for (int i = 0; i < fUniforms.count(); ++i) {
const UniformInfo& localUniform = fUniforms[i];
if (visibility & localUniform.fVisibility) {
if (GrSLTypeIsFloatType(localUniform.fVariable.getType())) {
localUniform.fVariable.appendDecl(fProgramBuilder->shaderCaps(), &uniformsString);
uniformsString.append(";\n");
}
}
}
if (!uniformsString.isEmpty()) {
uint32_t uniformBinding;
const char* stage;
if (kVertex_GrShaderFlag == visibility) {
uniformBinding = kGeometryBinding;
stage = "vertex";
} else if (kGeometry_GrShaderFlag == visibility) {
uniformBinding = kGeometryBinding;
stage = "geometry";
} else {
SkASSERT(kFragment_GrShaderFlag == visibility);
uniformBinding = kFragBinding;
stage = "fragment";
}
out->appendf("layout (set=%d, binding=%d) uniform %sUniformBuffer\n{\n",
kUniformBufferDescSet, uniformBinding, stage);
out->appendf("%s\n};\n", uniformsString.c_str());
}
}