/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrVkUniformHandler.h" #include "GrTexturePriv.h" #include "GrVkGpu.h" #include "GrVkPipelineStateBuilder.h" #include "GrVkTexture.h" #include "glsl/GrGLSLProgramBuilder.h" // To determine whether a current offset is aligned, we can just 'and' the lowest bits with the // alignment mask. A value of 0 means aligned, any other value is how many bytes past alignment we // are. This works since all alignments are powers of 2. The mask is always (alignment - 1). // This alignment mask will give correct alignments for using the std430 block layout. If you want // the std140 alignment, you can use this, but then make sure if you have an array type it is // aligned to 16 bytes (i.e. has mask of 0xF). // These are designated in the Vulkan spec, section 14.5.4 "Offset and Stride Assignment". // https://www.khronos.org/registry/vulkan/specs/1.0-wsi_extensions/html/vkspec.html#interfaces-resources-layout static uint32_t grsltype_to_alignment_mask(GrSLType type) { switch(type) { case kByte_GrSLType: // fall through case kUByte_GrSLType: return 0x0; case kByte2_GrSLType: // fall through case kUByte2_GrSLType: return 0x1; case kByte3_GrSLType: // fall through case kByte4_GrSLType: case kUByte3_GrSLType: case kUByte4_GrSLType: return 0x3; case kShort_GrSLType: // fall through case kUShort_GrSLType: return 0x1; case kShort2_GrSLType: // fall through case kUShort2_GrSLType: return 0x3; case kShort3_GrSLType: // fall through case kShort4_GrSLType: case kUShort3_GrSLType: case kUShort4_GrSLType: return 0x7; case kInt_GrSLType: case kUint_GrSLType: return 0x3; case kHalf_GrSLType: // fall through case kFloat_GrSLType: return 0x3; case kHalf2_GrSLType: // fall through case kFloat2_GrSLType: return 0x7; case kHalf3_GrSLType: // fall through case kFloat3_GrSLType: return 0xF; case kHalf4_GrSLType: // fall through case kFloat4_GrSLType: return 0xF; case kUint2_GrSLType: return 0x7; case kInt2_GrSLType: return 0x7; case kInt3_GrSLType: return 0xF; case kInt4_GrSLType: return 0xF; case kHalf2x2_GrSLType: // fall through case kFloat2x2_GrSLType: return 0x7; case kHalf3x3_GrSLType: // fall through case kFloat3x3_GrSLType: return 0xF; case kHalf4x4_GrSLType: // fall through case kFloat4x4_GrSLType: return 0xF; // This query is only valid for certain types. case kVoid_GrSLType: case kBool_GrSLType: case kTexture2DSampler_GrSLType: case kTextureExternalSampler_GrSLType: case kTexture2DRectSampler_GrSLType: break; } SK_ABORT("Unexpected type"); return 0; } /** Returns the size in bytes taken up in vulkanbuffers for GrSLTypes. */ static inline uint32_t grsltype_to_vk_size(GrSLType type) { switch(type) { case kByte_GrSLType: return sizeof(int8_t); case kByte2_GrSLType: return 2 * sizeof(int8_t); case kByte3_GrSLType: return 3 * sizeof(int8_t); case kByte4_GrSLType: return 4 * sizeof(int8_t); case kUByte_GrSLType: return sizeof(uint8_t); case kUByte2_GrSLType: return 2 * sizeof(uint8_t); case kUByte3_GrSLType: return 3 * sizeof(uint8_t); case kUByte4_GrSLType: return 4 * sizeof(uint8_t); case kShort_GrSLType: return sizeof(int16_t); case kShort2_GrSLType: return 2 * sizeof(int16_t); case kShort3_GrSLType: return 3 * sizeof(int16_t); case kShort4_GrSLType: return 4 * sizeof(int16_t); case kUShort_GrSLType: return sizeof(uint16_t); case kUShort2_GrSLType: return 2 * sizeof(uint16_t); case kUShort3_GrSLType: return 3 * sizeof(uint16_t); case kUShort4_GrSLType: return 4 * sizeof(uint16_t); case kInt_GrSLType: return sizeof(int32_t); case kUint_GrSLType: return sizeof(int32_t); case kHalf_GrSLType: // fall through case kFloat_GrSLType: return sizeof(float); case kHalf2_GrSLType: // fall through case kFloat2_GrSLType: return 2 * sizeof(float); case kHalf3_GrSLType: // fall through case kFloat3_GrSLType: return 3 * sizeof(float); case kHalf4_GrSLType: // fall through case kFloat4_GrSLType: return 4 * sizeof(float); case kUint2_GrSLType: return 2 * sizeof(uint32_t); case kInt2_GrSLType: return 2 * sizeof(int32_t); case kInt3_GrSLType: return 3 * sizeof(int32_t); case kInt4_GrSLType: return 4 * sizeof(int32_t); case kHalf2x2_GrSLType: // fall through case kFloat2x2_GrSLType: //TODO: this will be 4 * szof(float) on std430. return 8 * sizeof(float); case kHalf3x3_GrSLType: // fall through case kFloat3x3_GrSLType: return 12 * sizeof(float); case kHalf4x4_GrSLType: // fall through case kFloat4x4_GrSLType: return 16 * sizeof(float); // This query is only valid for certain types. case kVoid_GrSLType: case kBool_GrSLType: case kTexture2DSampler_GrSLType: case kTextureExternalSampler_GrSLType: case kTexture2DRectSampler_GrSLType: break; } SK_ABORT("Unexpected type"); return 0; } // Given the current offset into the ubo, calculate the offset for the uniform we're trying to add // taking into consideration all alignment requirements. The uniformOffset is set to the offset for // the new uniform, and currentOffset is updated to be the offset to the end of the new uniform. static void get_ubo_aligned_offset(uint32_t* uniformOffset, uint32_t* currentOffset, GrSLType type, int arrayCount) { uint32_t alignmentMask = grsltype_to_alignment_mask(type); // We want to use the std140 layout here, so we must make arrays align to 16 bytes. if (arrayCount || type == kFloat2x2_GrSLType) { alignmentMask = 0xF; } uint32_t offsetDiff = *currentOffset & alignmentMask; if (offsetDiff != 0) { offsetDiff = alignmentMask - offsetDiff + 1; } *uniformOffset = *currentOffset + offsetDiff; SkASSERT(sizeof(float) == 4); if (arrayCount) { uint32_t elementSize = SkTMax<uint32_t>(16, grsltype_to_vk_size(type)); SkASSERT(0 == (elementSize & 0xF)); *currentOffset = *uniformOffset + elementSize * arrayCount; } else { *currentOffset = *uniformOffset + grsltype_to_vk_size(type); } } GrGLSLUniformHandler::UniformHandle GrVkUniformHandler::internalAddUniformArray( uint32_t visibility, GrSLType type, GrSLPrecision precision, const char* name, bool mangleName, int arrayCount, const char** outName) { SkASSERT(name && strlen(name)); // For now asserting the the visibility is either geometry types (vertex, tesselation, geometry, // etc.) or only fragment. SkASSERT(kVertex_GrShaderFlag == visibility || kGeometry_GrShaderFlag == visibility || (kVertex_GrShaderFlag | kGeometry_GrShaderFlag) == visibility || kFragment_GrShaderFlag == visibility); SkASSERT(kDefault_GrSLPrecision == precision || GrSLTypeIsFloatType(type)); GrSLTypeIsFloatType(type); UniformInfo& uni = fUniforms.push_back(); uni.fVariable.setType(type); // TODO this is a bit hacky, lets think of a better way. Basically we need to be able to use // the uniform view matrix name in the GP, and the GP is immutable so it has to tell the PB // exactly what name it wants to use for the uniform view matrix. If we prefix anythings, then // the names will mismatch. I think the correct solution is to have all GPs which need the // uniform view matrix, they should upload the view matrix in their setData along with regular // uniforms. char prefix = 'u'; if ('u' == name[0] || !strncmp(name, GR_NO_MANGLE_PREFIX, strlen(GR_NO_MANGLE_PREFIX))) { prefix = '\0'; } fProgramBuilder->nameVariable(uni.fVariable.accessName(), prefix, name, mangleName); uni.fVariable.setArrayCount(arrayCount); uni.fVisibility = visibility; uni.fVariable.setPrecision(precision); // When outputing the GLSL, only the outer uniform block will get the Uniform modifier. Thus // we set the modifier to none for all uniforms declared inside the block. uni.fVariable.setTypeModifier(GrShaderVar::kNone_TypeModifier); uint32_t* currentOffset; uint32_t geomStages = kVertex_GrShaderFlag | kGeometry_GrShaderFlag; if (geomStages & visibility) { currentOffset = &fCurrentGeometryUBOOffset; } else { SkASSERT(kFragment_GrShaderFlag == visibility); currentOffset = &fCurrentFragmentUBOOffset; } get_ubo_aligned_offset(&uni.fUBOffset, currentOffset, type, arrayCount); SkString layoutQualifier; layoutQualifier.appendf("offset=%d", uni.fUBOffset); uni.fVariable.addLayoutQualifier(layoutQualifier.c_str()); if (outName) { *outName = uni.fVariable.c_str(); } return GrGLSLUniformHandler::UniformHandle(fUniforms.count() - 1); } GrGLSLUniformHandler::SamplerHandle GrVkUniformHandler::addSampler(const GrTexture* texture, const GrSamplerState& state, const char* name, const GrShaderCaps* shaderCaps) { SkASSERT(name && strlen(name)); SkString mangleName; char prefix = 'u'; fProgramBuilder->nameVariable(&mangleName, prefix, name, true); GrSLPrecision precision = GrSLSamplerPrecision(texture->config()); GrSwizzle swizzle = shaderCaps->configTextureSwizzle(texture->config()); GrTextureType type = texture->texturePriv().textureType(); UniformInfo& info = fSamplers.push_back(); info.fVariable.setType(GrSLCombinedSamplerTypeForTextureType(type)); info.fVariable.setTypeModifier(GrShaderVar::kUniform_TypeModifier); info.fVariable.setPrecision(precision); info.fVariable.setName(mangleName); SkString layoutQualifier; layoutQualifier.appendf("set=%d, binding=%d", kSamplerDescSet, fSamplers.count() - 1); info.fVariable.addLayoutQualifier(layoutQualifier.c_str()); info.fVisibility = kFragment_GrShaderFlag; info.fUBOffset = 0; // Check if we are dealing with an external texture and store the needed information if so const GrVkTexture* vkTexture = static_cast<const GrVkTexture*>(texture); if (vkTexture->ycbcrConversionInfo().isValid()) { SkASSERT(type == GrTextureType::kExternal); GrVkGpu* gpu = static_cast<GrVkPipelineStateBuilder*>(fProgramBuilder)->gpu(); info.fImmutableSampler = gpu->resourceProvider().findOrCreateCompatibleSampler( state, vkTexture->ycbcrConversionInfo()); SkASSERT(info.fImmutableSampler); } fSamplerSwizzles.push_back(swizzle); SkASSERT(fSamplerSwizzles.count() == fSamplers.count()); return GrGLSLUniformHandler::SamplerHandle(fSamplers.count() - 1); } void GrVkUniformHandler::appendUniformDecls(GrShaderFlags visibility, SkString* out) const { SkASSERT(kVertex_GrShaderFlag == visibility || kGeometry_GrShaderFlag == visibility || kFragment_GrShaderFlag == visibility); for (int i = 0; i < fSamplers.count(); ++i) { const UniformInfo& sampler = fSamplers[i]; SkASSERT(sampler.fVariable.getType() == kTexture2DSampler_GrSLType); if (visibility == sampler.fVisibility) { sampler.fVariable.appendDecl(fProgramBuilder->shaderCaps(), out); out->append(";\n"); } } #ifdef SK_DEBUG bool firstGeomOffsetCheck = false; bool firstFragOffsetCheck = false; for (int i = 0; i < fUniforms.count(); ++i) { const UniformInfo& localUniform = fUniforms[i]; if (kVertex_GrShaderFlag == localUniform.fVisibility || kGeometry_GrShaderFlag == localUniform.fVisibility || (kVertex_GrShaderFlag | kGeometry_GrShaderFlag) == localUniform.fVisibility) { if (!firstGeomOffsetCheck) { // Check to make sure we are starting our offset at 0 so the offset qualifier we // set on each variable in the uniform block is valid. SkASSERT(0 == localUniform.fUBOffset); firstGeomOffsetCheck = true; } } else { SkASSERT(kFragment_GrShaderFlag == localUniform.fVisibility); if (!firstFragOffsetCheck) { // Check to make sure we are starting our offset at 0 so the offset qualifier we // set on each variable in the uniform block is valid. SkASSERT(0 == localUniform.fUBOffset); firstFragOffsetCheck = true; } } } #endif SkString uniformsString; for (int i = 0; i < fUniforms.count(); ++i) { const UniformInfo& localUniform = fUniforms[i]; if (visibility & localUniform.fVisibility) { if (GrSLTypeIsFloatType(localUniform.fVariable.getType())) { localUniform.fVariable.appendDecl(fProgramBuilder->shaderCaps(), &uniformsString); uniformsString.append(";\n"); } } } if (!uniformsString.isEmpty()) { uint32_t uniformBinding; const char* stage; if (kVertex_GrShaderFlag == visibility) { uniformBinding = kGeometryBinding; stage = "vertex"; } else if (kGeometry_GrShaderFlag == visibility) { uniformBinding = kGeometryBinding; stage = "geometry"; } else { SkASSERT(kFragment_GrShaderFlag == visibility); uniformBinding = kFragBinding; stage = "fragment"; } out->appendf("layout (set=%d, binding=%d) uniform %sUniformBuffer\n{\n", kUniformBufferDescSet, uniformBinding, stage); out->appendf("%s\n};\n", uniformsString.c_str()); } }