/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPathOpsQuad_DEFINED
#define SkPathOpsQuad_DEFINED
#include "SkArenaAlloc.h"
#include "SkPathOpsTCurve.h"
struct SkOpCurve;
struct SkDQuadPair {
const SkDQuad& first() const { return (const SkDQuad&) pts[0]; }
const SkDQuad& second() const { return (const SkDQuad&) pts[2]; }
SkDPoint pts[5];
};
struct SkDQuad {
static const int kPointCount = 3;
static const int kPointLast = kPointCount - 1;
static const int kMaxIntersections = 4;
SkDPoint fPts[kPointCount];
bool collapsed() const {
return fPts[0].approximatelyEqual(fPts[1]) && fPts[0].approximatelyEqual(fPts[2]);
}
bool controlsInside() const {
SkDVector v01 = fPts[0] - fPts[1];
SkDVector v02 = fPts[0] - fPts[2];
SkDVector v12 = fPts[1] - fPts[2];
return v02.dot(v01) > 0 && v02.dot(v12) > 0;
}
void debugInit() {
sk_bzero(fPts, sizeof(fPts));
}
void debugSet(const SkDPoint* pts);
SkDQuad flip() const {
SkDQuad result = {{fPts[2], fPts[1], fPts[0]} SkDEBUGPARAMS(fDebugGlobalState) };
return result;
}
static bool IsConic() { return false; }
const SkDQuad& set(const SkPoint pts[kPointCount]
SkDEBUGPARAMS(SkOpGlobalState* state = nullptr)) {
fPts[0] = pts[0];
fPts[1] = pts[1];
fPts[2] = pts[2];
SkDEBUGCODE(fDebugGlobalState = state);
return *this;
}
const SkDPoint& operator[](int n) const { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; }
SkDPoint& operator[](int n) { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; }
static int AddValidTs(double s[], int realRoots, double* t);
void align(int endIndex, SkDPoint* dstPt) const;
SkDQuadPair chopAt(double t) const;
SkDVector dxdyAtT(double t) const;
static int FindExtrema(const double src[], double tValue[1]);
#ifdef SK_DEBUG
SkOpGlobalState* globalState() const { return fDebugGlobalState; }
#endif
/**
* Return the number of valid roots (0 < root < 1) for this cubic intersecting the
* specified horizontal line.
*/
int horizontalIntersect(double yIntercept, double roots[2]) const;
bool hullIntersects(const SkDQuad& , bool* isLinear) const;
bool hullIntersects(const SkDConic& , bool* isLinear) const;
bool hullIntersects(const SkDCubic& , bool* isLinear) const;
bool isLinear(int startIndex, int endIndex) const;
static int maxIntersections() { return kMaxIntersections; }
bool monotonicInX() const;
bool monotonicInY() const;
void otherPts(int oddMan, const SkDPoint* endPt[2]) const;
static int pointCount() { return kPointCount; }
static int pointLast() { return kPointLast; }
SkDPoint ptAtT(double t) const;
static int RootsReal(double A, double B, double C, double t[2]);
static int RootsValidT(const double A, const double B, const double C, double s[2]);
static void SetABC(const double* quad, double* a, double* b, double* c);
SkDQuad subDivide(double t1, double t2) const;
void subDivide(double t1, double t2, SkDQuad* quad) const { *quad = this->subDivide(t1, t2); }
static SkDQuad SubDivide(const SkPoint a[kPointCount], double t1, double t2) {
SkDQuad quad;
quad.set(a);
return quad.subDivide(t1, t2);
}
SkDPoint subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const;
static SkDPoint SubDivide(const SkPoint pts[kPointCount], const SkDPoint& a, const SkDPoint& c,
double t1, double t2) {
SkDQuad quad;
quad.set(pts);
return quad.subDivide(a, c, t1, t2);
}
/**
* Return the number of valid roots (0 < root < 1) for this cubic intersecting the
* specified vertical line.
*/
int verticalIntersect(double xIntercept, double roots[2]) const;
SkDCubic debugToCubic() const;
// utilities callable by the user from the debugger when the implementation code is linked in
void dump() const;
void dumpID(int id) const;
void dumpInner() const;
SkDEBUGCODE(SkOpGlobalState* fDebugGlobalState);
};
class SkTQuad : public SkTCurve {
public:
SkDQuad fQuad;
SkTQuad() {}
SkTQuad(const SkDQuad& q)
: fQuad(q) {
}
~SkTQuad() override {}
const SkDPoint& operator[](int n) const override { return fQuad[n]; }
SkDPoint& operator[](int n) override { return fQuad[n]; }
bool collapsed() const override { return fQuad.collapsed(); }
bool controlsInside() const override { return fQuad.controlsInside(); }
void debugInit() override { return fQuad.debugInit(); }
#if DEBUG_T_SECT
void dumpID(int id) const override { return fQuad.dumpID(id); }
#endif
SkDVector dxdyAtT(double t) const override { return fQuad.dxdyAtT(t); }
#ifdef SK_DEBUG
SkOpGlobalState* globalState() const override { return fQuad.globalState(); }
#endif
bool hullIntersects(const SkDQuad& quad, bool* isLinear) const override {
return quad.hullIntersects(fQuad, isLinear);
}
bool hullIntersects(const SkDConic& conic, bool* isLinear) const override;
bool hullIntersects(const SkDCubic& cubic, bool* isLinear) const override;
bool hullIntersects(const SkTCurve& curve, bool* isLinear) const override {
return curve.hullIntersects(fQuad, isLinear);
}
int intersectRay(SkIntersections* i, const SkDLine& line) const override;
bool IsConic() const override { return false; }
SkTCurve* make(SkArenaAlloc& heap) const override { return heap.make<SkTQuad>(); }
int maxIntersections() const override { return SkDQuad::kMaxIntersections; }
void otherPts(int oddMan, const SkDPoint* endPt[2]) const override {
fQuad.otherPts(oddMan, endPt);
}
int pointCount() const override { return SkDQuad::kPointCount; }
int pointLast() const override { return SkDQuad::kPointLast; }
SkDPoint ptAtT(double t) const override { return fQuad.ptAtT(t); }
void setBounds(SkDRect* ) const override;
void subDivide(double t1, double t2, SkTCurve* curve) const override {
((SkTQuad*) curve)->fQuad = fQuad.subDivide(t1, t2);
}
};
#endif