/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkPathOpsQuad_DEFINED #define SkPathOpsQuad_DEFINED #include "SkArenaAlloc.h" #include "SkPathOpsTCurve.h" struct SkOpCurve; struct SkDQuadPair { const SkDQuad& first() const { return (const SkDQuad&) pts[0]; } const SkDQuad& second() const { return (const SkDQuad&) pts[2]; } SkDPoint pts[5]; }; struct SkDQuad { static const int kPointCount = 3; static const int kPointLast = kPointCount - 1; static const int kMaxIntersections = 4; SkDPoint fPts[kPointCount]; bool collapsed() const { return fPts[0].approximatelyEqual(fPts[1]) && fPts[0].approximatelyEqual(fPts[2]); } bool controlsInside() const { SkDVector v01 = fPts[0] - fPts[1]; SkDVector v02 = fPts[0] - fPts[2]; SkDVector v12 = fPts[1] - fPts[2]; return v02.dot(v01) > 0 && v02.dot(v12) > 0; } void debugInit() { sk_bzero(fPts, sizeof(fPts)); } void debugSet(const SkDPoint* pts); SkDQuad flip() const { SkDQuad result = {{fPts[2], fPts[1], fPts[0]} SkDEBUGPARAMS(fDebugGlobalState) }; return result; } static bool IsConic() { return false; } const SkDQuad& set(const SkPoint pts[kPointCount] SkDEBUGPARAMS(SkOpGlobalState* state = nullptr)) { fPts[0] = pts[0]; fPts[1] = pts[1]; fPts[2] = pts[2]; SkDEBUGCODE(fDebugGlobalState = state); return *this; } const SkDPoint& operator[](int n) const { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; } SkDPoint& operator[](int n) { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; } static int AddValidTs(double s[], int realRoots, double* t); void align(int endIndex, SkDPoint* dstPt) const; SkDQuadPair chopAt(double t) const; SkDVector dxdyAtT(double t) const; static int FindExtrema(const double src[], double tValue[1]); #ifdef SK_DEBUG SkOpGlobalState* globalState() const { return fDebugGlobalState; } #endif /** * Return the number of valid roots (0 < root < 1) for this cubic intersecting the * specified horizontal line. */ int horizontalIntersect(double yIntercept, double roots[2]) const; bool hullIntersects(const SkDQuad& , bool* isLinear) const; bool hullIntersects(const SkDConic& , bool* isLinear) const; bool hullIntersects(const SkDCubic& , bool* isLinear) const; bool isLinear(int startIndex, int endIndex) const; static int maxIntersections() { return kMaxIntersections; } bool monotonicInX() const; bool monotonicInY() const; void otherPts(int oddMan, const SkDPoint* endPt[2]) const; static int pointCount() { return kPointCount; } static int pointLast() { return kPointLast; } SkDPoint ptAtT(double t) const; static int RootsReal(double A, double B, double C, double t[2]); static int RootsValidT(const double A, const double B, const double C, double s[2]); static void SetABC(const double* quad, double* a, double* b, double* c); SkDQuad subDivide(double t1, double t2) const; void subDivide(double t1, double t2, SkDQuad* quad) const { *quad = this->subDivide(t1, t2); } static SkDQuad SubDivide(const SkPoint a[kPointCount], double t1, double t2) { SkDQuad quad; quad.set(a); return quad.subDivide(t1, t2); } SkDPoint subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const; static SkDPoint SubDivide(const SkPoint pts[kPointCount], const SkDPoint& a, const SkDPoint& c, double t1, double t2) { SkDQuad quad; quad.set(pts); return quad.subDivide(a, c, t1, t2); } /** * Return the number of valid roots (0 < root < 1) for this cubic intersecting the * specified vertical line. */ int verticalIntersect(double xIntercept, double roots[2]) const; SkDCubic debugToCubic() const; // utilities callable by the user from the debugger when the implementation code is linked in void dump() const; void dumpID(int id) const; void dumpInner() const; SkDEBUGCODE(SkOpGlobalState* fDebugGlobalState); }; class SkTQuad : public SkTCurve { public: SkDQuad fQuad; SkTQuad() {} SkTQuad(const SkDQuad& q) : fQuad(q) { } ~SkTQuad() override {} const SkDPoint& operator[](int n) const override { return fQuad[n]; } SkDPoint& operator[](int n) override { return fQuad[n]; } bool collapsed() const override { return fQuad.collapsed(); } bool controlsInside() const override { return fQuad.controlsInside(); } void debugInit() override { return fQuad.debugInit(); } #if DEBUG_T_SECT void dumpID(int id) const override { return fQuad.dumpID(id); } #endif SkDVector dxdyAtT(double t) const override { return fQuad.dxdyAtT(t); } #ifdef SK_DEBUG SkOpGlobalState* globalState() const override { return fQuad.globalState(); } #endif bool hullIntersects(const SkDQuad& quad, bool* isLinear) const override { return quad.hullIntersects(fQuad, isLinear); } bool hullIntersects(const SkDConic& conic, bool* isLinear) const override; bool hullIntersects(const SkDCubic& cubic, bool* isLinear) const override; bool hullIntersects(const SkTCurve& curve, bool* isLinear) const override { return curve.hullIntersects(fQuad, isLinear); } int intersectRay(SkIntersections* i, const SkDLine& line) const override; bool IsConic() const override { return false; } SkTCurve* make(SkArenaAlloc& heap) const override { return heap.make<SkTQuad>(); } int maxIntersections() const override { return SkDQuad::kMaxIntersections; } void otherPts(int oddMan, const SkDPoint* endPt[2]) const override { fQuad.otherPts(oddMan, endPt); } int pointCount() const override { return SkDQuad::kPointCount; } int pointLast() const override { return SkDQuad::kPointLast; } SkDPoint ptAtT(double t) const override { return fQuad.ptAtT(t); } void setBounds(SkDRect* ) const override; void subDivide(double t1, double t2, SkTCurve* curve) const override { ((SkTQuad*) curve)->fQuad = fQuad.subDivide(t1, t2); } }; #endif