/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrSoftwarePathRenderer.h"
#include "GrAuditTrail.h"
#include "GrCaps.h"
#include "GrClip.h"
#include "GrContextPriv.h"
#include "GrDeferredProxyUploader.h"
#include "GrGpuResourcePriv.h"
#include "GrOpFlushState.h"
#include "GrOpList.h"
#include "GrProxyProvider.h"
#include "GrRecordingContextPriv.h"
#include "GrSWMaskHelper.h"
#include "GrShape.h"
#include "GrSurfaceContextPriv.h"
#include "SkMakeUnique.h"
#include "SkSemaphore.h"
#include "SkTaskGroup.h"
#include "SkTraceEvent.h"
#include "ops/GrDrawOp.h"
#include "ops/GrFillRectOp.h"
////////////////////////////////////////////////////////////////////////////////
GrPathRenderer::CanDrawPath
GrSoftwarePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
// Pass on any style that applies. The caller will apply the style if a suitable renderer is
// not found and try again with the new GrShape.
if (!args.fShape->style().applies() && SkToBool(fProxyProvider) &&
(args.fAAType == GrAAType::kCoverage || args.fAAType == GrAAType::kNone)) {
// This is the fallback renderer for when a path is too complicated for the GPU ones.
return CanDrawPath::kAsBackup;
}
return CanDrawPath::kNo;
}
////////////////////////////////////////////////////////////////////////////////
static bool get_unclipped_shape_dev_bounds(const GrShape& shape, const SkMatrix& matrix,
SkIRect* devBounds) {
SkRect shapeBounds = shape.styledBounds();
if (shapeBounds.isEmpty()) {
return false;
}
SkRect shapeDevBounds;
matrix.mapRect(&shapeDevBounds, shapeBounds);
// Even though these are "unclipped" bounds we still clip to the int32_t range.
// This is the largest int32_t that is representable exactly as a float. The next 63 larger ints
// would round down to this value when cast to a float, but who really cares.
// INT32_MIN is exactly representable.
static constexpr int32_t kMaxInt = 2147483520;
if (!shapeDevBounds.intersect(SkRect::MakeLTRB(INT32_MIN, INT32_MIN, kMaxInt, kMaxInt))) {
return false;
}
// Make sure that the resulting SkIRect can have representable width and height
if (SkScalarRoundToInt(shapeDevBounds.width()) > kMaxInt ||
SkScalarRoundToInt(shapeDevBounds.height()) > kMaxInt) {
return false;
}
shapeDevBounds.roundOut(devBounds);
return true;
}
// Gets the shape bounds, the clip bounds, and the intersection (if any). Returns false if there
// is no intersection.
bool GrSoftwarePathRenderer::GetShapeAndClipBounds(GrRenderTargetContext* renderTargetContext,
const GrClip& clip,
const GrShape& shape,
const SkMatrix& matrix,
SkIRect* unclippedDevShapeBounds,
SkIRect* clippedDevShapeBounds,
SkIRect* devClipBounds) {
// compute bounds as intersection of rt size, clip, and path
clip.getConservativeBounds(renderTargetContext->width(),
renderTargetContext->height(),
devClipBounds);
if (!get_unclipped_shape_dev_bounds(shape, matrix, unclippedDevShapeBounds)) {
*unclippedDevShapeBounds = SkIRect::EmptyIRect();
*clippedDevShapeBounds = SkIRect::EmptyIRect();
return false;
}
if (!clippedDevShapeBounds->intersect(*devClipBounds, *unclippedDevShapeBounds)) {
*clippedDevShapeBounds = SkIRect::EmptyIRect();
return false;
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
void GrSoftwarePathRenderer::DrawNonAARect(GrRenderTargetContext* renderTargetContext,
GrPaint&& paint,
const GrUserStencilSettings& userStencilSettings,
const GrClip& clip,
const SkMatrix& viewMatrix,
const SkRect& rect,
const SkMatrix& localMatrix) {
auto context = renderTargetContext->surfPriv().getContext();
renderTargetContext->addDrawOp(clip,
GrFillRectOp::MakeWithLocalMatrix(
context, std::move(paint), GrAAType::kNone, viewMatrix,
localMatrix, rect, &userStencilSettings));
}
void GrSoftwarePathRenderer::DrawAroundInvPath(GrRenderTargetContext* renderTargetContext,
GrPaint&& paint,
const GrUserStencilSettings& userStencilSettings,
const GrClip& clip,
const SkMatrix& viewMatrix,
const SkIRect& devClipBounds,
const SkIRect& devPathBounds) {
SkMatrix invert;
if (!viewMatrix.invert(&invert)) {
return;
}
SkRect rect;
if (devClipBounds.fTop < devPathBounds.fTop) {
rect.iset(devClipBounds.fLeft, devClipBounds.fTop,
devClipBounds.fRight, devPathBounds.fTop);
DrawNonAARect(renderTargetContext, GrPaint::Clone(paint), userStencilSettings, clip,
SkMatrix::I(), rect, invert);
}
if (devClipBounds.fLeft < devPathBounds.fLeft) {
rect.iset(devClipBounds.fLeft, devPathBounds.fTop,
devPathBounds.fLeft, devPathBounds.fBottom);
DrawNonAARect(renderTargetContext, GrPaint::Clone(paint), userStencilSettings, clip,
SkMatrix::I(), rect, invert);
}
if (devClipBounds.fRight > devPathBounds.fRight) {
rect.iset(devPathBounds.fRight, devPathBounds.fTop,
devClipBounds.fRight, devPathBounds.fBottom);
DrawNonAARect(renderTargetContext, GrPaint::Clone(paint), userStencilSettings, clip,
SkMatrix::I(), rect, invert);
}
if (devClipBounds.fBottom > devPathBounds.fBottom) {
rect.iset(devClipBounds.fLeft, devPathBounds.fBottom,
devClipBounds.fRight, devClipBounds.fBottom);
DrawNonAARect(renderTargetContext, std::move(paint), userStencilSettings, clip,
SkMatrix::I(), rect, invert);
}
}
void GrSoftwarePathRenderer::DrawToTargetWithShapeMask(
sk_sp<GrTextureProxy> proxy,
GrRenderTargetContext* renderTargetContext,
GrPaint&& paint,
const GrUserStencilSettings& userStencilSettings,
const GrClip& clip,
const SkMatrix& viewMatrix,
const SkIPoint& textureOriginInDeviceSpace,
const SkIRect& deviceSpaceRectToDraw) {
SkMatrix invert;
if (!viewMatrix.invert(&invert)) {
return;
}
SkRect dstRect = SkRect::Make(deviceSpaceRectToDraw);
// We use device coords to compute the texture coordinates. We take the device coords and apply
// a translation so that the top-left of the device bounds maps to 0,0, and then a scaling
// matrix to normalized coords.
SkMatrix maskMatrix = SkMatrix::MakeTrans(SkIntToScalar(-textureOriginInDeviceSpace.fX),
SkIntToScalar(-textureOriginInDeviceSpace.fY));
maskMatrix.preConcat(viewMatrix);
paint.addCoverageFragmentProcessor(GrSimpleTextureEffect::Make(
std::move(proxy), maskMatrix, GrSamplerState::Filter::kNearest));
DrawNonAARect(renderTargetContext, std::move(paint), userStencilSettings, clip, SkMatrix::I(),
dstRect, invert);
}
static sk_sp<GrTextureProxy> make_deferred_mask_texture_proxy(GrRecordingContext* context,
SkBackingFit fit,
int width, int height) {
GrProxyProvider* proxyProvider = context->priv().proxyProvider();
GrSurfaceDesc desc;
desc.fWidth = width;
desc.fHeight = height;
desc.fConfig = kAlpha_8_GrPixelConfig;
const GrBackendFormat format =
context->priv().caps()->getBackendFormatFromColorType(kAlpha_8_SkColorType);
// MDB TODO: We're going to fill this proxy with an ASAP upload (which is out of order wrt to
// ops), so it can't have any pending IO.
return proxyProvider->createProxy(format, desc, kTopLeft_GrSurfaceOrigin, fit, SkBudgeted::kYes,
GrInternalSurfaceFlags::kNoPendingIO);
}
namespace {
/**
* Payload class for use with GrTDeferredProxyUploader. The software path renderer only draws
* a single path into the mask texture. This stores all of the information needed by the worker
* thread's call to drawShape (see below, in onDrawPath).
*/
class SoftwarePathData {
public:
SoftwarePathData(const SkIRect& maskBounds, const SkMatrix& viewMatrix, const GrShape& shape,
GrAA aa)
: fMaskBounds(maskBounds)
, fViewMatrix(viewMatrix)
, fShape(shape)
, fAA(aa) {}
const SkIRect& getMaskBounds() const { return fMaskBounds; }
const SkMatrix* getViewMatrix() const { return &fViewMatrix; }
const GrShape& getShape() const { return fShape; }
GrAA getAA() const { return fAA; }
private:
SkIRect fMaskBounds;
SkMatrix fViewMatrix;
GrShape fShape;
GrAA fAA;
};
// When the SkPathRef genID changes, invalidate a corresponding GrResource described by key.
class PathInvalidator : public SkPathRef::GenIDChangeListener {
public:
PathInvalidator(const GrUniqueKey& key, uint32_t contextUniqueID)
: fMsg(key, contextUniqueID) {}
private:
GrUniqueKeyInvalidatedMessage fMsg;
void onChange() override {
SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg);
}
};
}
////////////////////////////////////////////////////////////////////////////////
// return true on success; false on failure
bool GrSoftwarePathRenderer::onDrawPath(const DrawPathArgs& args) {
GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
"GrSoftwarePathRenderer::onDrawPath");
if (!fProxyProvider) {
return false;
}
SkASSERT(!args.fShape->style().applies());
// We really need to know if the shape will be inverse filled or not
// If the path is hairline, ignore inverse fill.
bool inverseFilled = args.fShape->inverseFilled() &&
!IsStrokeHairlineOrEquivalent(args.fShape->style(),
*args.fViewMatrix, nullptr);
SkIRect unclippedDevShapeBounds, clippedDevShapeBounds, devClipBounds;
// To prevent overloading the cache with entries during animations we limit the cache of masks
// to cases where the matrix preserves axis alignment.
bool useCache = fAllowCaching && !inverseFilled && args.fViewMatrix->preservesAxisAlignment() &&
args.fShape->hasUnstyledKey() && GrAAType::kCoverage == args.fAAType;
if (!GetShapeAndClipBounds(args.fRenderTargetContext,
*args.fClip, *args.fShape,
*args.fViewMatrix, &unclippedDevShapeBounds,
&clippedDevShapeBounds,
&devClipBounds)) {
if (inverseFilled) {
DrawAroundInvPath(args.fRenderTargetContext, std::move(args.fPaint),
*args.fUserStencilSettings, *args.fClip, *args.fViewMatrix,
devClipBounds, unclippedDevShapeBounds);
}
return true;
}
const SkIRect* boundsForMask = &clippedDevShapeBounds;
if (useCache) {
// Use the cache only if >50% of the path is visible.
int unclippedWidth = unclippedDevShapeBounds.width();
int unclippedHeight = unclippedDevShapeBounds.height();
int64_t unclippedArea = sk_64_mul(unclippedWidth, unclippedHeight);
int64_t clippedArea = sk_64_mul(clippedDevShapeBounds.width(),
clippedDevShapeBounds.height());
int maxTextureSize = args.fRenderTargetContext->caps()->maxTextureSize();
if (unclippedArea > 2 * clippedArea || unclippedWidth > maxTextureSize ||
unclippedHeight > maxTextureSize) {
useCache = false;
} else {
boundsForMask = &unclippedDevShapeBounds;
}
}
GrUniqueKey maskKey;
if (useCache) {
// We require the upper left 2x2 of the matrix to match exactly for a cache hit.
SkScalar sx = args.fViewMatrix->get(SkMatrix::kMScaleX);
SkScalar sy = args.fViewMatrix->get(SkMatrix::kMScaleY);
SkScalar kx = args.fViewMatrix->get(SkMatrix::kMSkewX);
SkScalar ky = args.fViewMatrix->get(SkMatrix::kMSkewY);
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(&maskKey, kDomain, 5 + args.fShape->unstyledKeySize(),
"SW Path Mask");
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
// Fractional translate does not affect caching on Android. This is done for better cache
// hit ratio and speed, but it is matching HWUI behavior, which doesn't consider the matrix
// at all when caching paths.
SkFixed fracX = 0;
SkFixed fracY = 0;
#else
SkScalar tx = args.fViewMatrix->get(SkMatrix::kMTransX);
SkScalar ty = args.fViewMatrix->get(SkMatrix::kMTransY);
// Allow 8 bits each in x and y of subpixel positioning.
SkFixed fracX = SkScalarToFixed(SkScalarFraction(tx)) & 0x0000FF00;
SkFixed fracY = SkScalarToFixed(SkScalarFraction(ty)) & 0x0000FF00;
#endif
builder[0] = SkFloat2Bits(sx);
builder[1] = SkFloat2Bits(sy);
builder[2] = SkFloat2Bits(kx);
builder[3] = SkFloat2Bits(ky);
// Distinguish between hairline and filled paths. For hairlines, we also need to include
// the cap. (SW grows hairlines by 0.5 pixel with round and square caps). Note that
// stroke-and-fill of hairlines is turned into pure fill by SkStrokeRec, so this covers
// all cases we might see.
uint32_t styleBits = args.fShape->style().isSimpleHairline() ?
((args.fShape->style().strokeRec().getCap() << 1) | 1) : 0;
builder[4] = fracX | (fracY >> 8) | (styleBits << 16);
args.fShape->writeUnstyledKey(&builder[5]);
}
sk_sp<GrTextureProxy> proxy;
if (useCache) {
proxy = fProxyProvider->findOrCreateProxyByUniqueKey(maskKey, kTopLeft_GrSurfaceOrigin);
}
if (!proxy) {
SkBackingFit fit = useCache ? SkBackingFit::kExact : SkBackingFit::kApprox;
GrAA aa = GrAAType::kCoverage == args.fAAType ? GrAA::kYes : GrAA::kNo;
SkTaskGroup* taskGroup = nullptr;
if (auto direct = args.fContext->priv().asDirectContext()) {
taskGroup = direct->priv().getTaskGroup();
}
if (taskGroup) {
proxy = make_deferred_mask_texture_proxy(args.fContext, fit,
boundsForMask->width(),
boundsForMask->height());
if (!proxy) {
return false;
}
auto uploader = skstd::make_unique<GrTDeferredProxyUploader<SoftwarePathData>>(
*boundsForMask, *args.fViewMatrix, *args.fShape, aa);
GrTDeferredProxyUploader<SoftwarePathData>* uploaderRaw = uploader.get();
auto drawAndUploadMask = [uploaderRaw] {
TRACE_EVENT0("skia", "Threaded SW Mask Render");
GrSWMaskHelper helper(uploaderRaw->getPixels());
if (helper.init(uploaderRaw->data().getMaskBounds())) {
helper.drawShape(uploaderRaw->data().getShape(),
*uploaderRaw->data().getViewMatrix(),
SkRegion::kReplace_Op, uploaderRaw->data().getAA(), 0xFF);
} else {
SkDEBUGFAIL("Unable to allocate SW mask.");
}
uploaderRaw->signalAndFreeData();
};
taskGroup->add(std::move(drawAndUploadMask));
proxy->texPriv().setDeferredUploader(std::move(uploader));
} else {
GrSWMaskHelper helper;
if (!helper.init(*boundsForMask)) {
return false;
}
helper.drawShape(*args.fShape, *args.fViewMatrix, SkRegion::kReplace_Op, aa, 0xFF);
proxy = helper.toTextureProxy(args.fContext, fit);
}
if (!proxy) {
return false;
}
if (useCache) {
SkASSERT(proxy->origin() == kTopLeft_GrSurfaceOrigin);
fProxyProvider->assignUniqueKeyToProxy(maskKey, proxy.get());
args.fShape->addGenIDChangeListener(
sk_make_sp<PathInvalidator>(maskKey, args.fContext->priv().contextID()));
}
}
if (inverseFilled) {
DrawAroundInvPath(args.fRenderTargetContext, GrPaint::Clone(args.fPaint),
*args.fUserStencilSettings, *args.fClip, *args.fViewMatrix, devClipBounds,
unclippedDevShapeBounds);
}
DrawToTargetWithShapeMask(
std::move(proxy), args.fRenderTargetContext, std::move(args.fPaint),
*args.fUserStencilSettings, *args.fClip, *args.fViewMatrix,
SkIPoint{boundsForMask->fLeft, boundsForMask->fTop}, *boundsForMask);
return true;
}