/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrSoftwarePathRenderer.h" #include "GrAuditTrail.h" #include "GrCaps.h" #include "GrClip.h" #include "GrContextPriv.h" #include "GrDeferredProxyUploader.h" #include "GrGpuResourcePriv.h" #include "GrOpFlushState.h" #include "GrOpList.h" #include "GrProxyProvider.h" #include "GrRecordingContextPriv.h" #include "GrSWMaskHelper.h" #include "GrShape.h" #include "GrSurfaceContextPriv.h" #include "SkMakeUnique.h" #include "SkSemaphore.h" #include "SkTaskGroup.h" #include "SkTraceEvent.h" #include "ops/GrDrawOp.h" #include "ops/GrFillRectOp.h" //////////////////////////////////////////////////////////////////////////////// GrPathRenderer::CanDrawPath GrSoftwarePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { // Pass on any style that applies. The caller will apply the style if a suitable renderer is // not found and try again with the new GrShape. if (!args.fShape->style().applies() && SkToBool(fProxyProvider) && (args.fAAType == GrAAType::kCoverage || args.fAAType == GrAAType::kNone)) { // This is the fallback renderer for when a path is too complicated for the GPU ones. return CanDrawPath::kAsBackup; } return CanDrawPath::kNo; } //////////////////////////////////////////////////////////////////////////////// static bool get_unclipped_shape_dev_bounds(const GrShape& shape, const SkMatrix& matrix, SkIRect* devBounds) { SkRect shapeBounds = shape.styledBounds(); if (shapeBounds.isEmpty()) { return false; } SkRect shapeDevBounds; matrix.mapRect(&shapeDevBounds, shapeBounds); // Even though these are "unclipped" bounds we still clip to the int32_t range. // This is the largest int32_t that is representable exactly as a float. The next 63 larger ints // would round down to this value when cast to a float, but who really cares. // INT32_MIN is exactly representable. static constexpr int32_t kMaxInt = 2147483520; if (!shapeDevBounds.intersect(SkRect::MakeLTRB(INT32_MIN, INT32_MIN, kMaxInt, kMaxInt))) { return false; } // Make sure that the resulting SkIRect can have representable width and height if (SkScalarRoundToInt(shapeDevBounds.width()) > kMaxInt || SkScalarRoundToInt(shapeDevBounds.height()) > kMaxInt) { return false; } shapeDevBounds.roundOut(devBounds); return true; } // Gets the shape bounds, the clip bounds, and the intersection (if any). Returns false if there // is no intersection. bool GrSoftwarePathRenderer::GetShapeAndClipBounds(GrRenderTargetContext* renderTargetContext, const GrClip& clip, const GrShape& shape, const SkMatrix& matrix, SkIRect* unclippedDevShapeBounds, SkIRect* clippedDevShapeBounds, SkIRect* devClipBounds) { // compute bounds as intersection of rt size, clip, and path clip.getConservativeBounds(renderTargetContext->width(), renderTargetContext->height(), devClipBounds); if (!get_unclipped_shape_dev_bounds(shape, matrix, unclippedDevShapeBounds)) { *unclippedDevShapeBounds = SkIRect::EmptyIRect(); *clippedDevShapeBounds = SkIRect::EmptyIRect(); return false; } if (!clippedDevShapeBounds->intersect(*devClipBounds, *unclippedDevShapeBounds)) { *clippedDevShapeBounds = SkIRect::EmptyIRect(); return false; } return true; } //////////////////////////////////////////////////////////////////////////////// void GrSoftwarePathRenderer::DrawNonAARect(GrRenderTargetContext* renderTargetContext, GrPaint&& paint, const GrUserStencilSettings& userStencilSettings, const GrClip& clip, const SkMatrix& viewMatrix, const SkRect& rect, const SkMatrix& localMatrix) { auto context = renderTargetContext->surfPriv().getContext(); renderTargetContext->addDrawOp(clip, GrFillRectOp::MakeWithLocalMatrix( context, std::move(paint), GrAAType::kNone, viewMatrix, localMatrix, rect, &userStencilSettings)); } void GrSoftwarePathRenderer::DrawAroundInvPath(GrRenderTargetContext* renderTargetContext, GrPaint&& paint, const GrUserStencilSettings& userStencilSettings, const GrClip& clip, const SkMatrix& viewMatrix, const SkIRect& devClipBounds, const SkIRect& devPathBounds) { SkMatrix invert; if (!viewMatrix.invert(&invert)) { return; } SkRect rect; if (devClipBounds.fTop < devPathBounds.fTop) { rect.iset(devClipBounds.fLeft, devClipBounds.fTop, devClipBounds.fRight, devPathBounds.fTop); DrawNonAARect(renderTargetContext, GrPaint::Clone(paint), userStencilSettings, clip, SkMatrix::I(), rect, invert); } if (devClipBounds.fLeft < devPathBounds.fLeft) { rect.iset(devClipBounds.fLeft, devPathBounds.fTop, devPathBounds.fLeft, devPathBounds.fBottom); DrawNonAARect(renderTargetContext, GrPaint::Clone(paint), userStencilSettings, clip, SkMatrix::I(), rect, invert); } if (devClipBounds.fRight > devPathBounds.fRight) { rect.iset(devPathBounds.fRight, devPathBounds.fTop, devClipBounds.fRight, devPathBounds.fBottom); DrawNonAARect(renderTargetContext, GrPaint::Clone(paint), userStencilSettings, clip, SkMatrix::I(), rect, invert); } if (devClipBounds.fBottom > devPathBounds.fBottom) { rect.iset(devClipBounds.fLeft, devPathBounds.fBottom, devClipBounds.fRight, devClipBounds.fBottom); DrawNonAARect(renderTargetContext, std::move(paint), userStencilSettings, clip, SkMatrix::I(), rect, invert); } } void GrSoftwarePathRenderer::DrawToTargetWithShapeMask( sk_sp<GrTextureProxy> proxy, GrRenderTargetContext* renderTargetContext, GrPaint&& paint, const GrUserStencilSettings& userStencilSettings, const GrClip& clip, const SkMatrix& viewMatrix, const SkIPoint& textureOriginInDeviceSpace, const SkIRect& deviceSpaceRectToDraw) { SkMatrix invert; if (!viewMatrix.invert(&invert)) { return; } SkRect dstRect = SkRect::Make(deviceSpaceRectToDraw); // We use device coords to compute the texture coordinates. We take the device coords and apply // a translation so that the top-left of the device bounds maps to 0,0, and then a scaling // matrix to normalized coords. SkMatrix maskMatrix = SkMatrix::MakeTrans(SkIntToScalar(-textureOriginInDeviceSpace.fX), SkIntToScalar(-textureOriginInDeviceSpace.fY)); maskMatrix.preConcat(viewMatrix); paint.addCoverageFragmentProcessor(GrSimpleTextureEffect::Make( std::move(proxy), maskMatrix, GrSamplerState::Filter::kNearest)); DrawNonAARect(renderTargetContext, std::move(paint), userStencilSettings, clip, SkMatrix::I(), dstRect, invert); } static sk_sp<GrTextureProxy> make_deferred_mask_texture_proxy(GrRecordingContext* context, SkBackingFit fit, int width, int height) { GrProxyProvider* proxyProvider = context->priv().proxyProvider(); GrSurfaceDesc desc; desc.fWidth = width; desc.fHeight = height; desc.fConfig = kAlpha_8_GrPixelConfig; const GrBackendFormat format = context->priv().caps()->getBackendFormatFromColorType(kAlpha_8_SkColorType); // MDB TODO: We're going to fill this proxy with an ASAP upload (which is out of order wrt to // ops), so it can't have any pending IO. return proxyProvider->createProxy(format, desc, kTopLeft_GrSurfaceOrigin, fit, SkBudgeted::kYes, GrInternalSurfaceFlags::kNoPendingIO); } namespace { /** * Payload class for use with GrTDeferredProxyUploader. The software path renderer only draws * a single path into the mask texture. This stores all of the information needed by the worker * thread's call to drawShape (see below, in onDrawPath). */ class SoftwarePathData { public: SoftwarePathData(const SkIRect& maskBounds, const SkMatrix& viewMatrix, const GrShape& shape, GrAA aa) : fMaskBounds(maskBounds) , fViewMatrix(viewMatrix) , fShape(shape) , fAA(aa) {} const SkIRect& getMaskBounds() const { return fMaskBounds; } const SkMatrix* getViewMatrix() const { return &fViewMatrix; } const GrShape& getShape() const { return fShape; } GrAA getAA() const { return fAA; } private: SkIRect fMaskBounds; SkMatrix fViewMatrix; GrShape fShape; GrAA fAA; }; // When the SkPathRef genID changes, invalidate a corresponding GrResource described by key. class PathInvalidator : public SkPathRef::GenIDChangeListener { public: PathInvalidator(const GrUniqueKey& key, uint32_t contextUniqueID) : fMsg(key, contextUniqueID) {} private: GrUniqueKeyInvalidatedMessage fMsg; void onChange() override { SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg); } }; } //////////////////////////////////////////////////////////////////////////////// // return true on success; false on failure bool GrSoftwarePathRenderer::onDrawPath(const DrawPathArgs& args) { GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(), "GrSoftwarePathRenderer::onDrawPath"); if (!fProxyProvider) { return false; } SkASSERT(!args.fShape->style().applies()); // We really need to know if the shape will be inverse filled or not // If the path is hairline, ignore inverse fill. bool inverseFilled = args.fShape->inverseFilled() && !IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr); SkIRect unclippedDevShapeBounds, clippedDevShapeBounds, devClipBounds; // To prevent overloading the cache with entries during animations we limit the cache of masks // to cases where the matrix preserves axis alignment. bool useCache = fAllowCaching && !inverseFilled && args.fViewMatrix->preservesAxisAlignment() && args.fShape->hasUnstyledKey() && GrAAType::kCoverage == args.fAAType; if (!GetShapeAndClipBounds(args.fRenderTargetContext, *args.fClip, *args.fShape, *args.fViewMatrix, &unclippedDevShapeBounds, &clippedDevShapeBounds, &devClipBounds)) { if (inverseFilled) { DrawAroundInvPath(args.fRenderTargetContext, std::move(args.fPaint), *args.fUserStencilSettings, *args.fClip, *args.fViewMatrix, devClipBounds, unclippedDevShapeBounds); } return true; } const SkIRect* boundsForMask = &clippedDevShapeBounds; if (useCache) { // Use the cache only if >50% of the path is visible. int unclippedWidth = unclippedDevShapeBounds.width(); int unclippedHeight = unclippedDevShapeBounds.height(); int64_t unclippedArea = sk_64_mul(unclippedWidth, unclippedHeight); int64_t clippedArea = sk_64_mul(clippedDevShapeBounds.width(), clippedDevShapeBounds.height()); int maxTextureSize = args.fRenderTargetContext->caps()->maxTextureSize(); if (unclippedArea > 2 * clippedArea || unclippedWidth > maxTextureSize || unclippedHeight > maxTextureSize) { useCache = false; } else { boundsForMask = &unclippedDevShapeBounds; } } GrUniqueKey maskKey; if (useCache) { // We require the upper left 2x2 of the matrix to match exactly for a cache hit. SkScalar sx = args.fViewMatrix->get(SkMatrix::kMScaleX); SkScalar sy = args.fViewMatrix->get(SkMatrix::kMScaleY); SkScalar kx = args.fViewMatrix->get(SkMatrix::kMSkewX); SkScalar ky = args.fViewMatrix->get(SkMatrix::kMSkewY); static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey::Builder builder(&maskKey, kDomain, 5 + args.fShape->unstyledKeySize(), "SW Path Mask"); #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK // Fractional translate does not affect caching on Android. This is done for better cache // hit ratio and speed, but it is matching HWUI behavior, which doesn't consider the matrix // at all when caching paths. SkFixed fracX = 0; SkFixed fracY = 0; #else SkScalar tx = args.fViewMatrix->get(SkMatrix::kMTransX); SkScalar ty = args.fViewMatrix->get(SkMatrix::kMTransY); // Allow 8 bits each in x and y of subpixel positioning. SkFixed fracX = SkScalarToFixed(SkScalarFraction(tx)) & 0x0000FF00; SkFixed fracY = SkScalarToFixed(SkScalarFraction(ty)) & 0x0000FF00; #endif builder[0] = SkFloat2Bits(sx); builder[1] = SkFloat2Bits(sy); builder[2] = SkFloat2Bits(kx); builder[3] = SkFloat2Bits(ky); // Distinguish between hairline and filled paths. For hairlines, we also need to include // the cap. (SW grows hairlines by 0.5 pixel with round and square caps). Note that // stroke-and-fill of hairlines is turned into pure fill by SkStrokeRec, so this covers // all cases we might see. uint32_t styleBits = args.fShape->style().isSimpleHairline() ? ((args.fShape->style().strokeRec().getCap() << 1) | 1) : 0; builder[4] = fracX | (fracY >> 8) | (styleBits << 16); args.fShape->writeUnstyledKey(&builder[5]); } sk_sp<GrTextureProxy> proxy; if (useCache) { proxy = fProxyProvider->findOrCreateProxyByUniqueKey(maskKey, kTopLeft_GrSurfaceOrigin); } if (!proxy) { SkBackingFit fit = useCache ? SkBackingFit::kExact : SkBackingFit::kApprox; GrAA aa = GrAAType::kCoverage == args.fAAType ? GrAA::kYes : GrAA::kNo; SkTaskGroup* taskGroup = nullptr; if (auto direct = args.fContext->priv().asDirectContext()) { taskGroup = direct->priv().getTaskGroup(); } if (taskGroup) { proxy = make_deferred_mask_texture_proxy(args.fContext, fit, boundsForMask->width(), boundsForMask->height()); if (!proxy) { return false; } auto uploader = skstd::make_unique<GrTDeferredProxyUploader<SoftwarePathData>>( *boundsForMask, *args.fViewMatrix, *args.fShape, aa); GrTDeferredProxyUploader<SoftwarePathData>* uploaderRaw = uploader.get(); auto drawAndUploadMask = [uploaderRaw] { TRACE_EVENT0("skia", "Threaded SW Mask Render"); GrSWMaskHelper helper(uploaderRaw->getPixels()); if (helper.init(uploaderRaw->data().getMaskBounds())) { helper.drawShape(uploaderRaw->data().getShape(), *uploaderRaw->data().getViewMatrix(), SkRegion::kReplace_Op, uploaderRaw->data().getAA(), 0xFF); } else { SkDEBUGFAIL("Unable to allocate SW mask."); } uploaderRaw->signalAndFreeData(); }; taskGroup->add(std::move(drawAndUploadMask)); proxy->texPriv().setDeferredUploader(std::move(uploader)); } else { GrSWMaskHelper helper; if (!helper.init(*boundsForMask)) { return false; } helper.drawShape(*args.fShape, *args.fViewMatrix, SkRegion::kReplace_Op, aa, 0xFF); proxy = helper.toTextureProxy(args.fContext, fit); } if (!proxy) { return false; } if (useCache) { SkASSERT(proxy->origin() == kTopLeft_GrSurfaceOrigin); fProxyProvider->assignUniqueKeyToProxy(maskKey, proxy.get()); args.fShape->addGenIDChangeListener( sk_make_sp<PathInvalidator>(maskKey, args.fContext->priv().contextID())); } } if (inverseFilled) { DrawAroundInvPath(args.fRenderTargetContext, GrPaint::Clone(args.fPaint), *args.fUserStencilSettings, *args.fClip, *args.fViewMatrix, devClipBounds, unclippedDevShapeBounds); } DrawToTargetWithShapeMask( std::move(proxy), args.fRenderTargetContext, std::move(args.fPaint), *args.fUserStencilSettings, *args.fClip, *args.fViewMatrix, SkIPoint{boundsForMask->fLeft, boundsForMask->fTop}, *boundsForMask); return true; }