/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkColorData_DEFINED
#define SkColorData_DEFINED
#include "SkColor.h"
#include "SkColorPriv.h"
#include "SkNx.h"
#include "SkTo.h"
////////////////////////////////////////////////////////////////////////////////////////////
// Convert a 16bit pixel to a 32bit pixel
#define SK_R16_BITS 5
#define SK_G16_BITS 6
#define SK_B16_BITS 5
#define SK_R16_SHIFT (SK_B16_BITS + SK_G16_BITS)
#define SK_G16_SHIFT (SK_B16_BITS)
#define SK_B16_SHIFT 0
#define SK_R16_MASK ((1 << SK_R16_BITS) - 1)
#define SK_G16_MASK ((1 << SK_G16_BITS) - 1)
#define SK_B16_MASK ((1 << SK_B16_BITS) - 1)
#define SkGetPackedR16(color) (((unsigned)(color) >> SK_R16_SHIFT) & SK_R16_MASK)
#define SkGetPackedG16(color) (((unsigned)(color) >> SK_G16_SHIFT) & SK_G16_MASK)
#define SkGetPackedB16(color) (((unsigned)(color) >> SK_B16_SHIFT) & SK_B16_MASK)
static inline unsigned SkR16ToR32(unsigned r) {
return (r << (8 - SK_R16_BITS)) | (r >> (2 * SK_R16_BITS - 8));
}
static inline unsigned SkG16ToG32(unsigned g) {
return (g << (8 - SK_G16_BITS)) | (g >> (2 * SK_G16_BITS - 8));
}
static inline unsigned SkB16ToB32(unsigned b) {
return (b << (8 - SK_B16_BITS)) | (b >> (2 * SK_B16_BITS - 8));
}
#define SkPacked16ToR32(c) SkR16ToR32(SkGetPackedR16(c))
#define SkPacked16ToG32(c) SkG16ToG32(SkGetPackedG16(c))
#define SkPacked16ToB32(c) SkB16ToB32(SkGetPackedB16(c))
//////////////////////////////////////////////////////////////////////////////
#define SkASSERT_IS_BYTE(x) SkASSERT(0 == ((x) & ~0xFF))
// Reverse the bytes coorsponding to RED and BLUE in a packed pixels. Note the
// pair of them are in the same 2 slots in both RGBA and BGRA, thus there is
// no need to pass in the colortype to this function.
static inline uint32_t SkSwizzle_RB(uint32_t c) {
static const uint32_t kRBMask = (0xFF << SK_R32_SHIFT) | (0xFF << SK_B32_SHIFT);
unsigned c0 = (c >> SK_R32_SHIFT) & 0xFF;
unsigned c1 = (c >> SK_B32_SHIFT) & 0xFF;
return (c & ~kRBMask) | (c0 << SK_B32_SHIFT) | (c1 << SK_R32_SHIFT);
}
static inline uint32_t SkPackARGB_as_RGBA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
SkASSERT_IS_BYTE(a);
SkASSERT_IS_BYTE(r);
SkASSERT_IS_BYTE(g);
SkASSERT_IS_BYTE(b);
return (a << SK_RGBA_A32_SHIFT) | (r << SK_RGBA_R32_SHIFT) |
(g << SK_RGBA_G32_SHIFT) | (b << SK_RGBA_B32_SHIFT);
}
static inline uint32_t SkPackARGB_as_BGRA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
SkASSERT_IS_BYTE(a);
SkASSERT_IS_BYTE(r);
SkASSERT_IS_BYTE(g);
SkASSERT_IS_BYTE(b);
return (a << SK_BGRA_A32_SHIFT) | (r << SK_BGRA_R32_SHIFT) |
(g << SK_BGRA_G32_SHIFT) | (b << SK_BGRA_B32_SHIFT);
}
static inline SkPMColor SkSwizzle_RGBA_to_PMColor(uint32_t c) {
#ifdef SK_PMCOLOR_IS_RGBA
return c;
#else
return SkSwizzle_RB(c);
#endif
}
static inline SkPMColor SkSwizzle_BGRA_to_PMColor(uint32_t c) {
#ifdef SK_PMCOLOR_IS_BGRA
return c;
#else
return SkSwizzle_RB(c);
#endif
}
//////////////////////////////////////////////////////////////////////////////
///@{
/** See ITU-R Recommendation BT.709 at http://www.itu.int/rec/R-REC-BT.709/ .*/
#define SK_ITU_BT709_LUM_COEFF_R (0.2126f)
#define SK_ITU_BT709_LUM_COEFF_G (0.7152f)
#define SK_ITU_BT709_LUM_COEFF_B (0.0722f)
///@}
///@{
/** A float value which specifies this channel's contribution to luminance. */
#define SK_LUM_COEFF_R SK_ITU_BT709_LUM_COEFF_R
#define SK_LUM_COEFF_G SK_ITU_BT709_LUM_COEFF_G
#define SK_LUM_COEFF_B SK_ITU_BT709_LUM_COEFF_B
///@}
/** Computes the luminance from the given r, g, and b in accordance with
SK_LUM_COEFF_X. For correct results, r, g, and b should be in linear space.
*/
static inline U8CPU SkComputeLuminance(U8CPU r, U8CPU g, U8CPU b) {
//The following is
//r * SK_LUM_COEFF_R + g * SK_LUM_COEFF_G + b * SK_LUM_COEFF_B
//with SK_LUM_COEFF_X in 1.8 fixed point (rounding adjusted to sum to 256).
return (r * 54 + g * 183 + b * 19) >> 8;
}
/** Calculates 256 - (value * alpha256) / 255 in range [0,256],
* for [0,255] value and [0,256] alpha256.
*/
static inline U16CPU SkAlphaMulInv256(U16CPU value, U16CPU alpha256) {
unsigned prod = 0xFFFF - value * alpha256;
return (prod + (prod >> 8)) >> 8;
}
// The caller may want negative values, so keep all params signed (int)
// so we don't accidentally slip into unsigned math and lose the sign
// extension when we shift (in SkAlphaMul)
static inline int SkAlphaBlend(int src, int dst, int scale256) {
SkASSERT((unsigned)scale256 <= 256);
return dst + SkAlphaMul(src - dst, scale256);
}
static inline uint16_t SkPackRGB16(unsigned r, unsigned g, unsigned b) {
SkASSERT(r <= SK_R16_MASK);
SkASSERT(g <= SK_G16_MASK);
SkASSERT(b <= SK_B16_MASK);
return SkToU16((r << SK_R16_SHIFT) | (g << SK_G16_SHIFT) | (b << SK_B16_SHIFT));
}
#define SK_R16_MASK_IN_PLACE (SK_R16_MASK << SK_R16_SHIFT)
#define SK_G16_MASK_IN_PLACE (SK_G16_MASK << SK_G16_SHIFT)
#define SK_B16_MASK_IN_PLACE (SK_B16_MASK << SK_B16_SHIFT)
///////////////////////////////////////////////////////////////////////////////
/**
* Abstract 4-byte interpolation, implemented on top of SkPMColor
* utility functions. Third parameter controls blending of the first two:
* (src, dst, 0) returns dst
* (src, dst, 0xFF) returns src
* srcWeight is [0..256], unlike SkFourByteInterp which takes [0..255]
*/
static inline SkPMColor SkFourByteInterp256(SkPMColor src, SkPMColor dst,
unsigned scale) {
unsigned a = SkAlphaBlend(SkGetPackedA32(src), SkGetPackedA32(dst), scale);
unsigned r = SkAlphaBlend(SkGetPackedR32(src), SkGetPackedR32(dst), scale);
unsigned g = SkAlphaBlend(SkGetPackedG32(src), SkGetPackedG32(dst), scale);
unsigned b = SkAlphaBlend(SkGetPackedB32(src), SkGetPackedB32(dst), scale);
return SkPackARGB32(a, r, g, b);
}
/**
* Abstract 4-byte interpolation, implemented on top of SkPMColor
* utility functions. Third parameter controls blending of the first two:
* (src, dst, 0) returns dst
* (src, dst, 0xFF) returns src
*/
static inline SkPMColor SkFourByteInterp(SkPMColor src, SkPMColor dst,
U8CPU srcWeight) {
unsigned scale = SkAlpha255To256(srcWeight);
return SkFourByteInterp256(src, dst, scale);
}
/**
* 0xAARRGGBB -> 0x00AA00GG, 0x00RR00BB
*/
static inline void SkSplay(uint32_t color, uint32_t* ag, uint32_t* rb) {
const uint32_t mask = 0x00FF00FF;
*ag = (color >> 8) & mask;
*rb = color & mask;
}
/**
* 0xAARRGGBB -> 0x00AA00GG00RR00BB
* (note, ARGB -> AGRB)
*/
static inline uint64_t SkSplay(uint32_t color) {
const uint32_t mask = 0x00FF00FF;
uint64_t agrb = (color >> 8) & mask; // 0x0000000000AA00GG
agrb <<= 32; // 0x00AA00GG00000000
agrb |= color & mask; // 0x00AA00GG00RR00BB
return agrb;
}
/**
* 0xAAxxGGxx, 0xRRxxBBxx-> 0xAARRGGBB
*/
static inline uint32_t SkUnsplay(uint32_t ag, uint32_t rb) {
const uint32_t mask = 0xFF00FF00;
return (ag & mask) | ((rb & mask) >> 8);
}
/**
* 0xAAxxGGxxRRxxBBxx -> 0xAARRGGBB
* (note, AGRB -> ARGB)
*/
static inline uint32_t SkUnsplay(uint64_t agrb) {
const uint32_t mask = 0xFF00FF00;
return SkPMColor(
((agrb & mask) >> 8) | // 0x00RR00BB
((agrb >> 32) & mask)); // 0xAARRGGBB
}
static inline SkPMColor SkFastFourByteInterp256_32(SkPMColor src, SkPMColor dst, unsigned scale) {
SkASSERT(scale <= 256);
// Two 8-bit blends per two 32-bit registers, with space to make sure the math doesn't collide.
uint32_t src_ag, src_rb, dst_ag, dst_rb;
SkSplay(src, &src_ag, &src_rb);
SkSplay(dst, &dst_ag, &dst_rb);
const uint32_t ret_ag = src_ag * scale + (256 - scale) * dst_ag;
const uint32_t ret_rb = src_rb * scale + (256 - scale) * dst_rb;
return SkUnsplay(ret_ag, ret_rb);
}
static inline SkPMColor SkFastFourByteInterp256_64(SkPMColor src, SkPMColor dst, unsigned scale) {
SkASSERT(scale <= 256);
// Four 8-bit blends in one 64-bit register, with space to make sure the math doesn't collide.
return SkUnsplay(SkSplay(src) * scale + (256-scale) * SkSplay(dst));
}
// TODO(mtklein): Replace slow versions with fast versions, using scale + (scale>>7) everywhere.
/**
* Same as SkFourByteInterp256, but faster.
*/
static inline SkPMColor SkFastFourByteInterp256(SkPMColor src, SkPMColor dst, unsigned scale) {
// On a 64-bit machine, _64 is about 10% faster than _32, but ~40% slower on a 32-bit machine.
if (sizeof(void*) == 4) {
return SkFastFourByteInterp256_32(src, dst, scale);
} else {
return SkFastFourByteInterp256_64(src, dst, scale);
}
}
/**
* Nearly the same as SkFourByteInterp, but faster and a touch more accurate, due to better
* srcWeight scaling to [0, 256].
*/
static inline SkPMColor SkFastFourByteInterp(SkPMColor src,
SkPMColor dst,
U8CPU srcWeight) {
SkASSERT(srcWeight <= 255);
// scale = srcWeight + (srcWeight >> 7) is more accurate than
// scale = srcWeight + 1, but 7% slower
return SkFastFourByteInterp256(src, dst, srcWeight + (srcWeight >> 7));
}
/**
* Interpolates between colors src and dst using [0,256] scale.
*/
static inline SkPMColor SkPMLerp(SkPMColor src, SkPMColor dst, unsigned scale) {
return SkFastFourByteInterp256(src, dst, scale);
}
static inline SkPMColor SkBlendARGB32(SkPMColor src, SkPMColor dst, U8CPU aa) {
SkASSERT((unsigned)aa <= 255);
unsigned src_scale = SkAlpha255To256(aa);
unsigned dst_scale = SkAlphaMulInv256(SkGetPackedA32(src), src_scale);
const uint32_t mask = 0xFF00FF;
uint32_t src_rb = (src & mask) * src_scale;
uint32_t src_ag = ((src >> 8) & mask) * src_scale;
uint32_t dst_rb = (dst & mask) * dst_scale;
uint32_t dst_ag = ((dst >> 8) & mask) * dst_scale;
return (((src_rb + dst_rb) >> 8) & mask) | ((src_ag + dst_ag) & ~mask);
}
////////////////////////////////////////////////////////////////////////////////////////////
// Convert a 32bit pixel to a 16bit pixel (no dither)
#define SkR32ToR16_MACRO(r) ((unsigned)(r) >> (SK_R32_BITS - SK_R16_BITS))
#define SkG32ToG16_MACRO(g) ((unsigned)(g) >> (SK_G32_BITS - SK_G16_BITS))
#define SkB32ToB16_MACRO(b) ((unsigned)(b) >> (SK_B32_BITS - SK_B16_BITS))
#ifdef SK_DEBUG
static inline unsigned SkR32ToR16(unsigned r) {
SkR32Assert(r);
return SkR32ToR16_MACRO(r);
}
static inline unsigned SkG32ToG16(unsigned g) {
SkG32Assert(g);
return SkG32ToG16_MACRO(g);
}
static inline unsigned SkB32ToB16(unsigned b) {
SkB32Assert(b);
return SkB32ToB16_MACRO(b);
}
#else
#define SkR32ToR16(r) SkR32ToR16_MACRO(r)
#define SkG32ToG16(g) SkG32ToG16_MACRO(g)
#define SkB32ToB16(b) SkB32ToB16_MACRO(b)
#endif
static inline U16CPU SkPixel32ToPixel16(SkPMColor c) {
unsigned r = ((c >> (SK_R32_SHIFT + (8 - SK_R16_BITS))) & SK_R16_MASK) << SK_R16_SHIFT;
unsigned g = ((c >> (SK_G32_SHIFT + (8 - SK_G16_BITS))) & SK_G16_MASK) << SK_G16_SHIFT;
unsigned b = ((c >> (SK_B32_SHIFT + (8 - SK_B16_BITS))) & SK_B16_MASK) << SK_B16_SHIFT;
return r | g | b;
}
static inline U16CPU SkPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) {
return (SkR32ToR16(r) << SK_R16_SHIFT) |
(SkG32ToG16(g) << SK_G16_SHIFT) |
(SkB32ToB16(b) << SK_B16_SHIFT);
}
/////////////////////////////////////////////////////////////////////////////////////////
/* SrcOver the 32bit src color with the 16bit dst, returning a 16bit value
(with dirt in the high 16bits, so caller beware).
*/
static inline U16CPU SkSrcOver32To16(SkPMColor src, uint16_t dst) {
unsigned sr = SkGetPackedR32(src);
unsigned sg = SkGetPackedG32(src);
unsigned sb = SkGetPackedB32(src);
unsigned dr = SkGetPackedR16(dst);
unsigned dg = SkGetPackedG16(dst);
unsigned db = SkGetPackedB16(dst);
unsigned isa = 255 - SkGetPackedA32(src);
dr = (sr + SkMul16ShiftRound(dr, isa, SK_R16_BITS)) >> (8 - SK_R16_BITS);
dg = (sg + SkMul16ShiftRound(dg, isa, SK_G16_BITS)) >> (8 - SK_G16_BITS);
db = (sb + SkMul16ShiftRound(db, isa, SK_B16_BITS)) >> (8 - SK_B16_BITS);
return SkPackRGB16(dr, dg, db);
}
static inline SkColor SkPixel16ToColor(U16CPU src) {
SkASSERT(src == SkToU16(src));
unsigned r = SkPacked16ToR32(src);
unsigned g = SkPacked16ToG32(src);
unsigned b = SkPacked16ToB32(src);
SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src));
SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src));
SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src));
return SkColorSetRGB(r, g, b);
}
///////////////////////////////////////////////////////////////////////////////
typedef uint16_t SkPMColor16;
// Put in OpenGL order (r g b a)
#define SK_A4444_SHIFT 0
#define SK_R4444_SHIFT 12
#define SK_G4444_SHIFT 8
#define SK_B4444_SHIFT 4
static inline U8CPU SkReplicateNibble(unsigned nib) {
SkASSERT(nib <= 0xF);
return (nib << 4) | nib;
}
#define SkGetPackedA4444(c) (((unsigned)(c) >> SK_A4444_SHIFT) & 0xF)
#define SkGetPackedR4444(c) (((unsigned)(c) >> SK_R4444_SHIFT) & 0xF)
#define SkGetPackedG4444(c) (((unsigned)(c) >> SK_G4444_SHIFT) & 0xF)
#define SkGetPackedB4444(c) (((unsigned)(c) >> SK_B4444_SHIFT) & 0xF)
#define SkPacked4444ToA32(c) SkReplicateNibble(SkGetPackedA4444(c))
static inline SkPMColor SkPixel4444ToPixel32(U16CPU c) {
uint32_t d = (SkGetPackedA4444(c) << SK_A32_SHIFT) |
(SkGetPackedR4444(c) << SK_R32_SHIFT) |
(SkGetPackedG4444(c) << SK_G32_SHIFT) |
(SkGetPackedB4444(c) << SK_B32_SHIFT);
return d | (d << 4);
}
static inline Sk4f swizzle_rb(const Sk4f& x) {
return SkNx_shuffle<2, 1, 0, 3>(x);
}
static inline Sk4f swizzle_rb_if_bgra(const Sk4f& x) {
#ifdef SK_PMCOLOR_IS_BGRA
return swizzle_rb(x);
#else
return x;
#endif
}
static inline Sk4f Sk4f_fromL32(uint32_t px) {
return SkNx_cast<float>(Sk4b::Load(&px)) * (1 / 255.0f);
}
static inline uint32_t Sk4f_toL32(const Sk4f& px) {
Sk4f v = px;
#if !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
// SkNx_cast<uint8_t, int32_t>() pins, and we don't anticipate giant floats
#elif !defined(SKNX_NO_SIMD) && defined(SK_ARM_HAS_NEON)
// SkNx_cast<uint8_t, int32_t>() pins, and so does Sk4f_round().
#else
// No guarantee of a pin.
v = Sk4f::Max(0, Sk4f::Min(v, 1));
#endif
uint32_t l32;
SkNx_cast<uint8_t>(Sk4f_round(v * 255.0f)).store(&l32);
return l32;
}
using SkPMColor4f = SkRGBA4f<kPremul_SkAlphaType>;
constexpr SkPMColor4f SK_PMColor4fTRANSPARENT = { 0, 0, 0, 0 };
constexpr SkPMColor4f SK_PMColor4fWHITE = { 1, 1, 1, 1 };
constexpr SkPMColor4f SK_PMColor4fILLEGAL = { SK_FloatNegativeInfinity,
SK_FloatNegativeInfinity,
SK_FloatNegativeInfinity,
SK_FloatNegativeInfinity };
#endif