/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkColorData_DEFINED #define SkColorData_DEFINED #include "SkColor.h" #include "SkColorPriv.h" #include "SkNx.h" #include "SkTo.h" //////////////////////////////////////////////////////////////////////////////////////////// // Convert a 16bit pixel to a 32bit pixel #define SK_R16_BITS 5 #define SK_G16_BITS 6 #define SK_B16_BITS 5 #define SK_R16_SHIFT (SK_B16_BITS + SK_G16_BITS) #define SK_G16_SHIFT (SK_B16_BITS) #define SK_B16_SHIFT 0 #define SK_R16_MASK ((1 << SK_R16_BITS) - 1) #define SK_G16_MASK ((1 << SK_G16_BITS) - 1) #define SK_B16_MASK ((1 << SK_B16_BITS) - 1) #define SkGetPackedR16(color) (((unsigned)(color) >> SK_R16_SHIFT) & SK_R16_MASK) #define SkGetPackedG16(color) (((unsigned)(color) >> SK_G16_SHIFT) & SK_G16_MASK) #define SkGetPackedB16(color) (((unsigned)(color) >> SK_B16_SHIFT) & SK_B16_MASK) static inline unsigned SkR16ToR32(unsigned r) { return (r << (8 - SK_R16_BITS)) | (r >> (2 * SK_R16_BITS - 8)); } static inline unsigned SkG16ToG32(unsigned g) { return (g << (8 - SK_G16_BITS)) | (g >> (2 * SK_G16_BITS - 8)); } static inline unsigned SkB16ToB32(unsigned b) { return (b << (8 - SK_B16_BITS)) | (b >> (2 * SK_B16_BITS - 8)); } #define SkPacked16ToR32(c) SkR16ToR32(SkGetPackedR16(c)) #define SkPacked16ToG32(c) SkG16ToG32(SkGetPackedG16(c)) #define SkPacked16ToB32(c) SkB16ToB32(SkGetPackedB16(c)) ////////////////////////////////////////////////////////////////////////////// #define SkASSERT_IS_BYTE(x) SkASSERT(0 == ((x) & ~0xFF)) // Reverse the bytes coorsponding to RED and BLUE in a packed pixels. Note the // pair of them are in the same 2 slots in both RGBA and BGRA, thus there is // no need to pass in the colortype to this function. static inline uint32_t SkSwizzle_RB(uint32_t c) { static const uint32_t kRBMask = (0xFF << SK_R32_SHIFT) | (0xFF << SK_B32_SHIFT); unsigned c0 = (c >> SK_R32_SHIFT) & 0xFF; unsigned c1 = (c >> SK_B32_SHIFT) & 0xFF; return (c & ~kRBMask) | (c0 << SK_B32_SHIFT) | (c1 << SK_R32_SHIFT); } static inline uint32_t SkPackARGB_as_RGBA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) { SkASSERT_IS_BYTE(a); SkASSERT_IS_BYTE(r); SkASSERT_IS_BYTE(g); SkASSERT_IS_BYTE(b); return (a << SK_RGBA_A32_SHIFT) | (r << SK_RGBA_R32_SHIFT) | (g << SK_RGBA_G32_SHIFT) | (b << SK_RGBA_B32_SHIFT); } static inline uint32_t SkPackARGB_as_BGRA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) { SkASSERT_IS_BYTE(a); SkASSERT_IS_BYTE(r); SkASSERT_IS_BYTE(g); SkASSERT_IS_BYTE(b); return (a << SK_BGRA_A32_SHIFT) | (r << SK_BGRA_R32_SHIFT) | (g << SK_BGRA_G32_SHIFT) | (b << SK_BGRA_B32_SHIFT); } static inline SkPMColor SkSwizzle_RGBA_to_PMColor(uint32_t c) { #ifdef SK_PMCOLOR_IS_RGBA return c; #else return SkSwizzle_RB(c); #endif } static inline SkPMColor SkSwizzle_BGRA_to_PMColor(uint32_t c) { #ifdef SK_PMCOLOR_IS_BGRA return c; #else return SkSwizzle_RB(c); #endif } ////////////////////////////////////////////////////////////////////////////// ///@{ /** See ITU-R Recommendation BT.709 at http://www.itu.int/rec/R-REC-BT.709/ .*/ #define SK_ITU_BT709_LUM_COEFF_R (0.2126f) #define SK_ITU_BT709_LUM_COEFF_G (0.7152f) #define SK_ITU_BT709_LUM_COEFF_B (0.0722f) ///@} ///@{ /** A float value which specifies this channel's contribution to luminance. */ #define SK_LUM_COEFF_R SK_ITU_BT709_LUM_COEFF_R #define SK_LUM_COEFF_G SK_ITU_BT709_LUM_COEFF_G #define SK_LUM_COEFF_B SK_ITU_BT709_LUM_COEFF_B ///@} /** Computes the luminance from the given r, g, and b in accordance with SK_LUM_COEFF_X. For correct results, r, g, and b should be in linear space. */ static inline U8CPU SkComputeLuminance(U8CPU r, U8CPU g, U8CPU b) { //The following is //r * SK_LUM_COEFF_R + g * SK_LUM_COEFF_G + b * SK_LUM_COEFF_B //with SK_LUM_COEFF_X in 1.8 fixed point (rounding adjusted to sum to 256). return (r * 54 + g * 183 + b * 19) >> 8; } /** Calculates 256 - (value * alpha256) / 255 in range [0,256], * for [0,255] value and [0,256] alpha256. */ static inline U16CPU SkAlphaMulInv256(U16CPU value, U16CPU alpha256) { unsigned prod = 0xFFFF - value * alpha256; return (prod + (prod >> 8)) >> 8; } // The caller may want negative values, so keep all params signed (int) // so we don't accidentally slip into unsigned math and lose the sign // extension when we shift (in SkAlphaMul) static inline int SkAlphaBlend(int src, int dst, int scale256) { SkASSERT((unsigned)scale256 <= 256); return dst + SkAlphaMul(src - dst, scale256); } static inline uint16_t SkPackRGB16(unsigned r, unsigned g, unsigned b) { SkASSERT(r <= SK_R16_MASK); SkASSERT(g <= SK_G16_MASK); SkASSERT(b <= SK_B16_MASK); return SkToU16((r << SK_R16_SHIFT) | (g << SK_G16_SHIFT) | (b << SK_B16_SHIFT)); } #define SK_R16_MASK_IN_PLACE (SK_R16_MASK << SK_R16_SHIFT) #define SK_G16_MASK_IN_PLACE (SK_G16_MASK << SK_G16_SHIFT) #define SK_B16_MASK_IN_PLACE (SK_B16_MASK << SK_B16_SHIFT) /////////////////////////////////////////////////////////////////////////////// /** * Abstract 4-byte interpolation, implemented on top of SkPMColor * utility functions. Third parameter controls blending of the first two: * (src, dst, 0) returns dst * (src, dst, 0xFF) returns src * srcWeight is [0..256], unlike SkFourByteInterp which takes [0..255] */ static inline SkPMColor SkFourByteInterp256(SkPMColor src, SkPMColor dst, unsigned scale) { unsigned a = SkAlphaBlend(SkGetPackedA32(src), SkGetPackedA32(dst), scale); unsigned r = SkAlphaBlend(SkGetPackedR32(src), SkGetPackedR32(dst), scale); unsigned g = SkAlphaBlend(SkGetPackedG32(src), SkGetPackedG32(dst), scale); unsigned b = SkAlphaBlend(SkGetPackedB32(src), SkGetPackedB32(dst), scale); return SkPackARGB32(a, r, g, b); } /** * Abstract 4-byte interpolation, implemented on top of SkPMColor * utility functions. Third parameter controls blending of the first two: * (src, dst, 0) returns dst * (src, dst, 0xFF) returns src */ static inline SkPMColor SkFourByteInterp(SkPMColor src, SkPMColor dst, U8CPU srcWeight) { unsigned scale = SkAlpha255To256(srcWeight); return SkFourByteInterp256(src, dst, scale); } /** * 0xAARRGGBB -> 0x00AA00GG, 0x00RR00BB */ static inline void SkSplay(uint32_t color, uint32_t* ag, uint32_t* rb) { const uint32_t mask = 0x00FF00FF; *ag = (color >> 8) & mask; *rb = color & mask; } /** * 0xAARRGGBB -> 0x00AA00GG00RR00BB * (note, ARGB -> AGRB) */ static inline uint64_t SkSplay(uint32_t color) { const uint32_t mask = 0x00FF00FF; uint64_t agrb = (color >> 8) & mask; // 0x0000000000AA00GG agrb <<= 32; // 0x00AA00GG00000000 agrb |= color & mask; // 0x00AA00GG00RR00BB return agrb; } /** * 0xAAxxGGxx, 0xRRxxBBxx-> 0xAARRGGBB */ static inline uint32_t SkUnsplay(uint32_t ag, uint32_t rb) { const uint32_t mask = 0xFF00FF00; return (ag & mask) | ((rb & mask) >> 8); } /** * 0xAAxxGGxxRRxxBBxx -> 0xAARRGGBB * (note, AGRB -> ARGB) */ static inline uint32_t SkUnsplay(uint64_t agrb) { const uint32_t mask = 0xFF00FF00; return SkPMColor( ((agrb & mask) >> 8) | // 0x00RR00BB ((agrb >> 32) & mask)); // 0xAARRGGBB } static inline SkPMColor SkFastFourByteInterp256_32(SkPMColor src, SkPMColor dst, unsigned scale) { SkASSERT(scale <= 256); // Two 8-bit blends per two 32-bit registers, with space to make sure the math doesn't collide. uint32_t src_ag, src_rb, dst_ag, dst_rb; SkSplay(src, &src_ag, &src_rb); SkSplay(dst, &dst_ag, &dst_rb); const uint32_t ret_ag = src_ag * scale + (256 - scale) * dst_ag; const uint32_t ret_rb = src_rb * scale + (256 - scale) * dst_rb; return SkUnsplay(ret_ag, ret_rb); } static inline SkPMColor SkFastFourByteInterp256_64(SkPMColor src, SkPMColor dst, unsigned scale) { SkASSERT(scale <= 256); // Four 8-bit blends in one 64-bit register, with space to make sure the math doesn't collide. return SkUnsplay(SkSplay(src) * scale + (256-scale) * SkSplay(dst)); } // TODO(mtklein): Replace slow versions with fast versions, using scale + (scale>>7) everywhere. /** * Same as SkFourByteInterp256, but faster. */ static inline SkPMColor SkFastFourByteInterp256(SkPMColor src, SkPMColor dst, unsigned scale) { // On a 64-bit machine, _64 is about 10% faster than _32, but ~40% slower on a 32-bit machine. if (sizeof(void*) == 4) { return SkFastFourByteInterp256_32(src, dst, scale); } else { return SkFastFourByteInterp256_64(src, dst, scale); } } /** * Nearly the same as SkFourByteInterp, but faster and a touch more accurate, due to better * srcWeight scaling to [0, 256]. */ static inline SkPMColor SkFastFourByteInterp(SkPMColor src, SkPMColor dst, U8CPU srcWeight) { SkASSERT(srcWeight <= 255); // scale = srcWeight + (srcWeight >> 7) is more accurate than // scale = srcWeight + 1, but 7% slower return SkFastFourByteInterp256(src, dst, srcWeight + (srcWeight >> 7)); } /** * Interpolates between colors src and dst using [0,256] scale. */ static inline SkPMColor SkPMLerp(SkPMColor src, SkPMColor dst, unsigned scale) { return SkFastFourByteInterp256(src, dst, scale); } static inline SkPMColor SkBlendARGB32(SkPMColor src, SkPMColor dst, U8CPU aa) { SkASSERT((unsigned)aa <= 255); unsigned src_scale = SkAlpha255To256(aa); unsigned dst_scale = SkAlphaMulInv256(SkGetPackedA32(src), src_scale); const uint32_t mask = 0xFF00FF; uint32_t src_rb = (src & mask) * src_scale; uint32_t src_ag = ((src >> 8) & mask) * src_scale; uint32_t dst_rb = (dst & mask) * dst_scale; uint32_t dst_ag = ((dst >> 8) & mask) * dst_scale; return (((src_rb + dst_rb) >> 8) & mask) | ((src_ag + dst_ag) & ~mask); } //////////////////////////////////////////////////////////////////////////////////////////// // Convert a 32bit pixel to a 16bit pixel (no dither) #define SkR32ToR16_MACRO(r) ((unsigned)(r) >> (SK_R32_BITS - SK_R16_BITS)) #define SkG32ToG16_MACRO(g) ((unsigned)(g) >> (SK_G32_BITS - SK_G16_BITS)) #define SkB32ToB16_MACRO(b) ((unsigned)(b) >> (SK_B32_BITS - SK_B16_BITS)) #ifdef SK_DEBUG static inline unsigned SkR32ToR16(unsigned r) { SkR32Assert(r); return SkR32ToR16_MACRO(r); } static inline unsigned SkG32ToG16(unsigned g) { SkG32Assert(g); return SkG32ToG16_MACRO(g); } static inline unsigned SkB32ToB16(unsigned b) { SkB32Assert(b); return SkB32ToB16_MACRO(b); } #else #define SkR32ToR16(r) SkR32ToR16_MACRO(r) #define SkG32ToG16(g) SkG32ToG16_MACRO(g) #define SkB32ToB16(b) SkB32ToB16_MACRO(b) #endif static inline U16CPU SkPixel32ToPixel16(SkPMColor c) { unsigned r = ((c >> (SK_R32_SHIFT + (8 - SK_R16_BITS))) & SK_R16_MASK) << SK_R16_SHIFT; unsigned g = ((c >> (SK_G32_SHIFT + (8 - SK_G16_BITS))) & SK_G16_MASK) << SK_G16_SHIFT; unsigned b = ((c >> (SK_B32_SHIFT + (8 - SK_B16_BITS))) & SK_B16_MASK) << SK_B16_SHIFT; return r | g | b; } static inline U16CPU SkPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) { return (SkR32ToR16(r) << SK_R16_SHIFT) | (SkG32ToG16(g) << SK_G16_SHIFT) | (SkB32ToB16(b) << SK_B16_SHIFT); } ///////////////////////////////////////////////////////////////////////////////////////// /* SrcOver the 32bit src color with the 16bit dst, returning a 16bit value (with dirt in the high 16bits, so caller beware). */ static inline U16CPU SkSrcOver32To16(SkPMColor src, uint16_t dst) { unsigned sr = SkGetPackedR32(src); unsigned sg = SkGetPackedG32(src); unsigned sb = SkGetPackedB32(src); unsigned dr = SkGetPackedR16(dst); unsigned dg = SkGetPackedG16(dst); unsigned db = SkGetPackedB16(dst); unsigned isa = 255 - SkGetPackedA32(src); dr = (sr + SkMul16ShiftRound(dr, isa, SK_R16_BITS)) >> (8 - SK_R16_BITS); dg = (sg + SkMul16ShiftRound(dg, isa, SK_G16_BITS)) >> (8 - SK_G16_BITS); db = (sb + SkMul16ShiftRound(db, isa, SK_B16_BITS)) >> (8 - SK_B16_BITS); return SkPackRGB16(dr, dg, db); } static inline SkColor SkPixel16ToColor(U16CPU src) { SkASSERT(src == SkToU16(src)); unsigned r = SkPacked16ToR32(src); unsigned g = SkPacked16ToG32(src); unsigned b = SkPacked16ToB32(src); SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src)); SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src)); SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src)); return SkColorSetRGB(r, g, b); } /////////////////////////////////////////////////////////////////////////////// typedef uint16_t SkPMColor16; // Put in OpenGL order (r g b a) #define SK_A4444_SHIFT 0 #define SK_R4444_SHIFT 12 #define SK_G4444_SHIFT 8 #define SK_B4444_SHIFT 4 static inline U8CPU SkReplicateNibble(unsigned nib) { SkASSERT(nib <= 0xF); return (nib << 4) | nib; } #define SkGetPackedA4444(c) (((unsigned)(c) >> SK_A4444_SHIFT) & 0xF) #define SkGetPackedR4444(c) (((unsigned)(c) >> SK_R4444_SHIFT) & 0xF) #define SkGetPackedG4444(c) (((unsigned)(c) >> SK_G4444_SHIFT) & 0xF) #define SkGetPackedB4444(c) (((unsigned)(c) >> SK_B4444_SHIFT) & 0xF) #define SkPacked4444ToA32(c) SkReplicateNibble(SkGetPackedA4444(c)) static inline SkPMColor SkPixel4444ToPixel32(U16CPU c) { uint32_t d = (SkGetPackedA4444(c) << SK_A32_SHIFT) | (SkGetPackedR4444(c) << SK_R32_SHIFT) | (SkGetPackedG4444(c) << SK_G32_SHIFT) | (SkGetPackedB4444(c) << SK_B32_SHIFT); return d | (d << 4); } static inline Sk4f swizzle_rb(const Sk4f& x) { return SkNx_shuffle<2, 1, 0, 3>(x); } static inline Sk4f swizzle_rb_if_bgra(const Sk4f& x) { #ifdef SK_PMCOLOR_IS_BGRA return swizzle_rb(x); #else return x; #endif } static inline Sk4f Sk4f_fromL32(uint32_t px) { return SkNx_cast<float>(Sk4b::Load(&px)) * (1 / 255.0f); } static inline uint32_t Sk4f_toL32(const Sk4f& px) { Sk4f v = px; #if !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 // SkNx_cast<uint8_t, int32_t>() pins, and we don't anticipate giant floats #elif !defined(SKNX_NO_SIMD) && defined(SK_ARM_HAS_NEON) // SkNx_cast<uint8_t, int32_t>() pins, and so does Sk4f_round(). #else // No guarantee of a pin. v = Sk4f::Max(0, Sk4f::Min(v, 1)); #endif uint32_t l32; SkNx_cast<uint8_t>(Sk4f_round(v * 255.0f)).store(&l32); return l32; } using SkPMColor4f = SkRGBA4f<kPremul_SkAlphaType>; constexpr SkPMColor4f SK_PMColor4fTRANSPARENT = { 0, 0, 0, 0 }; constexpr SkPMColor4f SK_PMColor4fWHITE = { 1, 1, 1, 1 }; constexpr SkPMColor4f SK_PMColor4fILLEGAL = { SK_FloatNegativeInfinity, SK_FloatNegativeInfinity, SK_FloatNegativeInfinity, SK_FloatNegativeInfinity }; #endif