/*
* Stack-less Just-In-Time compiler
*
* Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void)
{
#if (defined SLJIT_X86_32_FASTCALL && SLJIT_X86_32_FASTCALL)
return "x86" SLJIT_CPUINFO " ABI:fastcall";
#else
return "x86" SLJIT_CPUINFO;
#endif
}
/*
32b register indexes:
0 - EAX
1 - ECX
2 - EDX
3 - EBX
4 - ESP
5 - EBP
6 - ESI
7 - EDI
*/
/*
64b register indexes:
0 - RAX
1 - RCX
2 - RDX
3 - RBX
4 - RSP
5 - RBP
6 - RSI
7 - RDI
8 - R8 - From now on REX prefix is required
9 - R9
10 - R10
11 - R11
12 - R12
13 - R13
14 - R14
15 - R15
*/
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
/* Last register + 1. */
#define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 3] = {
0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 7, 6, 3, 4, 5
};
#define CHECK_EXTRA_REGS(p, w, do) \
if (p >= SLJIT_R3 && p <= SLJIT_S3) { \
if (p <= compiler->scratches) \
w = compiler->saveds_offset - ((p) - SLJIT_R2) * (sljit_sw)sizeof(sljit_sw); \
else \
w = compiler->locals_offset + ((p) - SLJIT_S2) * (sljit_sw)sizeof(sljit_sw); \
p = SLJIT_MEM1(SLJIT_SP); \
do; \
}
#else /* SLJIT_CONFIG_X86_32 */
/* Last register + 1. */
#define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
/* Note: r12 & 0x7 == 0b100, which decoded as SIB byte present
Note: avoid to use r12 and r13 for memory addessing
therefore r12 is better to be a higher saved register. */
#ifndef _WIN64
/* Args: rdi(=7), rsi(=6), rdx(=2), rcx(=1), r8, r9. Scratches: rax(=0), r10, r11 */
static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 4] = {
0, 0, 6, 7, 1, 8, 11, 10, 12, 5, 13, 14, 15, 3, 4, 2, 9
};
/* low-map. reg_map & 0x7. */
static const sljit_u8 reg_lmap[SLJIT_NUMBER_OF_REGISTERS + 4] = {
0, 0, 6, 7, 1, 0, 3, 2, 4, 5, 5, 6, 7, 3, 4, 2, 1
};
#else
/* Args: rcx(=1), rdx(=2), r8, r9. Scratches: rax(=0), r10, r11 */
static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 4] = {
0, 0, 2, 8, 1, 11, 12, 5, 13, 14, 15, 7, 6, 3, 4, 9, 10
};
/* low-map. reg_map & 0x7. */
static const sljit_u8 reg_lmap[SLJIT_NUMBER_OF_REGISTERS + 4] = {
0, 0, 2, 0, 1, 3, 4, 5, 5, 6, 7, 7, 6, 3, 4, 1, 2
};
#endif
/* Args: xmm0-xmm3 */
static const sljit_u8 freg_map[SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1] = {
4, 0, 1, 2, 3, 5, 6
};
/* low-map. freg_map & 0x7. */
static const sljit_u8 freg_lmap[SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1] = {
4, 0, 1, 2, 3, 5, 6
};
#define REX_W 0x48
#define REX_R 0x44
#define REX_X 0x42
#define REX_B 0x41
#define REX 0x40
#ifndef _WIN64
#define HALFWORD_MAX 0x7fffffffl
#define HALFWORD_MIN -0x80000000l
#else
#define HALFWORD_MAX 0x7fffffffll
#define HALFWORD_MIN -0x80000000ll
#endif
#define IS_HALFWORD(x) ((x) <= HALFWORD_MAX && (x) >= HALFWORD_MIN)
#define NOT_HALFWORD(x) ((x) > HALFWORD_MAX || (x) < HALFWORD_MIN)
#define CHECK_EXTRA_REGS(p, w, do)
#endif /* SLJIT_CONFIG_X86_32 */
#define TMP_FREG (0)
/* Size flags for emit_x86_instruction: */
#define EX86_BIN_INS 0x0010
#define EX86_SHIFT_INS 0x0020
#define EX86_REX 0x0040
#define EX86_NO_REXW 0x0080
#define EX86_BYTE_ARG 0x0100
#define EX86_HALF_ARG 0x0200
#define EX86_PREF_66 0x0400
#define EX86_PREF_F2 0x0800
#define EX86_PREF_F3 0x1000
#define EX86_SSE2_OP1 0x2000
#define EX86_SSE2_OP2 0x4000
#define EX86_SSE2 (EX86_SSE2_OP1 | EX86_SSE2_OP2)
/* --------------------------------------------------------------------- */
/* Instrucion forms */
/* --------------------------------------------------------------------- */
#define ADD (/* BINARY */ 0 << 3)
#define ADD_EAX_i32 0x05
#define ADD_r_rm 0x03
#define ADD_rm_r 0x01
#define ADDSD_x_xm 0x58
#define ADC (/* BINARY */ 2 << 3)
#define ADC_EAX_i32 0x15
#define ADC_r_rm 0x13
#define ADC_rm_r 0x11
#define AND (/* BINARY */ 4 << 3)
#define AND_EAX_i32 0x25
#define AND_r_rm 0x23
#define AND_rm_r 0x21
#define ANDPD_x_xm 0x54
#define BSR_r_rm (/* GROUP_0F */ 0xbd)
#define CALL_i32 0xe8
#define CALL_rm (/* GROUP_FF */ 2 << 3)
#define CDQ 0x99
#define CMOVE_r_rm (/* GROUP_0F */ 0x44)
#define CMP (/* BINARY */ 7 << 3)
#define CMP_EAX_i32 0x3d
#define CMP_r_rm 0x3b
#define CMP_rm_r 0x39
#define CVTPD2PS_x_xm 0x5a
#define CVTSI2SD_x_rm 0x2a
#define CVTTSD2SI_r_xm 0x2c
#define DIV (/* GROUP_F7 */ 6 << 3)
#define DIVSD_x_xm 0x5e
#define FSTPS 0xd9
#define FSTPD 0xdd
#define INT3 0xcc
#define IDIV (/* GROUP_F7 */ 7 << 3)
#define IMUL (/* GROUP_F7 */ 5 << 3)
#define IMUL_r_rm (/* GROUP_0F */ 0xaf)
#define IMUL_r_rm_i8 0x6b
#define IMUL_r_rm_i32 0x69
#define JE_i8 0x74
#define JNE_i8 0x75
#define JMP_i8 0xeb
#define JMP_i32 0xe9
#define JMP_rm (/* GROUP_FF */ 4 << 3)
#define LEA_r_m 0x8d
#define MOV_r_rm 0x8b
#define MOV_r_i32 0xb8
#define MOV_rm_r 0x89
#define MOV_rm_i32 0xc7
#define MOV_rm8_i8 0xc6
#define MOV_rm8_r8 0x88
#define MOVSD_x_xm 0x10
#define MOVSD_xm_x 0x11
#define MOVSXD_r_rm 0x63
#define MOVSX_r_rm8 (/* GROUP_0F */ 0xbe)
#define MOVSX_r_rm16 (/* GROUP_0F */ 0xbf)
#define MOVZX_r_rm8 (/* GROUP_0F */ 0xb6)
#define MOVZX_r_rm16 (/* GROUP_0F */ 0xb7)
#define MUL (/* GROUP_F7 */ 4 << 3)
#define MULSD_x_xm 0x59
#define NEG_rm (/* GROUP_F7 */ 3 << 3)
#define NOP 0x90
#define NOT_rm (/* GROUP_F7 */ 2 << 3)
#define OR (/* BINARY */ 1 << 3)
#define OR_r_rm 0x0b
#define OR_EAX_i32 0x0d
#define OR_rm_r 0x09
#define OR_rm8_r8 0x08
#define POP_r 0x58
#define POP_rm 0x8f
#define POPF 0x9d
#define PREFETCH 0x18
#define PUSH_i32 0x68
#define PUSH_r 0x50
#define PUSH_rm (/* GROUP_FF */ 6 << 3)
#define PUSHF 0x9c
#define RET_near 0xc3
#define RET_i16 0xc2
#define SBB (/* BINARY */ 3 << 3)
#define SBB_EAX_i32 0x1d
#define SBB_r_rm 0x1b
#define SBB_rm_r 0x19
#define SAR (/* SHIFT */ 7 << 3)
#define SHL (/* SHIFT */ 4 << 3)
#define SHR (/* SHIFT */ 5 << 3)
#define SUB (/* BINARY */ 5 << 3)
#define SUB_EAX_i32 0x2d
#define SUB_r_rm 0x2b
#define SUB_rm_r 0x29
#define SUBSD_x_xm 0x5c
#define TEST_EAX_i32 0xa9
#define TEST_rm_r 0x85
#define UCOMISD_x_xm 0x2e
#define UNPCKLPD_x_xm 0x14
#define XCHG_EAX_r 0x90
#define XCHG_r_rm 0x87
#define XOR (/* BINARY */ 6 << 3)
#define XOR_EAX_i32 0x35
#define XOR_r_rm 0x33
#define XOR_rm_r 0x31
#define XORPD_x_xm 0x57
#define GROUP_0F 0x0f
#define GROUP_F7 0xf7
#define GROUP_FF 0xff
#define GROUP_BINARY_81 0x81
#define GROUP_BINARY_83 0x83
#define GROUP_SHIFT_1 0xd1
#define GROUP_SHIFT_N 0xc1
#define GROUP_SHIFT_CL 0xd3
#define MOD_REG 0xc0
#define MOD_DISP8 0x40
#define INC_SIZE(s) (*inst++ = (s), compiler->size += (s))
#define PUSH_REG(r) (*inst++ = (PUSH_r + (r)))
#define POP_REG(r) (*inst++ = (POP_r + (r)))
#define RET() (*inst++ = (RET_near))
#define RET_I16(n) (*inst++ = (RET_i16), *inst++ = n, *inst++ = 0)
/* r32, r/m32 */
#define MOV_RM(mod, reg, rm) (*inst++ = (MOV_r_rm), *inst++ = (mod) << 6 | (reg) << 3 | (rm))
/* Multithreading does not affect these static variables, since they store
built-in CPU features. Therefore they can be overwritten by different threads
if they detect the CPU features in the same time. */
#if (defined SLJIT_DETECT_SSE2 && SLJIT_DETECT_SSE2)
static sljit_s32 cpu_has_sse2 = -1;
#endif
static sljit_s32 cpu_has_cmov = -1;
#ifdef _WIN32_WCE
#include <cmnintrin.h>
#elif defined(_MSC_VER) && _MSC_VER >= 1400
#include <intrin.h>
#endif
/******************************************************/
/* Unaligned-store functions */
/******************************************************/
static SLJIT_INLINE void sljit_unaligned_store_s16(void *addr, sljit_s16 value)
{
SLJIT_MEMCPY(addr, &value, sizeof(value));
}
static SLJIT_INLINE void sljit_unaligned_store_s32(void *addr, sljit_s32 value)
{
SLJIT_MEMCPY(addr, &value, sizeof(value));
}
static SLJIT_INLINE void sljit_unaligned_store_sw(void *addr, sljit_sw value)
{
SLJIT_MEMCPY(addr, &value, sizeof(value));
}
/******************************************************/
/* Utility functions */
/******************************************************/
static void get_cpu_features(void)
{
sljit_u32 features;
#if defined(_MSC_VER) && _MSC_VER >= 1400
int CPUInfo[4];
__cpuid(CPUInfo, 1);
features = (sljit_u32)CPUInfo[3];
#elif defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C)
/* AT&T syntax. */
__asm__ (
"movl $0x1, %%eax\n"
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
/* On x86-32, there is no red zone, so this
should work (no need for a local variable). */
"push %%ebx\n"
#endif
"cpuid\n"
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
"pop %%ebx\n"
#endif
"movl %%edx, %0\n"
: "=g" (features)
:
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
: "%eax", "%ecx", "%edx"
#else
: "%rax", "%rbx", "%rcx", "%rdx"
#endif
);
#else /* _MSC_VER && _MSC_VER >= 1400 */
/* Intel syntax. */
__asm {
mov eax, 1
cpuid
mov features, edx
}
#endif /* _MSC_VER && _MSC_VER >= 1400 */
#if (defined SLJIT_DETECT_SSE2 && SLJIT_DETECT_SSE2)
cpu_has_sse2 = (features >> 26) & 0x1;
#endif
cpu_has_cmov = (features >> 15) & 0x1;
}
static sljit_u8 get_jump_code(sljit_s32 type)
{
switch (type) {
case SLJIT_EQUAL:
case SLJIT_EQUAL_F64:
return 0x84 /* je */;
case SLJIT_NOT_EQUAL:
case SLJIT_NOT_EQUAL_F64:
return 0x85 /* jne */;
case SLJIT_LESS:
case SLJIT_LESS_F64:
return 0x82 /* jc */;
case SLJIT_GREATER_EQUAL:
case SLJIT_GREATER_EQUAL_F64:
return 0x83 /* jae */;
case SLJIT_GREATER:
case SLJIT_GREATER_F64:
return 0x87 /* jnbe */;
case SLJIT_LESS_EQUAL:
case SLJIT_LESS_EQUAL_F64:
return 0x86 /* jbe */;
case SLJIT_SIG_LESS:
return 0x8c /* jl */;
case SLJIT_SIG_GREATER_EQUAL:
return 0x8d /* jnl */;
case SLJIT_SIG_GREATER:
return 0x8f /* jnle */;
case SLJIT_SIG_LESS_EQUAL:
return 0x8e /* jle */;
case SLJIT_OVERFLOW:
case SLJIT_MUL_OVERFLOW:
return 0x80 /* jo */;
case SLJIT_NOT_OVERFLOW:
case SLJIT_MUL_NOT_OVERFLOW:
return 0x81 /* jno */;
case SLJIT_UNORDERED_F64:
return 0x8a /* jp */;
case SLJIT_ORDERED_F64:
return 0x8b /* jpo */;
}
return 0;
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
static sljit_u8* generate_far_jump_code(struct sljit_jump *jump, sljit_u8 *code_ptr, sljit_s32 type, sljit_sw executable_offset);
#else
static sljit_u8* generate_far_jump_code(struct sljit_jump *jump, sljit_u8 *code_ptr, sljit_s32 type);
#endif
static sljit_u8* generate_near_jump_code(struct sljit_jump *jump, sljit_u8 *code_ptr, sljit_u8 *code, sljit_s32 type, sljit_sw executable_offset)
{
sljit_s32 short_jump;
sljit_uw label_addr;
if (jump->flags & JUMP_LABEL)
label_addr = (sljit_uw)(code + jump->u.label->size);
else
label_addr = jump->u.target - executable_offset;
short_jump = (sljit_sw)(label_addr - (jump->addr + 2)) >= -128 && (sljit_sw)(label_addr - (jump->addr + 2)) <= 127;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((sljit_sw)(label_addr - (jump->addr + 1)) > HALFWORD_MAX || (sljit_sw)(label_addr - (jump->addr + 1)) < HALFWORD_MIN)
return generate_far_jump_code(jump, code_ptr, type);
#endif
if (type == SLJIT_JUMP) {
if (short_jump)
*code_ptr++ = JMP_i8;
else
*code_ptr++ = JMP_i32;
jump->addr++;
}
else if (type >= SLJIT_FAST_CALL) {
short_jump = 0;
*code_ptr++ = CALL_i32;
jump->addr++;
}
else if (short_jump) {
*code_ptr++ = get_jump_code(type) - 0x10;
jump->addr++;
}
else {
*code_ptr++ = GROUP_0F;
*code_ptr++ = get_jump_code(type);
jump->addr += 2;
}
if (short_jump) {
jump->flags |= PATCH_MB;
code_ptr += sizeof(sljit_s8);
} else {
jump->flags |= PATCH_MW;
code_ptr += sizeof(sljit_s32);
}
return code_ptr;
}
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
struct sljit_memory_fragment *buf;
sljit_u8 *code;
sljit_u8 *code_ptr;
sljit_u8 *buf_ptr;
sljit_u8 *buf_end;
sljit_u8 len;
sljit_sw executable_offset;
sljit_sw jump_addr;
struct sljit_label *label;
struct sljit_jump *jump;
struct sljit_const *const_;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_generate_code(compiler));
reverse_buf(compiler);
/* Second code generation pass. */
code = (sljit_u8*)SLJIT_MALLOC_EXEC(compiler->size);
PTR_FAIL_WITH_EXEC_IF(code);
buf = compiler->buf;
code_ptr = code;
label = compiler->labels;
jump = compiler->jumps;
const_ = compiler->consts;
executable_offset = SLJIT_EXEC_OFFSET(code);
do {
buf_ptr = buf->memory;
buf_end = buf_ptr + buf->used_size;
do {
len = *buf_ptr++;
if (len > 0) {
/* The code is already generated. */
SLJIT_MEMCPY(code_ptr, buf_ptr, len);
code_ptr += len;
buf_ptr += len;
}
else {
if (*buf_ptr >= 2) {
jump->addr = (sljit_uw)code_ptr;
if (!(jump->flags & SLJIT_REWRITABLE_JUMP))
code_ptr = generate_near_jump_code(jump, code_ptr, code, *buf_ptr - 2, executable_offset);
else {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
code_ptr = generate_far_jump_code(jump, code_ptr, *buf_ptr - 2, executable_offset);
#else
code_ptr = generate_far_jump_code(jump, code_ptr, *buf_ptr - 2);
#endif
}
jump = jump->next;
}
else if (*buf_ptr == 0) {
label->addr = ((sljit_uw)code_ptr) + executable_offset;
label->size = code_ptr - code;
label = label->next;
}
else { /* *buf_ptr is 1 */
const_->addr = ((sljit_uw)code_ptr) - sizeof(sljit_sw);
const_ = const_->next;
}
buf_ptr++;
}
} while (buf_ptr < buf_end);
SLJIT_ASSERT(buf_ptr == buf_end);
buf = buf->next;
} while (buf);
SLJIT_ASSERT(!label);
SLJIT_ASSERT(!jump);
SLJIT_ASSERT(!const_);
jump = compiler->jumps;
while (jump) {
jump_addr = jump->addr + executable_offset;
if (jump->flags & PATCH_MB) {
SLJIT_ASSERT((sljit_sw)(jump->u.label->addr - (jump_addr + sizeof(sljit_s8))) >= -128 && (sljit_sw)(jump->u.label->addr - (jump_addr + sizeof(sljit_s8))) <= 127);
*(sljit_u8*)jump->addr = (sljit_u8)(jump->u.label->addr - (jump_addr + sizeof(sljit_s8)));
} else if (jump->flags & PATCH_MW) {
if (jump->flags & JUMP_LABEL) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
sljit_unaligned_store_sw((void*)jump->addr, (sljit_sw)(jump->u.label->addr - (jump_addr + sizeof(sljit_sw))));
#else
SLJIT_ASSERT((sljit_sw)(jump->u.label->addr - (jump_addr + sizeof(sljit_s32))) >= HALFWORD_MIN && (sljit_sw)(jump->u.label->addr - (jump_addr + sizeof(sljit_s32))) <= HALFWORD_MAX);
sljit_unaligned_store_s32((void*)jump->addr, (sljit_s32)(jump->u.label->addr - (jump_addr + sizeof(sljit_s32))));
#endif
}
else {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
sljit_unaligned_store_sw((void*)jump->addr, (sljit_sw)(jump->u.target - (jump_addr + sizeof(sljit_sw))));
#else
SLJIT_ASSERT((sljit_sw)(jump->u.target - (jump_addr + sizeof(sljit_s32))) >= HALFWORD_MIN && (sljit_sw)(jump->u.target - (jump_addr + sizeof(sljit_s32))) <= HALFWORD_MAX);
sljit_unaligned_store_s32((void*)jump->addr, (sljit_s32)(jump->u.target - (jump_addr + sizeof(sljit_s32))));
#endif
}
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
else if (jump->flags & PATCH_MD)
sljit_unaligned_store_sw((void*)jump->addr, jump->u.label->addr);
#endif
jump = jump->next;
}
/* Some space may be wasted because of short jumps. */
SLJIT_ASSERT(code_ptr <= code + compiler->size);
compiler->error = SLJIT_ERR_COMPILED;
compiler->executable_offset = executable_offset;
compiler->executable_size = code_ptr - code;
return (void*)(code + executable_offset);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type)
{
switch (feature_type) {
case SLJIT_HAS_FPU:
#ifdef SLJIT_IS_FPU_AVAILABLE
return SLJIT_IS_FPU_AVAILABLE;
#elif (defined SLJIT_DETECT_SSE2 && SLJIT_DETECT_SSE2)
if (cpu_has_sse2 == -1)
get_cpu_features();
return cpu_has_sse2;
#else /* SLJIT_DETECT_SSE2 */
return 1;
#endif /* SLJIT_DETECT_SSE2 */
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
case SLJIT_HAS_VIRTUAL_REGISTERS:
return 1;
#endif
case SLJIT_HAS_CLZ:
case SLJIT_HAS_CMOV:
if (cpu_has_cmov == -1)
get_cpu_features();
return cpu_has_cmov;
case SLJIT_HAS_SSE2:
#if (defined SLJIT_DETECT_SSE2 && SLJIT_DETECT_SSE2)
if (cpu_has_sse2 == -1)
get_cpu_features();
return cpu_has_sse2;
#else
return 1;
#endif
default:
return 0;
}
}
/* --------------------------------------------------------------------- */
/* Operators */
/* --------------------------------------------------------------------- */
#define BINARY_OPCODE(opcode) (((opcode ## _EAX_i32) << 24) | ((opcode ## _r_rm) << 16) | ((opcode ## _rm_r) << 8) | (opcode))
static sljit_s32 emit_cum_binary(struct sljit_compiler *compiler,
sljit_u32 op_types,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w);
static sljit_s32 emit_non_cum_binary(struct sljit_compiler *compiler,
sljit_u32 op_types,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w);
static sljit_s32 emit_mov(struct sljit_compiler *compiler,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw);
#define EMIT_MOV(compiler, dst, dstw, src, srcw) \
FAIL_IF(emit_mov(compiler, dst, dstw, src, srcw));
static SLJIT_INLINE sljit_s32 emit_sse2_store(struct sljit_compiler *compiler,
sljit_s32 single, sljit_s32 dst, sljit_sw dstw, sljit_s32 src);
static SLJIT_INLINE sljit_s32 emit_sse2_load(struct sljit_compiler *compiler,
sljit_s32 single, sljit_s32 dst, sljit_s32 src, sljit_sw srcw);
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
#include "sljitNativeX86_32.c"
#else
#include "sljitNativeX86_64.c"
#endif
static sljit_s32 emit_mov(struct sljit_compiler *compiler,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
SLJIT_ASSERT(dst != SLJIT_UNUSED);
if (FAST_IS_REG(src)) {
inst = emit_x86_instruction(compiler, 1, src, 0, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm_r;
return SLJIT_SUCCESS;
}
if (src & SLJIT_IMM) {
if (FAST_IS_REG(dst)) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
return emit_do_imm(compiler, MOV_r_i32 + reg_map[dst], srcw);
#else
if (!compiler->mode32) {
if (NOT_HALFWORD(srcw))
return emit_load_imm64(compiler, dst, srcw);
}
else
return emit_do_imm32(compiler, (reg_map[dst] >= 8) ? REX_B : 0, MOV_r_i32 + reg_lmap[dst], srcw);
#endif
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (!compiler->mode32 && NOT_HALFWORD(srcw)) {
/* Immediate to memory move. Only SLJIT_MOV operation copies
an immediate directly into memory so TMP_REG1 can be used. */
FAIL_IF(emit_load_imm64(compiler, TMP_REG1, srcw));
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm_r;
return SLJIT_SUCCESS;
}
#endif
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, srcw, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm_i32;
return SLJIT_SUCCESS;
}
if (FAST_IS_REG(dst)) {
inst = emit_x86_instruction(compiler, 1, dst, 0, src, srcw);
FAIL_IF(!inst);
*inst = MOV_r_rm;
return SLJIT_SUCCESS;
}
/* Memory to memory move. Only SLJIT_MOV operation copies
data from memory to memory so TMP_REG1 can be used. */
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src, srcw);
FAIL_IF(!inst);
*inst = MOV_r_rm;
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm_r;
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op)
{
sljit_u8 *inst;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
sljit_s32 size;
#endif
CHECK_ERROR();
CHECK(check_sljit_emit_op0(compiler, op));
switch (GET_OPCODE(op)) {
case SLJIT_BREAKPOINT:
inst = (sljit_u8*)ensure_buf(compiler, 1 + 1);
FAIL_IF(!inst);
INC_SIZE(1);
*inst = INT3;
break;
case SLJIT_NOP:
inst = (sljit_u8*)ensure_buf(compiler, 1 + 1);
FAIL_IF(!inst);
INC_SIZE(1);
*inst = NOP;
break;
case SLJIT_LMUL_UW:
case SLJIT_LMUL_SW:
case SLJIT_DIVMOD_UW:
case SLJIT_DIVMOD_SW:
case SLJIT_DIV_UW:
case SLJIT_DIV_SW:
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
#ifdef _WIN64
SLJIT_ASSERT(
reg_map[SLJIT_R0] == 0
&& reg_map[SLJIT_R1] == 2
&& reg_map[TMP_REG1] > 7);
#else
SLJIT_ASSERT(
reg_map[SLJIT_R0] == 0
&& reg_map[SLJIT_R1] < 7
&& reg_map[TMP_REG1] == 2);
#endif
compiler->mode32 = op & SLJIT_I32_OP;
#endif
SLJIT_COMPILE_ASSERT((SLJIT_DIVMOD_UW & 0x2) == 0 && SLJIT_DIV_UW - 0x2 == SLJIT_DIVMOD_UW, bad_div_opcode_assignments);
op = GET_OPCODE(op);
if ((op | 0x2) == SLJIT_DIV_UW) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || defined(_WIN64)
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_R1, 0);
inst = emit_x86_instruction(compiler, 1, SLJIT_R1, 0, SLJIT_R1, 0);
#else
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, TMP_REG1, 0);
#endif
FAIL_IF(!inst);
*inst = XOR_r_rm;
}
if ((op | 0x2) == SLJIT_DIV_SW) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || defined(_WIN64)
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_R1, 0);
#endif
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
inst = (sljit_u8*)ensure_buf(compiler, 1 + 1);
FAIL_IF(!inst);
INC_SIZE(1);
*inst = CDQ;
#else
if (compiler->mode32) {
inst = (sljit_u8*)ensure_buf(compiler, 1 + 1);
FAIL_IF(!inst);
INC_SIZE(1);
*inst = CDQ;
} else {
inst = (sljit_u8*)ensure_buf(compiler, 1 + 2);
FAIL_IF(!inst);
INC_SIZE(2);
*inst++ = REX_W;
*inst = CDQ;
}
#endif
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
inst = (sljit_u8*)ensure_buf(compiler, 1 + 2);
FAIL_IF(!inst);
INC_SIZE(2);
*inst++ = GROUP_F7;
*inst = MOD_REG | ((op >= SLJIT_DIVMOD_UW) ? reg_map[TMP_REG1] : reg_map[SLJIT_R1]);
#else
#ifdef _WIN64
size = (!compiler->mode32 || op >= SLJIT_DIVMOD_UW) ? 3 : 2;
#else
size = (!compiler->mode32) ? 3 : 2;
#endif
inst = (sljit_u8*)ensure_buf(compiler, 1 + size);
FAIL_IF(!inst);
INC_SIZE(size);
#ifdef _WIN64
if (!compiler->mode32)
*inst++ = REX_W | ((op >= SLJIT_DIVMOD_UW) ? REX_B : 0);
else if (op >= SLJIT_DIVMOD_UW)
*inst++ = REX_B;
*inst++ = GROUP_F7;
*inst = MOD_REG | ((op >= SLJIT_DIVMOD_UW) ? reg_lmap[TMP_REG1] : reg_lmap[SLJIT_R1]);
#else
if (!compiler->mode32)
*inst++ = REX_W;
*inst++ = GROUP_F7;
*inst = MOD_REG | reg_map[SLJIT_R1];
#endif
#endif
switch (op) {
case SLJIT_LMUL_UW:
*inst |= MUL;
break;
case SLJIT_LMUL_SW:
*inst |= IMUL;
break;
case SLJIT_DIVMOD_UW:
case SLJIT_DIV_UW:
*inst |= DIV;
break;
case SLJIT_DIVMOD_SW:
case SLJIT_DIV_SW:
*inst |= IDIV;
break;
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) && !defined(_WIN64)
if (op <= SLJIT_DIVMOD_SW)
EMIT_MOV(compiler, SLJIT_R1, 0, TMP_REG1, 0);
#else
if (op >= SLJIT_DIV_UW)
EMIT_MOV(compiler, SLJIT_R1, 0, TMP_REG1, 0);
#endif
break;
}
return SLJIT_SUCCESS;
}
#define ENCODE_PREFIX(prefix) \
do { \
inst = (sljit_u8*)ensure_buf(compiler, 1 + 1); \
FAIL_IF(!inst); \
INC_SIZE(1); \
*inst = (prefix); \
} while (0)
static sljit_s32 emit_mov_byte(struct sljit_compiler *compiler, sljit_s32 sign,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
sljit_s32 dst_r;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
sljit_s32 work_r;
#endif
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
#endif
if (src & SLJIT_IMM) {
if (FAST_IS_REG(dst)) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
return emit_do_imm(compiler, MOV_r_i32 + reg_map[dst], srcw);
#else
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, srcw, dst, 0);
FAIL_IF(!inst);
*inst = MOV_rm_i32;
return SLJIT_SUCCESS;
#endif
}
inst = emit_x86_instruction(compiler, 1 | EX86_BYTE_ARG | EX86_NO_REXW, SLJIT_IMM, srcw, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm8_i8;
return SLJIT_SUCCESS;
}
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
if ((dst & SLJIT_MEM) && FAST_IS_REG(src)) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (reg_map[src] >= 4) {
SLJIT_ASSERT(dst_r == TMP_REG1);
EMIT_MOV(compiler, TMP_REG1, 0, src, 0);
} else
dst_r = src;
#else
dst_r = src;
#endif
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
else if (FAST_IS_REG(src) && reg_map[src] >= 4) {
/* src, dst are registers. */
SLJIT_ASSERT(SLOW_IS_REG(dst));
if (reg_map[dst] < 4) {
if (dst != src)
EMIT_MOV(compiler, dst, 0, src, 0);
inst = emit_x86_instruction(compiler, 2, dst, 0, dst, 0);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = sign ? MOVSX_r_rm8 : MOVZX_r_rm8;
}
else {
if (dst != src)
EMIT_MOV(compiler, dst, 0, src, 0);
if (sign) {
/* shl reg, 24 */
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 24, dst, 0);
FAIL_IF(!inst);
*inst |= SHL;
/* sar reg, 24 */
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 24, dst, 0);
FAIL_IF(!inst);
*inst |= SAR;
}
else {
inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, 0xff, dst, 0);
FAIL_IF(!inst);
*(inst + 1) |= AND;
}
}
return SLJIT_SUCCESS;
}
#endif
else {
/* src can be memory addr or reg_map[src] < 4 on x86_32 architectures. */
inst = emit_x86_instruction(compiler, 2, dst_r, 0, src, srcw);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = sign ? MOVSX_r_rm8 : MOVZX_r_rm8;
}
if (dst & SLJIT_MEM) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (dst_r == TMP_REG1) {
/* Find a non-used register, whose reg_map[src] < 4. */
if ((dst & REG_MASK) == SLJIT_R0) {
if ((dst & OFFS_REG_MASK) == TO_OFFS_REG(SLJIT_R1))
work_r = SLJIT_R2;
else
work_r = SLJIT_R1;
}
else {
if ((dst & OFFS_REG_MASK) != TO_OFFS_REG(SLJIT_R0))
work_r = SLJIT_R0;
else if ((dst & REG_MASK) == SLJIT_R1)
work_r = SLJIT_R2;
else
work_r = SLJIT_R1;
}
if (work_r == SLJIT_R0) {
ENCODE_PREFIX(XCHG_EAX_r + reg_map[TMP_REG1]);
}
else {
inst = emit_x86_instruction(compiler, 1, work_r, 0, dst_r, 0);
FAIL_IF(!inst);
*inst = XCHG_r_rm;
}
inst = emit_x86_instruction(compiler, 1, work_r, 0, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm8_r8;
if (work_r == SLJIT_R0) {
ENCODE_PREFIX(XCHG_EAX_r + reg_map[TMP_REG1]);
}
else {
inst = emit_x86_instruction(compiler, 1, work_r, 0, dst_r, 0);
FAIL_IF(!inst);
*inst = XCHG_r_rm;
}
}
else {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm8_r8;
}
#else
inst = emit_x86_instruction(compiler, 1 | EX86_REX | EX86_NO_REXW, dst_r, 0, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm8_r8;
#endif
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_prefetch(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif
inst = emit_x86_instruction(compiler, 2, 0, 0, src, srcw);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst++ = PREFETCH;
if (op >= SLJIT_MOV_U8 && op <= SLJIT_MOV_S8)
*inst |= (3 << 3);
else if (op >= SLJIT_MOV_U16 && op <= SLJIT_MOV_S16)
*inst |= (2 << 3);
else
*inst |= (1 << 3);
return SLJIT_SUCCESS;
}
static sljit_s32 emit_mov_half(struct sljit_compiler *compiler, sljit_s32 sign,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
sljit_s32 dst_r;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
#endif
if (src & SLJIT_IMM) {
if (FAST_IS_REG(dst)) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
return emit_do_imm(compiler, MOV_r_i32 + reg_map[dst], srcw);
#else
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, srcw, dst, 0);
FAIL_IF(!inst);
*inst = MOV_rm_i32;
return SLJIT_SUCCESS;
#endif
}
inst = emit_x86_instruction(compiler, 1 | EX86_HALF_ARG | EX86_NO_REXW | EX86_PREF_66, SLJIT_IMM, srcw, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm_i32;
return SLJIT_SUCCESS;
}
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
if ((dst & SLJIT_MEM) && FAST_IS_REG(src))
dst_r = src;
else {
inst = emit_x86_instruction(compiler, 2, dst_r, 0, src, srcw);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = sign ? MOVSX_r_rm16 : MOVZX_r_rm16;
}
if (dst & SLJIT_MEM) {
inst = emit_x86_instruction(compiler, 1 | EX86_NO_REXW | EX86_PREF_66, dst_r, 0, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm_r;
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_unary(struct sljit_compiler *compiler, sljit_u8 opcode,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
if (dst == src && dstw == srcw) {
/* Same input and output */
inst = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw);
FAIL_IF(!inst);
*inst++ = GROUP_F7;
*inst |= opcode;
return SLJIT_SUCCESS;
}
if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED))
dst = TMP_REG1;
if (FAST_IS_REG(dst)) {
EMIT_MOV(compiler, dst, 0, src, srcw);
inst = emit_x86_instruction(compiler, 1, 0, 0, dst, 0);
FAIL_IF(!inst);
*inst++ = GROUP_F7;
*inst |= opcode;
return SLJIT_SUCCESS;
}
EMIT_MOV(compiler, TMP_REG1, 0, src, srcw);
inst = emit_x86_instruction(compiler, 1, 0, 0, TMP_REG1, 0);
FAIL_IF(!inst);
*inst++ = GROUP_F7;
*inst |= opcode;
EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
static sljit_s32 emit_not_with_flags(struct sljit_compiler *compiler,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
if (dst == SLJIT_UNUSED)
dst = TMP_REG1;
if (FAST_IS_REG(dst)) {
EMIT_MOV(compiler, dst, 0, src, srcw);
inst = emit_x86_instruction(compiler, 1, 0, 0, dst, 0);
FAIL_IF(!inst);
*inst++ = GROUP_F7;
*inst |= NOT_rm;
inst = emit_x86_instruction(compiler, 1, dst, 0, dst, 0);
FAIL_IF(!inst);
*inst = OR_r_rm;
return SLJIT_SUCCESS;
}
EMIT_MOV(compiler, TMP_REG1, 0, src, srcw);
inst = emit_x86_instruction(compiler, 1, 0, 0, TMP_REG1, 0);
FAIL_IF(!inst);
*inst++ = GROUP_F7;
*inst |= NOT_rm;
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, TMP_REG1, 0);
FAIL_IF(!inst);
*inst = OR_r_rm;
EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
static const sljit_sw emit_clz_arg = 32 + 31;
#endif
static sljit_s32 emit_clz(struct sljit_compiler *compiler, sljit_s32 op_flags,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
sljit_s32 dst_r;
SLJIT_UNUSED_ARG(op_flags);
if (cpu_has_cmov == -1)
get_cpu_features();
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
inst = emit_x86_instruction(compiler, 2, dst_r, 0, src, srcw);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = BSR_r_rm;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (cpu_has_cmov) {
if (dst_r != TMP_REG1) {
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, 32 + 31);
inst = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG1, 0);
}
else
inst = emit_x86_instruction(compiler, 2, dst_r, 0, SLJIT_MEM0(), (sljit_sw)&emit_clz_arg);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = CMOVE_r_rm;
}
else
FAIL_IF(sljit_emit_cmov_generic(compiler, SLJIT_EQUAL, dst_r, SLJIT_IMM, 32 + 31));
inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, 31, dst_r, 0);
#else
if (cpu_has_cmov) {
EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_IMM, !(op_flags & SLJIT_I32_OP) ? (64 + 63) : (32 + 31));
inst = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG2, 0);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = CMOVE_r_rm;
}
else
FAIL_IF(sljit_emit_cmov_generic(compiler, SLJIT_EQUAL, dst_r, SLJIT_IMM, !(op_flags & SLJIT_I32_OP) ? (64 + 63) : (32 + 31)));
inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, !(op_flags & SLJIT_I32_OP) ? 63 : 31, dst_r, 0);
#endif
FAIL_IF(!inst);
*(inst + 1) |= XOR;
if (dst & SLJIT_MEM)
EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 op_flags = GET_ALL_FLAGS(op);
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
sljit_s32 dst_is_ereg = 0;
#endif
CHECK_ERROR();
CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
CHECK_EXTRA_REGS(dst, dstw, dst_is_ereg = 1);
CHECK_EXTRA_REGS(src, srcw, (void)0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = op_flags & SLJIT_I32_OP;
#endif
if (dst == SLJIT_UNUSED && !HAS_FLAGS(op)) {
if (op <= SLJIT_MOV_P && (src & SLJIT_MEM))
return emit_prefetch(compiler, op, src, srcw);
return SLJIT_SUCCESS;
}
op = GET_OPCODE(op);
if (op >= SLJIT_MOV && op <= SLJIT_MOV_P) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
#endif
if (FAST_IS_REG(src) && src == dst) {
if (!TYPE_CAST_NEEDED(op))
return SLJIT_SUCCESS;
}
if (op_flags & SLJIT_I32_OP) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (src & SLJIT_MEM) {
if (op == SLJIT_MOV_S32)
op = SLJIT_MOV_U32;
}
else if (src & SLJIT_IMM) {
if (op == SLJIT_MOV_U32)
op = SLJIT_MOV_S32;
}
#endif
}
if (src & SLJIT_IMM) {
switch (op) {
case SLJIT_MOV_U8:
srcw = (sljit_u8)srcw;
break;
case SLJIT_MOV_S8:
srcw = (sljit_s8)srcw;
break;
case SLJIT_MOV_U16:
srcw = (sljit_u16)srcw;
break;
case SLJIT_MOV_S16:
srcw = (sljit_s16)srcw;
break;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
case SLJIT_MOV_U32:
srcw = (sljit_u32)srcw;
break;
case SLJIT_MOV_S32:
srcw = (sljit_s32)srcw;
break;
#endif
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (SLJIT_UNLIKELY(dst_is_ereg))
return emit_mov(compiler, dst, dstw, src, srcw);
#endif
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (SLJIT_UNLIKELY(dst_is_ereg) && (!(op == SLJIT_MOV || op == SLJIT_MOV_U32 || op == SLJIT_MOV_S32 || op == SLJIT_MOV_P) || (src & SLJIT_MEM))) {
SLJIT_ASSERT(dst == SLJIT_MEM1(SLJIT_SP));
dst = TMP_REG1;
}
#endif
switch (op) {
case SLJIT_MOV:
case SLJIT_MOV_P:
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
case SLJIT_MOV_U32:
case SLJIT_MOV_S32:
#endif
FAIL_IF(emit_mov(compiler, dst, dstw, src, srcw));
break;
case SLJIT_MOV_U8:
FAIL_IF(emit_mov_byte(compiler, 0, dst, dstw, src, srcw));
break;
case SLJIT_MOV_S8:
FAIL_IF(emit_mov_byte(compiler, 1, dst, dstw, src, srcw));
break;
case SLJIT_MOV_U16:
FAIL_IF(emit_mov_half(compiler, 0, dst, dstw, src, srcw));
break;
case SLJIT_MOV_S16:
FAIL_IF(emit_mov_half(compiler, 1, dst, dstw, src, srcw));
break;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
case SLJIT_MOV_U32:
FAIL_IF(emit_mov_int(compiler, 0, dst, dstw, src, srcw));
break;
case SLJIT_MOV_S32:
FAIL_IF(emit_mov_int(compiler, 1, dst, dstw, src, srcw));
break;
#endif
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (SLJIT_UNLIKELY(dst_is_ereg) && dst == TMP_REG1)
return emit_mov(compiler, SLJIT_MEM1(SLJIT_SP), dstw, TMP_REG1, 0);
#endif
return SLJIT_SUCCESS;
}
switch (op) {
case SLJIT_NOT:
if (SLJIT_UNLIKELY(op_flags & SLJIT_SET_Z))
return emit_not_with_flags(compiler, dst, dstw, src, srcw);
return emit_unary(compiler, NOT_rm, dst, dstw, src, srcw);
case SLJIT_NEG:
return emit_unary(compiler, NEG_rm, dst, dstw, src, srcw);
case SLJIT_CLZ:
return emit_clz(compiler, op_flags, dst, dstw, src, srcw);
}
return SLJIT_SUCCESS;
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
#define BINARY_IMM(op_imm, op_mr, immw, arg, argw) \
if (IS_HALFWORD(immw) || compiler->mode32) { \
inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, immw, arg, argw); \
FAIL_IF(!inst); \
*(inst + 1) |= (op_imm); \
} \
else { \
FAIL_IF(emit_load_imm64(compiler, (arg == TMP_REG1) ? TMP_REG2 : TMP_REG1, immw)); \
inst = emit_x86_instruction(compiler, 1, (arg == TMP_REG1) ? TMP_REG2 : TMP_REG1, 0, arg, argw); \
FAIL_IF(!inst); \
*inst = (op_mr); \
}
#define BINARY_EAX_IMM(op_eax_imm, immw) \
FAIL_IF(emit_do_imm32(compiler, (!compiler->mode32) ? REX_W : 0, (op_eax_imm), immw))
#else
#define BINARY_IMM(op_imm, op_mr, immw, arg, argw) \
inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, immw, arg, argw); \
FAIL_IF(!inst); \
*(inst + 1) |= (op_imm);
#define BINARY_EAX_IMM(op_eax_imm, immw) \
FAIL_IF(emit_do_imm(compiler, (op_eax_imm), immw))
#endif
static sljit_s32 emit_cum_binary(struct sljit_compiler *compiler,
sljit_u32 op_types,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_u8* inst;
sljit_u8 op_eax_imm = (op_types >> 24);
sljit_u8 op_rm = (op_types >> 16) & 0xff;
sljit_u8 op_mr = (op_types >> 8) & 0xff;
sljit_u8 op_imm = op_types & 0xff;
if (dst == SLJIT_UNUSED) {
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
if (src2 & SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, TMP_REG1, 0);
}
else {
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = op_rm;
}
return SLJIT_SUCCESS;
}
if (dst == src1 && dstw == src1w) {
if (src2 & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) {
#else
if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128)) {
#endif
BINARY_EAX_IMM(op_eax_imm, src2w);
}
else {
BINARY_IMM(op_imm, op_mr, src2w, dst, dstw);
}
}
else if (FAST_IS_REG(dst)) {
inst = emit_x86_instruction(compiler, 1, dst, dstw, src2, src2w);
FAIL_IF(!inst);
*inst = op_rm;
}
else if (FAST_IS_REG(src2)) {
/* Special exception for sljit_emit_op_flags. */
inst = emit_x86_instruction(compiler, 1, src2, src2w, dst, dstw);
FAIL_IF(!inst);
*inst = op_mr;
}
else {
EMIT_MOV(compiler, TMP_REG1, 0, src2, src2w);
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw);
FAIL_IF(!inst);
*inst = op_mr;
}
return SLJIT_SUCCESS;
}
/* Only for cumulative operations. */
if (dst == src2 && dstw == src2w) {
if (src1 & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((dst == SLJIT_R0) && (src1w > 127 || src1w < -128) && (compiler->mode32 || IS_HALFWORD(src1w))) {
#else
if ((dst == SLJIT_R0) && (src1w > 127 || src1w < -128)) {
#endif
BINARY_EAX_IMM(op_eax_imm, src1w);
}
else {
BINARY_IMM(op_imm, op_mr, src1w, dst, dstw);
}
}
else if (FAST_IS_REG(dst)) {
inst = emit_x86_instruction(compiler, 1, dst, dstw, src1, src1w);
FAIL_IF(!inst);
*inst = op_rm;
}
else if (FAST_IS_REG(src1)) {
inst = emit_x86_instruction(compiler, 1, src1, src1w, dst, dstw);
FAIL_IF(!inst);
*inst = op_mr;
}
else {
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw);
FAIL_IF(!inst);
*inst = op_mr;
}
return SLJIT_SUCCESS;
}
/* General version. */
if (FAST_IS_REG(dst)) {
EMIT_MOV(compiler, dst, 0, src1, src1w);
if (src2 & SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, dst, 0);
}
else {
inst = emit_x86_instruction(compiler, 1, dst, 0, src2, src2w);
FAIL_IF(!inst);
*inst = op_rm;
}
}
else {
/* This version requires less memory writing. */
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
if (src2 & SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, TMP_REG1, 0);
}
else {
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = op_rm;
}
EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0);
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_non_cum_binary(struct sljit_compiler *compiler,
sljit_u32 op_types,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_u8* inst;
sljit_u8 op_eax_imm = (op_types >> 24);
sljit_u8 op_rm = (op_types >> 16) & 0xff;
sljit_u8 op_mr = (op_types >> 8) & 0xff;
sljit_u8 op_imm = op_types & 0xff;
if (dst == SLJIT_UNUSED) {
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
if (src2 & SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, TMP_REG1, 0);
}
else {
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = op_rm;
}
return SLJIT_SUCCESS;
}
if (dst == src1 && dstw == src1w) {
if (src2 & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) {
#else
if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128)) {
#endif
BINARY_EAX_IMM(op_eax_imm, src2w);
}
else {
BINARY_IMM(op_imm, op_mr, src2w, dst, dstw);
}
}
else if (FAST_IS_REG(dst)) {
inst = emit_x86_instruction(compiler, 1, dst, dstw, src2, src2w);
FAIL_IF(!inst);
*inst = op_rm;
}
else if (FAST_IS_REG(src2)) {
inst = emit_x86_instruction(compiler, 1, src2, src2w, dst, dstw);
FAIL_IF(!inst);
*inst = op_mr;
}
else {
EMIT_MOV(compiler, TMP_REG1, 0, src2, src2w);
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw);
FAIL_IF(!inst);
*inst = op_mr;
}
return SLJIT_SUCCESS;
}
/* General version. */
if (FAST_IS_REG(dst) && dst != src2) {
EMIT_MOV(compiler, dst, 0, src1, src1w);
if (src2 & SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, dst, 0);
}
else {
inst = emit_x86_instruction(compiler, 1, dst, 0, src2, src2w);
FAIL_IF(!inst);
*inst = op_rm;
}
}
else {
/* This version requires less memory writing. */
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
if (src2 & SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, TMP_REG1, 0);
}
else {
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = op_rm;
}
EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0);
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_mul(struct sljit_compiler *compiler,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_u8* inst;
sljit_s32 dst_r;
dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1;
/* Register destination. */
if (dst_r == src1 && !(src2 & SLJIT_IMM)) {
inst = emit_x86_instruction(compiler, 2, dst_r, 0, src2, src2w);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = IMUL_r_rm;
}
else if (dst_r == src2 && !(src1 & SLJIT_IMM)) {
inst = emit_x86_instruction(compiler, 2, dst_r, 0, src1, src1w);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = IMUL_r_rm;
}
else if (src1 & SLJIT_IMM) {
if (src2 & SLJIT_IMM) {
EMIT_MOV(compiler, dst_r, 0, SLJIT_IMM, src2w);
src2 = dst_r;
src2w = 0;
}
if (src1w <= 127 && src1w >= -128) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w);
FAIL_IF(!inst);
*inst = IMUL_r_rm_i8;
inst = (sljit_u8*)ensure_buf(compiler, 1 + 1);
FAIL_IF(!inst);
INC_SIZE(1);
*inst = (sljit_s8)src1w;
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
else {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w);
FAIL_IF(!inst);
*inst = IMUL_r_rm_i32;
inst = (sljit_u8*)ensure_buf(compiler, 1 + 4);
FAIL_IF(!inst);
INC_SIZE(4);
sljit_unaligned_store_sw(inst, src1w);
}
#else
else if (IS_HALFWORD(src1w)) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w);
FAIL_IF(!inst);
*inst = IMUL_r_rm_i32;
inst = (sljit_u8*)ensure_buf(compiler, 1 + 4);
FAIL_IF(!inst);
INC_SIZE(4);
sljit_unaligned_store_s32(inst, (sljit_s32)src1w);
}
else {
if (dst_r != src2)
EMIT_MOV(compiler, dst_r, 0, src2, src2w);
FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src1w));
inst = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG2, 0);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = IMUL_r_rm;
}
#endif
}
else if (src2 & SLJIT_IMM) {
/* Note: src1 is NOT immediate. */
if (src2w <= 127 && src2w >= -128) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w);
FAIL_IF(!inst);
*inst = IMUL_r_rm_i8;
inst = (sljit_u8*)ensure_buf(compiler, 1 + 1);
FAIL_IF(!inst);
INC_SIZE(1);
*inst = (sljit_s8)src2w;
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
else {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w);
FAIL_IF(!inst);
*inst = IMUL_r_rm_i32;
inst = (sljit_u8*)ensure_buf(compiler, 1 + 4);
FAIL_IF(!inst);
INC_SIZE(4);
sljit_unaligned_store_sw(inst, src2w);
}
#else
else if (IS_HALFWORD(src2w)) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w);
FAIL_IF(!inst);
*inst = IMUL_r_rm_i32;
inst = (sljit_u8*)ensure_buf(compiler, 1 + 4);
FAIL_IF(!inst);
INC_SIZE(4);
sljit_unaligned_store_s32(inst, (sljit_s32)src2w);
}
else {
if (dst_r != src1)
EMIT_MOV(compiler, dst_r, 0, src1, src1w);
FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src2w));
inst = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG2, 0);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = IMUL_r_rm;
}
#endif
}
else {
/* Neither argument is immediate. */
if (ADDRESSING_DEPENDS_ON(src2, dst_r))
dst_r = TMP_REG1;
EMIT_MOV(compiler, dst_r, 0, src1, src1w);
inst = emit_x86_instruction(compiler, 2, dst_r, 0, src2, src2w);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = IMUL_r_rm;
}
if (dst & SLJIT_MEM)
EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
static sljit_s32 emit_lea_binary(struct sljit_compiler *compiler,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_u8* inst;
sljit_s32 dst_r, done = 0;
/* These cases better be left to handled by normal way. */
if (dst == src1 && dstw == src1w)
return SLJIT_ERR_UNSUPPORTED;
if (dst == src2 && dstw == src2w)
return SLJIT_ERR_UNSUPPORTED;
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
if (FAST_IS_REG(src1)) {
if (FAST_IS_REG(src2)) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM2(src1, src2), 0);
FAIL_IF(!inst);
*inst = LEA_r_m;
done = 1;
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((src2 & SLJIT_IMM) && (compiler->mode32 || IS_HALFWORD(src2w))) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src1), (sljit_s32)src2w);
#else
if (src2 & SLJIT_IMM) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src1), src2w);
#endif
FAIL_IF(!inst);
*inst = LEA_r_m;
done = 1;
}
}
else if (FAST_IS_REG(src2)) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((src1 & SLJIT_IMM) && (compiler->mode32 || IS_HALFWORD(src1w))) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src2), (sljit_s32)src1w);
#else
if (src1 & SLJIT_IMM) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src2), src1w);
#endif
FAIL_IF(!inst);
*inst = LEA_r_m;
done = 1;
}
}
if (done) {
if (dst_r == TMP_REG1)
return emit_mov(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
return SLJIT_ERR_UNSUPPORTED;
}
static sljit_s32 emit_cmp_binary(struct sljit_compiler *compiler,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_u8* inst;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (src1 == SLJIT_R0 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) {
#else
if (src1 == SLJIT_R0 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128)) {
#endif
BINARY_EAX_IMM(CMP_EAX_i32, src2w);
return SLJIT_SUCCESS;
}
if (FAST_IS_REG(src1)) {
if (src2 & SLJIT_IMM) {
BINARY_IMM(CMP, CMP_rm_r, src2w, src1, 0);
}
else {
inst = emit_x86_instruction(compiler, 1, src1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = CMP_r_rm;
}
return SLJIT_SUCCESS;
}
if (FAST_IS_REG(src2) && !(src1 & SLJIT_IMM)) {
inst = emit_x86_instruction(compiler, 1, src2, 0, src1, src1w);
FAIL_IF(!inst);
*inst = CMP_rm_r;
return SLJIT_SUCCESS;
}
if (src2 & SLJIT_IMM) {
if (src1 & SLJIT_IMM) {
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
src1 = TMP_REG1;
src1w = 0;
}
BINARY_IMM(CMP, CMP_rm_r, src2w, src1, src1w);
}
else {
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = CMP_r_rm;
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_test_binary(struct sljit_compiler *compiler,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_u8* inst;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (src1 == SLJIT_R0 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) {
#else
if (src1 == SLJIT_R0 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128)) {
#endif
BINARY_EAX_IMM(TEST_EAX_i32, src2w);
return SLJIT_SUCCESS;
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (src2 == SLJIT_R0 && (src1 & SLJIT_IMM) && (src1w > 127 || src1w < -128) && (compiler->mode32 || IS_HALFWORD(src1w))) {
#else
if (src2 == SLJIT_R0 && (src1 & SLJIT_IMM) && (src1w > 127 || src1w < -128)) {
#endif
BINARY_EAX_IMM(TEST_EAX_i32, src1w);
return SLJIT_SUCCESS;
}
if (!(src1 & SLJIT_IMM)) {
if (src2 & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (IS_HALFWORD(src2w) || compiler->mode32) {
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, src1, src1w);
FAIL_IF(!inst);
*inst = GROUP_F7;
}
else {
FAIL_IF(emit_load_imm64(compiler, TMP_REG1, src2w));
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src1, src1w);
FAIL_IF(!inst);
*inst = TEST_rm_r;
}
#else
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, src1, src1w);
FAIL_IF(!inst);
*inst = GROUP_F7;
#endif
return SLJIT_SUCCESS;
}
else if (FAST_IS_REG(src1)) {
inst = emit_x86_instruction(compiler, 1, src1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = TEST_rm_r;
return SLJIT_SUCCESS;
}
}
if (!(src2 & SLJIT_IMM)) {
if (src1 & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (IS_HALFWORD(src1w) || compiler->mode32) {
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src1w, src2, src2w);
FAIL_IF(!inst);
*inst = GROUP_F7;
}
else {
FAIL_IF(emit_load_imm64(compiler, TMP_REG1, src1w));
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = TEST_rm_r;
}
#else
inst = emit_x86_instruction(compiler, 1, src1, src1w, src2, src2w);
FAIL_IF(!inst);
*inst = GROUP_F7;
#endif
return SLJIT_SUCCESS;
}
else if (FAST_IS_REG(src2)) {
inst = emit_x86_instruction(compiler, 1, src2, 0, src1, src1w);
FAIL_IF(!inst);
*inst = TEST_rm_r;
return SLJIT_SUCCESS;
}
}
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
if (src2 & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (IS_HALFWORD(src2w) || compiler->mode32) {
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, TMP_REG1, 0);
FAIL_IF(!inst);
*inst = GROUP_F7;
}
else {
FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src2w));
inst = emit_x86_instruction(compiler, 1, TMP_REG2, 0, TMP_REG1, 0);
FAIL_IF(!inst);
*inst = TEST_rm_r;
}
#else
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, TMP_REG1, 0);
FAIL_IF(!inst);
*inst = GROUP_F7;
#endif
}
else {
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = TEST_rm_r;
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_shift(struct sljit_compiler *compiler,
sljit_u8 mode,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_u8* inst;
if ((src2 & SLJIT_IMM) || (src2 == SLJIT_PREF_SHIFT_REG)) {
if (dst == src1 && dstw == src1w) {
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, dst, dstw);
FAIL_IF(!inst);
*inst |= mode;
return SLJIT_SUCCESS;
}
if (dst == SLJIT_UNUSED) {
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, TMP_REG1, 0);
FAIL_IF(!inst);
*inst |= mode;
return SLJIT_SUCCESS;
}
if (dst == SLJIT_PREF_SHIFT_REG && src2 == SLJIT_PREF_SHIFT_REG) {
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0);
FAIL_IF(!inst);
*inst |= mode;
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
if (FAST_IS_REG(dst)) {
EMIT_MOV(compiler, dst, 0, src1, src1w);
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, dst, 0);
FAIL_IF(!inst);
*inst |= mode;
return SLJIT_SUCCESS;
}
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, TMP_REG1, 0);
FAIL_IF(!inst);
*inst |= mode;
EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
if (dst == SLJIT_PREF_SHIFT_REG) {
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w);
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0);
FAIL_IF(!inst);
*inst |= mode;
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0);
}
else if (SLOW_IS_REG(dst) && dst != src2 && !ADDRESSING_DEPENDS_ON(src2, dst)) {
if (src1 != dst)
EMIT_MOV(compiler, dst, 0, src1, src1w);
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_PREF_SHIFT_REG, 0);
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w);
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, dst, 0);
FAIL_IF(!inst);
*inst |= mode;
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0);
}
else {
/* This case is complex since ecx itself may be used for
addressing, and this case must be supported as well. */
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
EMIT_MOV(compiler, SLJIT_MEM1(SLJIT_SP), 0, SLJIT_PREF_SHIFT_REG, 0);
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w);
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0);
FAIL_IF(!inst);
*inst |= mode;
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, SLJIT_MEM1(SLJIT_SP), 0);
#else
EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_PREF_SHIFT_REG, 0);
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w);
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0);
FAIL_IF(!inst);
*inst |= mode;
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG2, 0);
#endif
if (dst != SLJIT_UNUSED)
return emit_mov(compiler, dst, dstw, TMP_REG1, 0);
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_shift_with_flags(struct sljit_compiler *compiler,
sljit_u8 mode, sljit_s32 set_flags,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
/* The CPU does not set flags if the shift count is 0. */
if (src2 & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((src2w & 0x3f) != 0 || (compiler->mode32 && (src2w & 0x1f) != 0))
return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w);
#else
if ((src2w & 0x1f) != 0)
return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w);
#endif
if (!set_flags)
return emit_mov(compiler, dst, dstw, src1, src1w);
/* OR dst, src, 0 */
return emit_cum_binary(compiler, BINARY_OPCODE(OR),
dst, dstw, src1, src1w, SLJIT_IMM, 0);
}
if (!set_flags)
return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w);
if (!FAST_IS_REG(dst))
FAIL_IF(emit_cmp_binary(compiler, src1, src1w, SLJIT_IMM, 0));
FAIL_IF(emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w));
if (FAST_IS_REG(dst))
return emit_cmp_binary(compiler, (dst == SLJIT_UNUSED) ? TMP_REG1 : dst, dstw, SLJIT_IMM, 0);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
CHECK_EXTRA_REGS(dst, dstw, (void)0);
CHECK_EXTRA_REGS(src1, src1w, (void)0);
CHECK_EXTRA_REGS(src2, src2w, (void)0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = op & SLJIT_I32_OP;
#endif
if (dst == SLJIT_UNUSED && !HAS_FLAGS(op))
return SLJIT_SUCCESS;
switch (GET_OPCODE(op)) {
case SLJIT_ADD:
if (!HAS_FLAGS(op)) {
if (emit_lea_binary(compiler, dst, dstw, src1, src1w, src2, src2w) != SLJIT_ERR_UNSUPPORTED)
return compiler->error;
}
return emit_cum_binary(compiler, BINARY_OPCODE(ADD),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_ADDC:
return emit_cum_binary(compiler, BINARY_OPCODE(ADC),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SUB:
if (!HAS_FLAGS(op)) {
if ((src2 & SLJIT_IMM) && emit_lea_binary(compiler, dst, dstw, src1, src1w, SLJIT_IMM, -src2w) != SLJIT_ERR_UNSUPPORTED)
return compiler->error;
}
if (dst == SLJIT_UNUSED)
return emit_cmp_binary(compiler, src1, src1w, src2, src2w);
return emit_non_cum_binary(compiler, BINARY_OPCODE(SUB),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SUBC:
return emit_non_cum_binary(compiler, BINARY_OPCODE(SBB),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_MUL:
return emit_mul(compiler, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_AND:
if (dst == SLJIT_UNUSED)
return emit_test_binary(compiler, src1, src1w, src2, src2w);
return emit_cum_binary(compiler, BINARY_OPCODE(AND),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_OR:
return emit_cum_binary(compiler, BINARY_OPCODE(OR),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_XOR:
return emit_cum_binary(compiler, BINARY_OPCODE(XOR),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SHL:
return emit_shift_with_flags(compiler, SHL, HAS_FLAGS(op),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_LSHR:
return emit_shift_with_flags(compiler, SHR, HAS_FLAGS(op),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_ASHR:
return emit_shift_with_flags(compiler, SAR, HAS_FLAGS(op),
dst, dstw, src1, src1w, src2, src2w);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg)
{
CHECK_REG_INDEX(check_sljit_get_register_index(reg));
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (reg >= SLJIT_R3 && reg <= SLJIT_R8)
return -1;
#endif
return reg_map[reg];
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg)
{
CHECK_REG_INDEX(check_sljit_get_float_register_index(reg));
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
return reg;
#else
return freg_map[reg];
#endif
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
void *instruction, sljit_s32 size)
{
sljit_u8 *inst;
CHECK_ERROR();
CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
inst = (sljit_u8*)ensure_buf(compiler, 1 + size);
FAIL_IF(!inst);
INC_SIZE(size);
SLJIT_MEMCPY(inst, instruction, size);
return SLJIT_SUCCESS;
}
/* --------------------------------------------------------------------- */
/* Floating point operators */
/* --------------------------------------------------------------------- */
/* Alignment(3) + 4 * 16 bytes. */
static sljit_s32 sse2_data[3 + (4 * 4)];
static sljit_s32 *sse2_buffer;
static void init_compiler(void)
{
/* Align to 16 bytes. */
sse2_buffer = (sljit_s32*)(((sljit_uw)sse2_data + 15) & ~0xf);
/* Single precision constants (each constant is 16 byte long). */
sse2_buffer[0] = 0x80000000;
sse2_buffer[4] = 0x7fffffff;
/* Double precision constants (each constant is 16 byte long). */
sse2_buffer[8] = 0;
sse2_buffer[9] = 0x80000000;
sse2_buffer[12] = 0xffffffff;
sse2_buffer[13] = 0x7fffffff;
}
static sljit_s32 emit_sse2(struct sljit_compiler *compiler, sljit_u8 opcode,
sljit_s32 single, sljit_s32 xmm1, sljit_s32 xmm2, sljit_sw xmm2w)
{
sljit_u8 *inst;
inst = emit_x86_instruction(compiler, 2 | (single ? EX86_PREF_F3 : EX86_PREF_F2) | EX86_SSE2, xmm1, 0, xmm2, xmm2w);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = opcode;
return SLJIT_SUCCESS;
}
static sljit_s32 emit_sse2_logic(struct sljit_compiler *compiler, sljit_u8 opcode,
sljit_s32 pref66, sljit_s32 xmm1, sljit_s32 xmm2, sljit_sw xmm2w)
{
sljit_u8 *inst;
inst = emit_x86_instruction(compiler, 2 | (pref66 ? EX86_PREF_66 : 0) | EX86_SSE2, xmm1, 0, xmm2, xmm2w);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = opcode;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 emit_sse2_load(struct sljit_compiler *compiler,
sljit_s32 single, sljit_s32 dst, sljit_s32 src, sljit_sw srcw)
{
return emit_sse2(compiler, MOVSD_x_xm, single, dst, src, srcw);
}
static SLJIT_INLINE sljit_s32 emit_sse2_store(struct sljit_compiler *compiler,
sljit_s32 single, sljit_s32 dst, sljit_sw dstw, sljit_s32 src)
{
return emit_sse2(compiler, MOVSD_xm_x, single, src, dst, dstw);
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_sw_from_f64(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
sljit_u8 *inst;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (GET_OPCODE(op) == SLJIT_CONV_SW_FROM_F64)
compiler->mode32 = 0;
#endif
inst = emit_x86_instruction(compiler, 2 | ((op & SLJIT_F32_OP) ? EX86_PREF_F3 : EX86_PREF_F2) | EX86_SSE2_OP2, dst_r, 0, src, srcw);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = CVTTSD2SI_r_xm;
if (dst & SLJIT_MEM)
return emit_mov(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_sw(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG;
sljit_u8 *inst;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_SW)
compiler->mode32 = 0;
#endif
if (src & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_S32)
srcw = (sljit_s32)srcw;
#endif
EMIT_MOV(compiler, TMP_REG1, 0, src, srcw);
src = TMP_REG1;
srcw = 0;
}
inst = emit_x86_instruction(compiler, 2 | ((op & SLJIT_F32_OP) ? EX86_PREF_F3 : EX86_PREF_F2) | EX86_SSE2_OP1, dst_r, 0, src, srcw);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = CVTSI2SD_x_rm;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif
if (dst_r == TMP_FREG)
return emit_sse2_store(compiler, op & SLJIT_F32_OP, dst, dstw, TMP_FREG);
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
if (!FAST_IS_REG(src1)) {
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_F32_OP, TMP_FREG, src1, src1w));
src1 = TMP_FREG;
}
return emit_sse2_logic(compiler, UCOMISD_x_xm, !(op & SLJIT_F32_OP), src1, src2, src2w);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 dst_r;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif
CHECK_ERROR();
SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw);
if (GET_OPCODE(op) == SLJIT_MOV_F64) {
if (FAST_IS_REG(dst))
return emit_sse2_load(compiler, op & SLJIT_F32_OP, dst, src, srcw);
if (FAST_IS_REG(src))
return emit_sse2_store(compiler, op & SLJIT_F32_OP, dst, dstw, src);
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_F32_OP, TMP_FREG, src, srcw));
return emit_sse2_store(compiler, op & SLJIT_F32_OP, dst, dstw, TMP_FREG);
}
if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_F32) {
dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG;
if (FAST_IS_REG(src)) {
/* We overwrite the high bits of source. From SLJIT point of view,
this is not an issue.
Note: In SSE3, we could also use MOVDDUP and MOVSLDUP. */
FAIL_IF(emit_sse2_logic(compiler, UNPCKLPD_x_xm, op & SLJIT_F32_OP, src, src, 0));
}
else {
FAIL_IF(emit_sse2_load(compiler, !(op & SLJIT_F32_OP), TMP_FREG, src, srcw));
src = TMP_FREG;
}
FAIL_IF(emit_sse2_logic(compiler, CVTPD2PS_x_xm, op & SLJIT_F32_OP, dst_r, src, 0));
if (dst_r == TMP_FREG)
return emit_sse2_store(compiler, op & SLJIT_F32_OP, dst, dstw, TMP_FREG);
return SLJIT_SUCCESS;
}
if (FAST_IS_REG(dst)) {
dst_r = dst;
if (dst != src)
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_F32_OP, dst_r, src, srcw));
}
else {
dst_r = TMP_FREG;
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_F32_OP, dst_r, src, srcw));
}
switch (GET_OPCODE(op)) {
case SLJIT_NEG_F64:
FAIL_IF(emit_sse2_logic(compiler, XORPD_x_xm, 1, dst_r, SLJIT_MEM0(), (sljit_sw)(op & SLJIT_F32_OP ? sse2_buffer : sse2_buffer + 8)));
break;
case SLJIT_ABS_F64:
FAIL_IF(emit_sse2_logic(compiler, ANDPD_x_xm, 1, dst_r, SLJIT_MEM0(), (sljit_sw)(op & SLJIT_F32_OP ? sse2_buffer + 4 : sse2_buffer + 12)));
break;
}
if (dst_r == TMP_FREG)
return emit_sse2_store(compiler, op & SLJIT_F32_OP, dst, dstw, TMP_FREG);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_s32 dst_r;
CHECK_ERROR();
CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif
if (FAST_IS_REG(dst)) {
dst_r = dst;
if (dst == src1)
; /* Do nothing here. */
else if (dst == src2 && (op == SLJIT_ADD_F64 || op == SLJIT_MUL_F64)) {
/* Swap arguments. */
src2 = src1;
src2w = src1w;
}
else if (dst != src2)
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_F32_OP, dst_r, src1, src1w));
else {
dst_r = TMP_FREG;
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_F32_OP, TMP_FREG, src1, src1w));
}
}
else {
dst_r = TMP_FREG;
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_F32_OP, TMP_FREG, src1, src1w));
}
switch (GET_OPCODE(op)) {
case SLJIT_ADD_F64:
FAIL_IF(emit_sse2(compiler, ADDSD_x_xm, op & SLJIT_F32_OP, dst_r, src2, src2w));
break;
case SLJIT_SUB_F64:
FAIL_IF(emit_sse2(compiler, SUBSD_x_xm, op & SLJIT_F32_OP, dst_r, src2, src2w));
break;
case SLJIT_MUL_F64:
FAIL_IF(emit_sse2(compiler, MULSD_x_xm, op & SLJIT_F32_OP, dst_r, src2, src2w));
break;
case SLJIT_DIV_F64:
FAIL_IF(emit_sse2(compiler, DIVSD_x_xm, op & SLJIT_F32_OP, dst_r, src2, src2w));
break;
}
if (dst_r == TMP_FREG)
return emit_sse2_store(compiler, op & SLJIT_F32_OP, dst, dstw, TMP_FREG);
return SLJIT_SUCCESS;
}
/* --------------------------------------------------------------------- */
/* Conditional instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
sljit_u8 *inst;
struct sljit_label *label;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_label(compiler));
if (compiler->last_label && compiler->last_label->size == compiler->size)
return compiler->last_label;
label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
PTR_FAIL_IF(!label);
set_label(label, compiler);
inst = (sljit_u8*)ensure_buf(compiler, 2);
PTR_FAIL_IF(!inst);
*inst++ = 0;
*inst++ = 0;
return label;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type)
{
sljit_u8 *inst;
struct sljit_jump *jump;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_jump(compiler, type));
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF_NULL(jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
/* Worst case size. */
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
compiler->size += (type >= SLJIT_JUMP) ? 5 : 6;
#else
compiler->size += (type >= SLJIT_JUMP) ? (10 + 3) : (2 + 10 + 3);
#endif
inst = (sljit_u8*)ensure_buf(compiler, 2);
PTR_FAIL_IF_NULL(inst);
*inst++ = 0;
*inst++ = type + 2;
return jump;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw)
{
sljit_u8 *inst;
struct sljit_jump *jump;
CHECK_ERROR();
CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
CHECK_EXTRA_REGS(src, srcw, (void)0);
if (src == SLJIT_IMM) {
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
FAIL_IF_NULL(jump);
set_jump(jump, compiler, JUMP_ADDR);
jump->u.target = srcw;
/* Worst case size. */
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
compiler->size += 5;
#else
compiler->size += 10 + 3;
#endif
inst = (sljit_u8*)ensure_buf(compiler, 2);
FAIL_IF_NULL(inst);
*inst++ = 0;
*inst++ = type + 2;
}
else {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
/* REX_W is not necessary (src is not immediate). */
compiler->mode32 = 1;
#endif
inst = emit_x86_instruction(compiler, 1, 0, 0, src, srcw);
FAIL_IF(!inst);
*inst++ = GROUP_FF;
*inst |= (type >= SLJIT_FAST_CALL) ? CALL_rm : JMP_rm;
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 type)
{
sljit_u8 *inst;
sljit_u8 cond_set = 0;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
sljit_s32 reg;
#endif
/* ADJUST_LOCAL_OFFSET and CHECK_EXTRA_REGS might overwrite these values. */
sljit_s32 dst_save = dst;
sljit_sw dstw_save = dstw;
CHECK_ERROR();
CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, type));
ADJUST_LOCAL_OFFSET(dst, dstw);
CHECK_EXTRA_REGS(dst, dstw, (void)0);
type &= 0xff;
/* setcc = jcc + 0x10. */
cond_set = get_jump_code(type) + 0x10;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (GET_OPCODE(op) == SLJIT_OR && !GET_ALL_FLAGS(op) && FAST_IS_REG(dst)) {
inst = (sljit_u8*)ensure_buf(compiler, 1 + 4 + 3);
FAIL_IF(!inst);
INC_SIZE(4 + 3);
/* Set low register to conditional flag. */
*inst++ = (reg_map[TMP_REG1] <= 7) ? REX : REX_B;
*inst++ = GROUP_0F;
*inst++ = cond_set;
*inst++ = MOD_REG | reg_lmap[TMP_REG1];
*inst++ = REX | (reg_map[TMP_REG1] <= 7 ? 0 : REX_R) | (reg_map[dst] <= 7 ? 0 : REX_B);
*inst++ = OR_rm8_r8;
*inst++ = MOD_REG | (reg_lmap[TMP_REG1] << 3) | reg_lmap[dst];
return SLJIT_SUCCESS;
}
reg = (GET_OPCODE(op) < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG1;
inst = (sljit_u8*)ensure_buf(compiler, 1 + 4 + 4);
FAIL_IF(!inst);
INC_SIZE(4 + 4);
/* Set low register to conditional flag. */
*inst++ = (reg_map[reg] <= 7) ? REX : REX_B;
*inst++ = GROUP_0F;
*inst++ = cond_set;
*inst++ = MOD_REG | reg_lmap[reg];
*inst++ = REX_W | (reg_map[reg] <= 7 ? 0 : (REX_B | REX_R));
/* The movzx instruction does not affect flags. */
*inst++ = GROUP_0F;
*inst++ = MOVZX_r_rm8;
*inst = MOD_REG | (reg_lmap[reg] << 3) | reg_lmap[reg];
if (reg != TMP_REG1)
return SLJIT_SUCCESS;
if (GET_OPCODE(op) < SLJIT_ADD) {
compiler->mode32 = GET_OPCODE(op) != SLJIT_MOV;
return emit_mov(compiler, dst, dstw, TMP_REG1, 0);
}
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \
|| (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS)
compiler->skip_checks = 1;
#endif
return sljit_emit_op2(compiler, op, dst_save, dstw_save, dst_save, dstw_save, TMP_REG1, 0);
#else
/* The SLJIT_CONFIG_X86_32 code path starts here. */
if (GET_OPCODE(op) < SLJIT_ADD && FAST_IS_REG(dst)) {
if (reg_map[dst] <= 4) {
/* Low byte is accessible. */
inst = (sljit_u8*)ensure_buf(compiler, 1 + 3 + 3);
FAIL_IF(!inst);
INC_SIZE(3 + 3);
/* Set low byte to conditional flag. */
*inst++ = GROUP_0F;
*inst++ = cond_set;
*inst++ = MOD_REG | reg_map[dst];
*inst++ = GROUP_0F;
*inst++ = MOVZX_r_rm8;
*inst = MOD_REG | (reg_map[dst] << 3) | reg_map[dst];
return SLJIT_SUCCESS;
}
/* Low byte is not accessible. */
if (cpu_has_cmov == -1)
get_cpu_features();
if (cpu_has_cmov) {
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, 1);
/* a xor reg, reg operation would overwrite the flags. */
EMIT_MOV(compiler, dst, 0, SLJIT_IMM, 0);
inst = (sljit_u8*)ensure_buf(compiler, 1 + 3);
FAIL_IF(!inst);
INC_SIZE(3);
*inst++ = GROUP_0F;
/* cmovcc = setcc - 0x50. */
*inst++ = cond_set - 0x50;
*inst++ = MOD_REG | (reg_map[dst] << 3) | reg_map[TMP_REG1];
return SLJIT_SUCCESS;
}
inst = (sljit_u8*)ensure_buf(compiler, 1 + 1 + 3 + 3 + 1);
FAIL_IF(!inst);
INC_SIZE(1 + 3 + 3 + 1);
*inst++ = XCHG_EAX_r + reg_map[TMP_REG1];
/* Set al to conditional flag. */
*inst++ = GROUP_0F;
*inst++ = cond_set;
*inst++ = MOD_REG | 0 /* eax */;
*inst++ = GROUP_0F;
*inst++ = MOVZX_r_rm8;
*inst++ = MOD_REG | (reg_map[dst] << 3) | 0 /* eax */;
*inst++ = XCHG_EAX_r + reg_map[TMP_REG1];
return SLJIT_SUCCESS;
}
if (GET_OPCODE(op) == SLJIT_OR && !GET_ALL_FLAGS(op) && FAST_IS_REG(dst) && reg_map[dst] <= 4) {
SLJIT_ASSERT(reg_map[SLJIT_R0] == 0);
if (dst != SLJIT_R0) {
inst = (sljit_u8*)ensure_buf(compiler, 1 + 1 + 3 + 2 + 1);
FAIL_IF(!inst);
INC_SIZE(1 + 3 + 2 + 1);
/* Set low register to conditional flag. */
*inst++ = XCHG_EAX_r + reg_map[TMP_REG1];
*inst++ = GROUP_0F;
*inst++ = cond_set;
*inst++ = MOD_REG | 0 /* eax */;
*inst++ = OR_rm8_r8;
*inst++ = MOD_REG | (0 /* eax */ << 3) | reg_map[dst];
*inst++ = XCHG_EAX_r + reg_map[TMP_REG1];
}
else {
inst = (sljit_u8*)ensure_buf(compiler, 1 + 2 + 3 + 2 + 2);
FAIL_IF(!inst);
INC_SIZE(2 + 3 + 2 + 2);
/* Set low register to conditional flag. */
*inst++ = XCHG_r_rm;
*inst++ = MOD_REG | (1 /* ecx */ << 3) | reg_map[TMP_REG1];
*inst++ = GROUP_0F;
*inst++ = cond_set;
*inst++ = MOD_REG | 1 /* ecx */;
*inst++ = OR_rm8_r8;
*inst++ = MOD_REG | (1 /* ecx */ << 3) | 0 /* eax */;
*inst++ = XCHG_r_rm;
*inst++ = MOD_REG | (1 /* ecx */ << 3) | reg_map[TMP_REG1];
}
return SLJIT_SUCCESS;
}
/* Set TMP_REG1 to the bit. */
inst = (sljit_u8*)ensure_buf(compiler, 1 + 1 + 3 + 3 + 1);
FAIL_IF(!inst);
INC_SIZE(1 + 3 + 3 + 1);
*inst++ = XCHG_EAX_r + reg_map[TMP_REG1];
/* Set al to conditional flag. */
*inst++ = GROUP_0F;
*inst++ = cond_set;
*inst++ = MOD_REG | 0 /* eax */;
*inst++ = GROUP_0F;
*inst++ = MOVZX_r_rm8;
*inst++ = MOD_REG | (0 << 3) /* eax */ | 0 /* eax */;
*inst++ = XCHG_EAX_r + reg_map[TMP_REG1];
if (GET_OPCODE(op) < SLJIT_ADD)
return emit_mov(compiler, dst, dstw, TMP_REG1, 0);
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \
|| (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS)
compiler->skip_checks = 1;
#endif
return sljit_emit_op2(compiler, op, dst_save, dstw_save, dst_save, dstw_save, TMP_REG1, 0);
#endif /* SLJIT_CONFIG_X86_64 */
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 dst_reg,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
CHECK_ERROR();
CHECK(check_sljit_emit_cmov(compiler, type, dst_reg, src, srcw));
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
dst_reg &= ~SLJIT_I32_OP;
if (!sljit_has_cpu_feature(SLJIT_HAS_CMOV) || (dst_reg >= SLJIT_R3 && dst_reg <= SLJIT_S3))
return sljit_emit_cmov_generic(compiler, type, dst_reg, src, srcw);
#else
if (!sljit_has_cpu_feature(SLJIT_HAS_CMOV))
return sljit_emit_cmov_generic(compiler, type, dst_reg, src, srcw);
#endif
/* ADJUST_LOCAL_OFFSET is not needed. */
CHECK_EXTRA_REGS(src, srcw, (void)0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = dst_reg & SLJIT_I32_OP;
dst_reg &= ~SLJIT_I32_OP;
#endif
if (SLJIT_UNLIKELY(src & SLJIT_IMM)) {
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, srcw);
src = TMP_REG1;
srcw = 0;
}
inst = emit_x86_instruction(compiler, 2, dst_reg, 0, src, srcw);
FAIL_IF(!inst);
*inst++ = GROUP_0F;
*inst = get_jump_code(type & 0xff) - 0x40;
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset)
{
CHECK_ERROR();
CHECK(check_sljit_get_local_base(compiler, dst, dstw, offset));
ADJUST_LOCAL_OFFSET(dst, dstw);
CHECK_EXTRA_REGS(dst, dstw, (void)0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
#endif
ADJUST_LOCAL_OFFSET(SLJIT_MEM1(SLJIT_SP), offset);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (NOT_HALFWORD(offset)) {
FAIL_IF(emit_load_imm64(compiler, TMP_REG1, offset));
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
SLJIT_ASSERT(emit_lea_binary(compiler, dst, dstw, SLJIT_SP, 0, TMP_REG1, 0) != SLJIT_ERR_UNSUPPORTED);
return compiler->error;
#else
return emit_lea_binary(compiler, dst, dstw, SLJIT_SP, 0, TMP_REG1, 0);
#endif
}
#endif
if (offset != 0)
return emit_lea_binary(compiler, dst, dstw, SLJIT_SP, 0, SLJIT_IMM, offset);
return emit_mov(compiler, dst, dstw, SLJIT_SP, 0);
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value)
{
sljit_u8 *inst;
struct sljit_const *const_;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
sljit_s32 reg;
#endif
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
ADJUST_LOCAL_OFFSET(dst, dstw);
CHECK_EXTRA_REGS(dst, dstw, (void)0);
const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
PTR_FAIL_IF(!const_);
set_const(const_, compiler);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
reg = FAST_IS_REG(dst) ? dst : TMP_REG1;
if (emit_load_imm64(compiler, reg, init_value))
return NULL;
#else
if (emit_mov(compiler, dst, dstw, SLJIT_IMM, init_value))
return NULL;
#endif
inst = (sljit_u8*)ensure_buf(compiler, 2);
PTR_FAIL_IF(!inst);
*inst++ = 0;
*inst++ = 1;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (dst & SLJIT_MEM)
if (emit_mov(compiler, dst, dstw, TMP_REG1, 0))
return NULL;
#endif
return const_;
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset)
{
SLJIT_UNUSED_ARG(executable_offset);
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
sljit_unaligned_store_sw((void*)addr, new_target - (addr + 4) - (sljit_uw)executable_offset);
#else
sljit_unaligned_store_sw((void*)addr, (sljit_sw) new_target);
#endif
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset)
{
SLJIT_UNUSED_ARG(executable_offset);
sljit_unaligned_store_sw((void*)addr, new_constant);
}