/* * Stack-less Just-In-Time compiler * * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void) { #if (defined SLJIT_X86_32_FASTCALL && SLJIT_X86_32_FASTCALL) return "x86" SLJIT_CPUINFO " ABI:fastcall"; #else return "x86" SLJIT_CPUINFO; #endif } /* 32b register indexes: 0 - EAX 1 - ECX 2 - EDX 3 - EBX 4 - ESP 5 - EBP 6 - ESI 7 - EDI */ /* 64b register indexes: 0 - RAX 1 - RCX 2 - RDX 3 - RBX 4 - RSP 5 - RBP 6 - RSI 7 - RDI 8 - R8 - From now on REX prefix is required 9 - R9 10 - R10 11 - R11 12 - R12 13 - R13 14 - R14 15 - R15 */ #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) /* Last register + 1. */ #define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2) static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 3] = { 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 7, 6, 3, 4, 5 }; #define CHECK_EXTRA_REGS(p, w, do) \ if (p >= SLJIT_R3 && p <= SLJIT_S3) { \ if (p <= compiler->scratches) \ w = compiler->saveds_offset - ((p) - SLJIT_R2) * (sljit_sw)sizeof(sljit_sw); \ else \ w = compiler->locals_offset + ((p) - SLJIT_S2) * (sljit_sw)sizeof(sljit_sw); \ p = SLJIT_MEM1(SLJIT_SP); \ do; \ } #else /* SLJIT_CONFIG_X86_32 */ /* Last register + 1. */ #define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2) #define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3) /* Note: r12 & 0x7 == 0b100, which decoded as SIB byte present Note: avoid to use r12 and r13 for memory addessing therefore r12 is better to be a higher saved register. */ #ifndef _WIN64 /* Args: rdi(=7), rsi(=6), rdx(=2), rcx(=1), r8, r9. Scratches: rax(=0), r10, r11 */ static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 4] = { 0, 0, 6, 7, 1, 8, 11, 10, 12, 5, 13, 14, 15, 3, 4, 2, 9 }; /* low-map. reg_map & 0x7. */ static const sljit_u8 reg_lmap[SLJIT_NUMBER_OF_REGISTERS + 4] = { 0, 0, 6, 7, 1, 0, 3, 2, 4, 5, 5, 6, 7, 3, 4, 2, 1 }; #else /* Args: rcx(=1), rdx(=2), r8, r9. Scratches: rax(=0), r10, r11 */ static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 4] = { 0, 0, 2, 8, 1, 11, 12, 5, 13, 14, 15, 7, 6, 3, 4, 9, 10 }; /* low-map. reg_map & 0x7. */ static const sljit_u8 reg_lmap[SLJIT_NUMBER_OF_REGISTERS + 4] = { 0, 0, 2, 0, 1, 3, 4, 5, 5, 6, 7, 7, 6, 3, 4, 1, 2 }; #endif /* Args: xmm0-xmm3 */ static const sljit_u8 freg_map[SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1] = { 4, 0, 1, 2, 3, 5, 6 }; /* low-map. freg_map & 0x7. */ static const sljit_u8 freg_lmap[SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1] = { 4, 0, 1, 2, 3, 5, 6 }; #define REX_W 0x48 #define REX_R 0x44 #define REX_X 0x42 #define REX_B 0x41 #define REX 0x40 #ifndef _WIN64 #define HALFWORD_MAX 0x7fffffffl #define HALFWORD_MIN -0x80000000l #else #define HALFWORD_MAX 0x7fffffffll #define HALFWORD_MIN -0x80000000ll #endif #define IS_HALFWORD(x) ((x) <= HALFWORD_MAX && (x) >= HALFWORD_MIN) #define NOT_HALFWORD(x) ((x) > HALFWORD_MAX || (x) < HALFWORD_MIN) #define CHECK_EXTRA_REGS(p, w, do) #endif /* SLJIT_CONFIG_X86_32 */ #define TMP_FREG (0) /* Size flags for emit_x86_instruction: */ #define EX86_BIN_INS 0x0010 #define EX86_SHIFT_INS 0x0020 #define EX86_REX 0x0040 #define EX86_NO_REXW 0x0080 #define EX86_BYTE_ARG 0x0100 #define EX86_HALF_ARG 0x0200 #define EX86_PREF_66 0x0400 #define EX86_PREF_F2 0x0800 #define EX86_PREF_F3 0x1000 #define EX86_SSE2_OP1 0x2000 #define EX86_SSE2_OP2 0x4000 #define EX86_SSE2 (EX86_SSE2_OP1 | EX86_SSE2_OP2) /* --------------------------------------------------------------------- */ /* Instrucion forms */ /* --------------------------------------------------------------------- */ #define ADD (/* BINARY */ 0 << 3) #define ADD_EAX_i32 0x05 #define ADD_r_rm 0x03 #define ADD_rm_r 0x01 #define ADDSD_x_xm 0x58 #define ADC (/* BINARY */ 2 << 3) #define ADC_EAX_i32 0x15 #define ADC_r_rm 0x13 #define ADC_rm_r 0x11 #define AND (/* BINARY */ 4 << 3) #define AND_EAX_i32 0x25 #define AND_r_rm 0x23 #define AND_rm_r 0x21 #define ANDPD_x_xm 0x54 #define BSR_r_rm (/* GROUP_0F */ 0xbd) #define CALL_i32 0xe8 #define CALL_rm (/* GROUP_FF */ 2 << 3) #define CDQ 0x99 #define CMOVE_r_rm (/* GROUP_0F */ 0x44) #define CMP (/* BINARY */ 7 << 3) #define CMP_EAX_i32 0x3d #define CMP_r_rm 0x3b #define CMP_rm_r 0x39 #define CVTPD2PS_x_xm 0x5a #define CVTSI2SD_x_rm 0x2a #define CVTTSD2SI_r_xm 0x2c #define DIV (/* GROUP_F7 */ 6 << 3) #define DIVSD_x_xm 0x5e #define FSTPS 0xd9 #define FSTPD 0xdd #define INT3 0xcc #define IDIV (/* GROUP_F7 */ 7 << 3) #define IMUL (/* GROUP_F7 */ 5 << 3) #define IMUL_r_rm (/* GROUP_0F */ 0xaf) #define IMUL_r_rm_i8 0x6b #define IMUL_r_rm_i32 0x69 #define JE_i8 0x74 #define JNE_i8 0x75 #define JMP_i8 0xeb #define JMP_i32 0xe9 #define JMP_rm (/* GROUP_FF */ 4 << 3) #define LEA_r_m 0x8d #define MOV_r_rm 0x8b #define MOV_r_i32 0xb8 #define MOV_rm_r 0x89 #define MOV_rm_i32 0xc7 #define MOV_rm8_i8 0xc6 #define MOV_rm8_r8 0x88 #define MOVSD_x_xm 0x10 #define MOVSD_xm_x 0x11 #define MOVSXD_r_rm 0x63 #define MOVSX_r_rm8 (/* GROUP_0F */ 0xbe) #define MOVSX_r_rm16 (/* GROUP_0F */ 0xbf) #define MOVZX_r_rm8 (/* GROUP_0F */ 0xb6) #define MOVZX_r_rm16 (/* GROUP_0F */ 0xb7) #define MUL (/* GROUP_F7 */ 4 << 3) #define MULSD_x_xm 0x59 #define NEG_rm (/* GROUP_F7 */ 3 << 3) #define NOP 0x90 #define NOT_rm (/* GROUP_F7 */ 2 << 3) #define OR (/* BINARY */ 1 << 3) #define OR_r_rm 0x0b #define OR_EAX_i32 0x0d #define OR_rm_r 0x09 #define OR_rm8_r8 0x08 #define POP_r 0x58 #define POP_rm 0x8f #define POPF 0x9d #define PREFETCH 0x18 #define PUSH_i32 0x68 #define PUSH_r 0x50 #define PUSH_rm (/* GROUP_FF */ 6 << 3) #define PUSHF 0x9c #define RET_near 0xc3 #define RET_i16 0xc2 #define SBB (/* BINARY */ 3 << 3) #define SBB_EAX_i32 0x1d #define SBB_r_rm 0x1b #define SBB_rm_r 0x19 #define SAR (/* SHIFT */ 7 << 3) #define SHL (/* SHIFT */ 4 << 3) #define SHR (/* SHIFT */ 5 << 3) #define SUB (/* BINARY */ 5 << 3) #define SUB_EAX_i32 0x2d #define SUB_r_rm 0x2b #define SUB_rm_r 0x29 #define SUBSD_x_xm 0x5c #define TEST_EAX_i32 0xa9 #define TEST_rm_r 0x85 #define UCOMISD_x_xm 0x2e #define UNPCKLPD_x_xm 0x14 #define XCHG_EAX_r 0x90 #define XCHG_r_rm 0x87 #define XOR (/* BINARY */ 6 << 3) #define XOR_EAX_i32 0x35 #define XOR_r_rm 0x33 #define XOR_rm_r 0x31 #define XORPD_x_xm 0x57 #define GROUP_0F 0x0f #define GROUP_F7 0xf7 #define GROUP_FF 0xff #define GROUP_BINARY_81 0x81 #define GROUP_BINARY_83 0x83 #define GROUP_SHIFT_1 0xd1 #define GROUP_SHIFT_N 0xc1 #define GROUP_SHIFT_CL 0xd3 #define MOD_REG 0xc0 #define MOD_DISP8 0x40 #define INC_SIZE(s) (*inst++ = (s), compiler->size += (s)) #define PUSH_REG(r) (*inst++ = (PUSH_r + (r))) #define POP_REG(r) (*inst++ = (POP_r + (r))) #define RET() (*inst++ = (RET_near)) #define RET_I16(n) (*inst++ = (RET_i16), *inst++ = n, *inst++ = 0) /* r32, r/m32 */ #define MOV_RM(mod, reg, rm) (*inst++ = (MOV_r_rm), *inst++ = (mod) << 6 | (reg) << 3 | (rm)) /* Multithreading does not affect these static variables, since they store built-in CPU features. Therefore they can be overwritten by different threads if they detect the CPU features in the same time. */ #if (defined SLJIT_DETECT_SSE2 && SLJIT_DETECT_SSE2) static sljit_s32 cpu_has_sse2 = -1; #endif static sljit_s32 cpu_has_cmov = -1; #ifdef _WIN32_WCE #include <cmnintrin.h> #elif defined(_MSC_VER) && _MSC_VER >= 1400 #include <intrin.h> #endif /******************************************************/ /* Unaligned-store functions */ /******************************************************/ static SLJIT_INLINE void sljit_unaligned_store_s16(void *addr, sljit_s16 value) { SLJIT_MEMCPY(addr, &value, sizeof(value)); } static SLJIT_INLINE void sljit_unaligned_store_s32(void *addr, sljit_s32 value) { SLJIT_MEMCPY(addr, &value, sizeof(value)); } static SLJIT_INLINE void sljit_unaligned_store_sw(void *addr, sljit_sw value) { SLJIT_MEMCPY(addr, &value, sizeof(value)); } /******************************************************/ /* Utility functions */ /******************************************************/ static void get_cpu_features(void) { sljit_u32 features; #if defined(_MSC_VER) && _MSC_VER >= 1400 int CPUInfo[4]; __cpuid(CPUInfo, 1); features = (sljit_u32)CPUInfo[3]; #elif defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) /* AT&T syntax. */ __asm__ ( "movl $0x1, %%eax\n" #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) /* On x86-32, there is no red zone, so this should work (no need for a local variable). */ "push %%ebx\n" #endif "cpuid\n" #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) "pop %%ebx\n" #endif "movl %%edx, %0\n" : "=g" (features) : #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) : "%eax", "%ecx", "%edx" #else : "%rax", "%rbx", "%rcx", "%rdx" #endif ); #else /* _MSC_VER && _MSC_VER >= 1400 */ /* Intel syntax. */ __asm { mov eax, 1 cpuid mov features, edx } #endif /* _MSC_VER && _MSC_VER >= 1400 */ #if (defined SLJIT_DETECT_SSE2 && SLJIT_DETECT_SSE2) cpu_has_sse2 = (features >> 26) & 0x1; #endif cpu_has_cmov = (features >> 15) & 0x1; } static sljit_u8 get_jump_code(sljit_s32 type) { switch (type) { case SLJIT_EQUAL: case SLJIT_EQUAL_F64: return 0x84 /* je */; case SLJIT_NOT_EQUAL: case SLJIT_NOT_EQUAL_F64: return 0x85 /* jne */; case SLJIT_LESS: case SLJIT_LESS_F64: return 0x82 /* jc */; case SLJIT_GREATER_EQUAL: case SLJIT_GREATER_EQUAL_F64: return 0x83 /* jae */; case SLJIT_GREATER: case SLJIT_GREATER_F64: return 0x87 /* jnbe */; case SLJIT_LESS_EQUAL: case SLJIT_LESS_EQUAL_F64: return 0x86 /* jbe */; case SLJIT_SIG_LESS: return 0x8c /* jl */; case SLJIT_SIG_GREATER_EQUAL: return 0x8d /* jnl */; case SLJIT_SIG_GREATER: return 0x8f /* jnle */; case SLJIT_SIG_LESS_EQUAL: return 0x8e /* jle */; case SLJIT_OVERFLOW: case SLJIT_MUL_OVERFLOW: return 0x80 /* jo */; case SLJIT_NOT_OVERFLOW: case SLJIT_MUL_NOT_OVERFLOW: return 0x81 /* jno */; case SLJIT_UNORDERED_F64: return 0x8a /* jp */; case SLJIT_ORDERED_F64: return 0x8b /* jpo */; } return 0; } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) static sljit_u8* generate_far_jump_code(struct sljit_jump *jump, sljit_u8 *code_ptr, sljit_s32 type, sljit_sw executable_offset); #else static sljit_u8* generate_far_jump_code(struct sljit_jump *jump, sljit_u8 *code_ptr, sljit_s32 type); #endif static sljit_u8* generate_near_jump_code(struct sljit_jump *jump, sljit_u8 *code_ptr, sljit_u8 *code, sljit_s32 type, sljit_sw executable_offset) { sljit_s32 short_jump; sljit_uw label_addr; if (jump->flags & JUMP_LABEL) label_addr = (sljit_uw)(code + jump->u.label->size); else label_addr = jump->u.target - executable_offset; short_jump = (sljit_sw)(label_addr - (jump->addr + 2)) >= -128 && (sljit_sw)(label_addr - (jump->addr + 2)) <= 127; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((sljit_sw)(label_addr - (jump->addr + 1)) > HALFWORD_MAX || (sljit_sw)(label_addr - (jump->addr + 1)) < HALFWORD_MIN) return generate_far_jump_code(jump, code_ptr, type); #endif if (type == SLJIT_JUMP) { if (short_jump) *code_ptr++ = JMP_i8; else *code_ptr++ = JMP_i32; jump->addr++; } else if (type >= SLJIT_FAST_CALL) { short_jump = 0; *code_ptr++ = CALL_i32; jump->addr++; } else if (short_jump) { *code_ptr++ = get_jump_code(type) - 0x10; jump->addr++; } else { *code_ptr++ = GROUP_0F; *code_ptr++ = get_jump_code(type); jump->addr += 2; } if (short_jump) { jump->flags |= PATCH_MB; code_ptr += sizeof(sljit_s8); } else { jump->flags |= PATCH_MW; code_ptr += sizeof(sljit_s32); } return code_ptr; } SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler) { struct sljit_memory_fragment *buf; sljit_u8 *code; sljit_u8 *code_ptr; sljit_u8 *buf_ptr; sljit_u8 *buf_end; sljit_u8 len; sljit_sw executable_offset; sljit_sw jump_addr; struct sljit_label *label; struct sljit_jump *jump; struct sljit_const *const_; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_generate_code(compiler)); reverse_buf(compiler); /* Second code generation pass. */ code = (sljit_u8*)SLJIT_MALLOC_EXEC(compiler->size); PTR_FAIL_WITH_EXEC_IF(code); buf = compiler->buf; code_ptr = code; label = compiler->labels; jump = compiler->jumps; const_ = compiler->consts; executable_offset = SLJIT_EXEC_OFFSET(code); do { buf_ptr = buf->memory; buf_end = buf_ptr + buf->used_size; do { len = *buf_ptr++; if (len > 0) { /* The code is already generated. */ SLJIT_MEMCPY(code_ptr, buf_ptr, len); code_ptr += len; buf_ptr += len; } else { if (*buf_ptr >= 2) { jump->addr = (sljit_uw)code_ptr; if (!(jump->flags & SLJIT_REWRITABLE_JUMP)) code_ptr = generate_near_jump_code(jump, code_ptr, code, *buf_ptr - 2, executable_offset); else { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) code_ptr = generate_far_jump_code(jump, code_ptr, *buf_ptr - 2, executable_offset); #else code_ptr = generate_far_jump_code(jump, code_ptr, *buf_ptr - 2); #endif } jump = jump->next; } else if (*buf_ptr == 0) { label->addr = ((sljit_uw)code_ptr) + executable_offset; label->size = code_ptr - code; label = label->next; } else { /* *buf_ptr is 1 */ const_->addr = ((sljit_uw)code_ptr) - sizeof(sljit_sw); const_ = const_->next; } buf_ptr++; } } while (buf_ptr < buf_end); SLJIT_ASSERT(buf_ptr == buf_end); buf = buf->next; } while (buf); SLJIT_ASSERT(!label); SLJIT_ASSERT(!jump); SLJIT_ASSERT(!const_); jump = compiler->jumps; while (jump) { jump_addr = jump->addr + executable_offset; if (jump->flags & PATCH_MB) { SLJIT_ASSERT((sljit_sw)(jump->u.label->addr - (jump_addr + sizeof(sljit_s8))) >= -128 && (sljit_sw)(jump->u.label->addr - (jump_addr + sizeof(sljit_s8))) <= 127); *(sljit_u8*)jump->addr = (sljit_u8)(jump->u.label->addr - (jump_addr + sizeof(sljit_s8))); } else if (jump->flags & PATCH_MW) { if (jump->flags & JUMP_LABEL) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) sljit_unaligned_store_sw((void*)jump->addr, (sljit_sw)(jump->u.label->addr - (jump_addr + sizeof(sljit_sw)))); #else SLJIT_ASSERT((sljit_sw)(jump->u.label->addr - (jump_addr + sizeof(sljit_s32))) >= HALFWORD_MIN && (sljit_sw)(jump->u.label->addr - (jump_addr + sizeof(sljit_s32))) <= HALFWORD_MAX); sljit_unaligned_store_s32((void*)jump->addr, (sljit_s32)(jump->u.label->addr - (jump_addr + sizeof(sljit_s32)))); #endif } else { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) sljit_unaligned_store_sw((void*)jump->addr, (sljit_sw)(jump->u.target - (jump_addr + sizeof(sljit_sw)))); #else SLJIT_ASSERT((sljit_sw)(jump->u.target - (jump_addr + sizeof(sljit_s32))) >= HALFWORD_MIN && (sljit_sw)(jump->u.target - (jump_addr + sizeof(sljit_s32))) <= HALFWORD_MAX); sljit_unaligned_store_s32((void*)jump->addr, (sljit_s32)(jump->u.target - (jump_addr + sizeof(sljit_s32)))); #endif } } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) else if (jump->flags & PATCH_MD) sljit_unaligned_store_sw((void*)jump->addr, jump->u.label->addr); #endif jump = jump->next; } /* Some space may be wasted because of short jumps. */ SLJIT_ASSERT(code_ptr <= code + compiler->size); compiler->error = SLJIT_ERR_COMPILED; compiler->executable_offset = executable_offset; compiler->executable_size = code_ptr - code; return (void*)(code + executable_offset); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type) { switch (feature_type) { case SLJIT_HAS_FPU: #ifdef SLJIT_IS_FPU_AVAILABLE return SLJIT_IS_FPU_AVAILABLE; #elif (defined SLJIT_DETECT_SSE2 && SLJIT_DETECT_SSE2) if (cpu_has_sse2 == -1) get_cpu_features(); return cpu_has_sse2; #else /* SLJIT_DETECT_SSE2 */ return 1; #endif /* SLJIT_DETECT_SSE2 */ #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) case SLJIT_HAS_VIRTUAL_REGISTERS: return 1; #endif case SLJIT_HAS_CLZ: case SLJIT_HAS_CMOV: if (cpu_has_cmov == -1) get_cpu_features(); return cpu_has_cmov; case SLJIT_HAS_SSE2: #if (defined SLJIT_DETECT_SSE2 && SLJIT_DETECT_SSE2) if (cpu_has_sse2 == -1) get_cpu_features(); return cpu_has_sse2; #else return 1; #endif default: return 0; } } /* --------------------------------------------------------------------- */ /* Operators */ /* --------------------------------------------------------------------- */ #define BINARY_OPCODE(opcode) (((opcode ## _EAX_i32) << 24) | ((opcode ## _r_rm) << 16) | ((opcode ## _rm_r) << 8) | (opcode)) static sljit_s32 emit_cum_binary(struct sljit_compiler *compiler, sljit_u32 op_types, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w); static sljit_s32 emit_non_cum_binary(struct sljit_compiler *compiler, sljit_u32 op_types, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w); static sljit_s32 emit_mov(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw); #define EMIT_MOV(compiler, dst, dstw, src, srcw) \ FAIL_IF(emit_mov(compiler, dst, dstw, src, srcw)); static SLJIT_INLINE sljit_s32 emit_sse2_store(struct sljit_compiler *compiler, sljit_s32 single, sljit_s32 dst, sljit_sw dstw, sljit_s32 src); static SLJIT_INLINE sljit_s32 emit_sse2_load(struct sljit_compiler *compiler, sljit_s32 single, sljit_s32 dst, sljit_s32 src, sljit_sw srcw); #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) #include "sljitNativeX86_32.c" #else #include "sljitNativeX86_64.c" #endif static sljit_s32 emit_mov(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_u8* inst; SLJIT_ASSERT(dst != SLJIT_UNUSED); if (FAST_IS_REG(src)) { inst = emit_x86_instruction(compiler, 1, src, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_r; return SLJIT_SUCCESS; } if (src & SLJIT_IMM) { if (FAST_IS_REG(dst)) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) return emit_do_imm(compiler, MOV_r_i32 + reg_map[dst], srcw); #else if (!compiler->mode32) { if (NOT_HALFWORD(srcw)) return emit_load_imm64(compiler, dst, srcw); } else return emit_do_imm32(compiler, (reg_map[dst] >= 8) ? REX_B : 0, MOV_r_i32 + reg_lmap[dst], srcw); #endif } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (!compiler->mode32 && NOT_HALFWORD(srcw)) { /* Immediate to memory move. Only SLJIT_MOV operation copies an immediate directly into memory so TMP_REG1 can be used. */ FAIL_IF(emit_load_imm64(compiler, TMP_REG1, srcw)); inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_r; return SLJIT_SUCCESS; } #endif inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, srcw, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_i32; return SLJIT_SUCCESS; } if (FAST_IS_REG(dst)) { inst = emit_x86_instruction(compiler, 1, dst, 0, src, srcw); FAIL_IF(!inst); *inst = MOV_r_rm; return SLJIT_SUCCESS; } /* Memory to memory move. Only SLJIT_MOV operation copies data from memory to memory so TMP_REG1 can be used. */ inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src, srcw); FAIL_IF(!inst); *inst = MOV_r_rm; inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_r; return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op) { sljit_u8 *inst; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) sljit_s32 size; #endif CHECK_ERROR(); CHECK(check_sljit_emit_op0(compiler, op)); switch (GET_OPCODE(op)) { case SLJIT_BREAKPOINT: inst = (sljit_u8*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); *inst = INT3; break; case SLJIT_NOP: inst = (sljit_u8*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); *inst = NOP; break; case SLJIT_LMUL_UW: case SLJIT_LMUL_SW: case SLJIT_DIVMOD_UW: case SLJIT_DIVMOD_SW: case SLJIT_DIV_UW: case SLJIT_DIV_SW: #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) #ifdef _WIN64 SLJIT_ASSERT( reg_map[SLJIT_R0] == 0 && reg_map[SLJIT_R1] == 2 && reg_map[TMP_REG1] > 7); #else SLJIT_ASSERT( reg_map[SLJIT_R0] == 0 && reg_map[SLJIT_R1] < 7 && reg_map[TMP_REG1] == 2); #endif compiler->mode32 = op & SLJIT_I32_OP; #endif SLJIT_COMPILE_ASSERT((SLJIT_DIVMOD_UW & 0x2) == 0 && SLJIT_DIV_UW - 0x2 == SLJIT_DIVMOD_UW, bad_div_opcode_assignments); op = GET_OPCODE(op); if ((op | 0x2) == SLJIT_DIV_UW) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || defined(_WIN64) EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_R1, 0); inst = emit_x86_instruction(compiler, 1, SLJIT_R1, 0, SLJIT_R1, 0); #else inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, TMP_REG1, 0); #endif FAIL_IF(!inst); *inst = XOR_r_rm; } if ((op | 0x2) == SLJIT_DIV_SW) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || defined(_WIN64) EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_R1, 0); #endif #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) inst = (sljit_u8*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); *inst = CDQ; #else if (compiler->mode32) { inst = (sljit_u8*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); *inst = CDQ; } else { inst = (sljit_u8*)ensure_buf(compiler, 1 + 2); FAIL_IF(!inst); INC_SIZE(2); *inst++ = REX_W; *inst = CDQ; } #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) inst = (sljit_u8*)ensure_buf(compiler, 1 + 2); FAIL_IF(!inst); INC_SIZE(2); *inst++ = GROUP_F7; *inst = MOD_REG | ((op >= SLJIT_DIVMOD_UW) ? reg_map[TMP_REG1] : reg_map[SLJIT_R1]); #else #ifdef _WIN64 size = (!compiler->mode32 || op >= SLJIT_DIVMOD_UW) ? 3 : 2; #else size = (!compiler->mode32) ? 3 : 2; #endif inst = (sljit_u8*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); #ifdef _WIN64 if (!compiler->mode32) *inst++ = REX_W | ((op >= SLJIT_DIVMOD_UW) ? REX_B : 0); else if (op >= SLJIT_DIVMOD_UW) *inst++ = REX_B; *inst++ = GROUP_F7; *inst = MOD_REG | ((op >= SLJIT_DIVMOD_UW) ? reg_lmap[TMP_REG1] : reg_lmap[SLJIT_R1]); #else if (!compiler->mode32) *inst++ = REX_W; *inst++ = GROUP_F7; *inst = MOD_REG | reg_map[SLJIT_R1]; #endif #endif switch (op) { case SLJIT_LMUL_UW: *inst |= MUL; break; case SLJIT_LMUL_SW: *inst |= IMUL; break; case SLJIT_DIVMOD_UW: case SLJIT_DIV_UW: *inst |= DIV; break; case SLJIT_DIVMOD_SW: case SLJIT_DIV_SW: *inst |= IDIV; break; } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) && !defined(_WIN64) if (op <= SLJIT_DIVMOD_SW) EMIT_MOV(compiler, SLJIT_R1, 0, TMP_REG1, 0); #else if (op >= SLJIT_DIV_UW) EMIT_MOV(compiler, SLJIT_R1, 0, TMP_REG1, 0); #endif break; } return SLJIT_SUCCESS; } #define ENCODE_PREFIX(prefix) \ do { \ inst = (sljit_u8*)ensure_buf(compiler, 1 + 1); \ FAIL_IF(!inst); \ INC_SIZE(1); \ *inst = (prefix); \ } while (0) static sljit_s32 emit_mov_byte(struct sljit_compiler *compiler, sljit_s32 sign, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_u8* inst; sljit_s32 dst_r; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) sljit_s32 work_r; #endif #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; #endif if (src & SLJIT_IMM) { if (FAST_IS_REG(dst)) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) return emit_do_imm(compiler, MOV_r_i32 + reg_map[dst], srcw); #else inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, srcw, dst, 0); FAIL_IF(!inst); *inst = MOV_rm_i32; return SLJIT_SUCCESS; #endif } inst = emit_x86_instruction(compiler, 1 | EX86_BYTE_ARG | EX86_NO_REXW, SLJIT_IMM, srcw, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm8_i8; return SLJIT_SUCCESS; } dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; if ((dst & SLJIT_MEM) && FAST_IS_REG(src)) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (reg_map[src] >= 4) { SLJIT_ASSERT(dst_r == TMP_REG1); EMIT_MOV(compiler, TMP_REG1, 0, src, 0); } else dst_r = src; #else dst_r = src; #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) else if (FAST_IS_REG(src) && reg_map[src] >= 4) { /* src, dst are registers. */ SLJIT_ASSERT(SLOW_IS_REG(dst)); if (reg_map[dst] < 4) { if (dst != src) EMIT_MOV(compiler, dst, 0, src, 0); inst = emit_x86_instruction(compiler, 2, dst, 0, dst, 0); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = sign ? MOVSX_r_rm8 : MOVZX_r_rm8; } else { if (dst != src) EMIT_MOV(compiler, dst, 0, src, 0); if (sign) { /* shl reg, 24 */ inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 24, dst, 0); FAIL_IF(!inst); *inst |= SHL; /* sar reg, 24 */ inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 24, dst, 0); FAIL_IF(!inst); *inst |= SAR; } else { inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, 0xff, dst, 0); FAIL_IF(!inst); *(inst + 1) |= AND; } } return SLJIT_SUCCESS; } #endif else { /* src can be memory addr or reg_map[src] < 4 on x86_32 architectures. */ inst = emit_x86_instruction(compiler, 2, dst_r, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = sign ? MOVSX_r_rm8 : MOVZX_r_rm8; } if (dst & SLJIT_MEM) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (dst_r == TMP_REG1) { /* Find a non-used register, whose reg_map[src] < 4. */ if ((dst & REG_MASK) == SLJIT_R0) { if ((dst & OFFS_REG_MASK) == TO_OFFS_REG(SLJIT_R1)) work_r = SLJIT_R2; else work_r = SLJIT_R1; } else { if ((dst & OFFS_REG_MASK) != TO_OFFS_REG(SLJIT_R0)) work_r = SLJIT_R0; else if ((dst & REG_MASK) == SLJIT_R1) work_r = SLJIT_R2; else work_r = SLJIT_R1; } if (work_r == SLJIT_R0) { ENCODE_PREFIX(XCHG_EAX_r + reg_map[TMP_REG1]); } else { inst = emit_x86_instruction(compiler, 1, work_r, 0, dst_r, 0); FAIL_IF(!inst); *inst = XCHG_r_rm; } inst = emit_x86_instruction(compiler, 1, work_r, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm8_r8; if (work_r == SLJIT_R0) { ENCODE_PREFIX(XCHG_EAX_r + reg_map[TMP_REG1]); } else { inst = emit_x86_instruction(compiler, 1, work_r, 0, dst_r, 0); FAIL_IF(!inst); *inst = XCHG_r_rm; } } else { inst = emit_x86_instruction(compiler, 1, dst_r, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm8_r8; } #else inst = emit_x86_instruction(compiler, 1 | EX86_REX | EX86_NO_REXW, dst_r, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm8_r8; #endif } return SLJIT_SUCCESS; } static sljit_s32 emit_prefetch(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw) { sljit_u8* inst; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 1; #endif inst = emit_x86_instruction(compiler, 2, 0, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst++ = PREFETCH; if (op >= SLJIT_MOV_U8 && op <= SLJIT_MOV_S8) *inst |= (3 << 3); else if (op >= SLJIT_MOV_U16 && op <= SLJIT_MOV_S16) *inst |= (2 << 3); else *inst |= (1 << 3); return SLJIT_SUCCESS; } static sljit_s32 emit_mov_half(struct sljit_compiler *compiler, sljit_s32 sign, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_u8* inst; sljit_s32 dst_r; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; #endif if (src & SLJIT_IMM) { if (FAST_IS_REG(dst)) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) return emit_do_imm(compiler, MOV_r_i32 + reg_map[dst], srcw); #else inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, srcw, dst, 0); FAIL_IF(!inst); *inst = MOV_rm_i32; return SLJIT_SUCCESS; #endif } inst = emit_x86_instruction(compiler, 1 | EX86_HALF_ARG | EX86_NO_REXW | EX86_PREF_66, SLJIT_IMM, srcw, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_i32; return SLJIT_SUCCESS; } dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; if ((dst & SLJIT_MEM) && FAST_IS_REG(src)) dst_r = src; else { inst = emit_x86_instruction(compiler, 2, dst_r, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = sign ? MOVSX_r_rm16 : MOVZX_r_rm16; } if (dst & SLJIT_MEM) { inst = emit_x86_instruction(compiler, 1 | EX86_NO_REXW | EX86_PREF_66, dst_r, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_r; } return SLJIT_SUCCESS; } static sljit_s32 emit_unary(struct sljit_compiler *compiler, sljit_u8 opcode, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_u8* inst; if (dst == src && dstw == srcw) { /* Same input and output */ inst = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw); FAIL_IF(!inst); *inst++ = GROUP_F7; *inst |= opcode; return SLJIT_SUCCESS; } if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) dst = TMP_REG1; if (FAST_IS_REG(dst)) { EMIT_MOV(compiler, dst, 0, src, srcw); inst = emit_x86_instruction(compiler, 1, 0, 0, dst, 0); FAIL_IF(!inst); *inst++ = GROUP_F7; *inst |= opcode; return SLJIT_SUCCESS; } EMIT_MOV(compiler, TMP_REG1, 0, src, srcw); inst = emit_x86_instruction(compiler, 1, 0, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst++ = GROUP_F7; *inst |= opcode; EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0); return SLJIT_SUCCESS; } static sljit_s32 emit_not_with_flags(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_u8* inst; if (dst == SLJIT_UNUSED) dst = TMP_REG1; if (FAST_IS_REG(dst)) { EMIT_MOV(compiler, dst, 0, src, srcw); inst = emit_x86_instruction(compiler, 1, 0, 0, dst, 0); FAIL_IF(!inst); *inst++ = GROUP_F7; *inst |= NOT_rm; inst = emit_x86_instruction(compiler, 1, dst, 0, dst, 0); FAIL_IF(!inst); *inst = OR_r_rm; return SLJIT_SUCCESS; } EMIT_MOV(compiler, TMP_REG1, 0, src, srcw); inst = emit_x86_instruction(compiler, 1, 0, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst++ = GROUP_F7; *inst |= NOT_rm; inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst = OR_r_rm; EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0); return SLJIT_SUCCESS; } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) static const sljit_sw emit_clz_arg = 32 + 31; #endif static sljit_s32 emit_clz(struct sljit_compiler *compiler, sljit_s32 op_flags, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_u8* inst; sljit_s32 dst_r; SLJIT_UNUSED_ARG(op_flags); if (cpu_has_cmov == -1) get_cpu_features(); dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; inst = emit_x86_instruction(compiler, 2, dst_r, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = BSR_r_rm; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (cpu_has_cmov) { if (dst_r != TMP_REG1) { EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, 32 + 31); inst = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG1, 0); } else inst = emit_x86_instruction(compiler, 2, dst_r, 0, SLJIT_MEM0(), (sljit_sw)&emit_clz_arg); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = CMOVE_r_rm; } else FAIL_IF(sljit_emit_cmov_generic(compiler, SLJIT_EQUAL, dst_r, SLJIT_IMM, 32 + 31)); inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, 31, dst_r, 0); #else if (cpu_has_cmov) { EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_IMM, !(op_flags & SLJIT_I32_OP) ? (64 + 63) : (32 + 31)); inst = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG2, 0); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = CMOVE_r_rm; } else FAIL_IF(sljit_emit_cmov_generic(compiler, SLJIT_EQUAL, dst_r, SLJIT_IMM, !(op_flags & SLJIT_I32_OP) ? (64 + 63) : (32 + 31))); inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, !(op_flags & SLJIT_I32_OP) ? 63 : 31, dst_r, 0); #endif FAIL_IF(!inst); *(inst + 1) |= XOR; if (dst & SLJIT_MEM) EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_s32 op_flags = GET_ALL_FLAGS(op); #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) sljit_s32 dst_is_ereg = 0; #endif CHECK_ERROR(); CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src, srcw); CHECK_EXTRA_REGS(dst, dstw, dst_is_ereg = 1); CHECK_EXTRA_REGS(src, srcw, (void)0); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = op_flags & SLJIT_I32_OP; #endif if (dst == SLJIT_UNUSED && !HAS_FLAGS(op)) { if (op <= SLJIT_MOV_P && (src & SLJIT_MEM)) return emit_prefetch(compiler, op, src, srcw); return SLJIT_SUCCESS; } op = GET_OPCODE(op); if (op >= SLJIT_MOV && op <= SLJIT_MOV_P) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; #endif if (FAST_IS_REG(src) && src == dst) { if (!TYPE_CAST_NEEDED(op)) return SLJIT_SUCCESS; } if (op_flags & SLJIT_I32_OP) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (src & SLJIT_MEM) { if (op == SLJIT_MOV_S32) op = SLJIT_MOV_U32; } else if (src & SLJIT_IMM) { if (op == SLJIT_MOV_U32) op = SLJIT_MOV_S32; } #endif } if (src & SLJIT_IMM) { switch (op) { case SLJIT_MOV_U8: srcw = (sljit_u8)srcw; break; case SLJIT_MOV_S8: srcw = (sljit_s8)srcw; break; case SLJIT_MOV_U16: srcw = (sljit_u16)srcw; break; case SLJIT_MOV_S16: srcw = (sljit_s16)srcw; break; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) case SLJIT_MOV_U32: srcw = (sljit_u32)srcw; break; case SLJIT_MOV_S32: srcw = (sljit_s32)srcw; break; #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (SLJIT_UNLIKELY(dst_is_ereg)) return emit_mov(compiler, dst, dstw, src, srcw); #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (SLJIT_UNLIKELY(dst_is_ereg) && (!(op == SLJIT_MOV || op == SLJIT_MOV_U32 || op == SLJIT_MOV_S32 || op == SLJIT_MOV_P) || (src & SLJIT_MEM))) { SLJIT_ASSERT(dst == SLJIT_MEM1(SLJIT_SP)); dst = TMP_REG1; } #endif switch (op) { case SLJIT_MOV: case SLJIT_MOV_P: #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) case SLJIT_MOV_U32: case SLJIT_MOV_S32: #endif FAIL_IF(emit_mov(compiler, dst, dstw, src, srcw)); break; case SLJIT_MOV_U8: FAIL_IF(emit_mov_byte(compiler, 0, dst, dstw, src, srcw)); break; case SLJIT_MOV_S8: FAIL_IF(emit_mov_byte(compiler, 1, dst, dstw, src, srcw)); break; case SLJIT_MOV_U16: FAIL_IF(emit_mov_half(compiler, 0, dst, dstw, src, srcw)); break; case SLJIT_MOV_S16: FAIL_IF(emit_mov_half(compiler, 1, dst, dstw, src, srcw)); break; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) case SLJIT_MOV_U32: FAIL_IF(emit_mov_int(compiler, 0, dst, dstw, src, srcw)); break; case SLJIT_MOV_S32: FAIL_IF(emit_mov_int(compiler, 1, dst, dstw, src, srcw)); break; #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (SLJIT_UNLIKELY(dst_is_ereg) && dst == TMP_REG1) return emit_mov(compiler, SLJIT_MEM1(SLJIT_SP), dstw, TMP_REG1, 0); #endif return SLJIT_SUCCESS; } switch (op) { case SLJIT_NOT: if (SLJIT_UNLIKELY(op_flags & SLJIT_SET_Z)) return emit_not_with_flags(compiler, dst, dstw, src, srcw); return emit_unary(compiler, NOT_rm, dst, dstw, src, srcw); case SLJIT_NEG: return emit_unary(compiler, NEG_rm, dst, dstw, src, srcw); case SLJIT_CLZ: return emit_clz(compiler, op_flags, dst, dstw, src, srcw); } return SLJIT_SUCCESS; } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) #define BINARY_IMM(op_imm, op_mr, immw, arg, argw) \ if (IS_HALFWORD(immw) || compiler->mode32) { \ inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, immw, arg, argw); \ FAIL_IF(!inst); \ *(inst + 1) |= (op_imm); \ } \ else { \ FAIL_IF(emit_load_imm64(compiler, (arg == TMP_REG1) ? TMP_REG2 : TMP_REG1, immw)); \ inst = emit_x86_instruction(compiler, 1, (arg == TMP_REG1) ? TMP_REG2 : TMP_REG1, 0, arg, argw); \ FAIL_IF(!inst); \ *inst = (op_mr); \ } #define BINARY_EAX_IMM(op_eax_imm, immw) \ FAIL_IF(emit_do_imm32(compiler, (!compiler->mode32) ? REX_W : 0, (op_eax_imm), immw)) #else #define BINARY_IMM(op_imm, op_mr, immw, arg, argw) \ inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, immw, arg, argw); \ FAIL_IF(!inst); \ *(inst + 1) |= (op_imm); #define BINARY_EAX_IMM(op_eax_imm, immw) \ FAIL_IF(emit_do_imm(compiler, (op_eax_imm), immw)) #endif static sljit_s32 emit_cum_binary(struct sljit_compiler *compiler, sljit_u32 op_types, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { sljit_u8* inst; sljit_u8 op_eax_imm = (op_types >> 24); sljit_u8 op_rm = (op_types >> 16) & 0xff; sljit_u8 op_mr = (op_types >> 8) & 0xff; sljit_u8 op_imm = op_types & 0xff; if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REG1, 0); } else { inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } return SLJIT_SUCCESS; } if (dst == src1 && dstw == src1w) { if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(op_eax_imm, src2w); } else { BINARY_IMM(op_imm, op_mr, src2w, dst, dstw); } } else if (FAST_IS_REG(dst)) { inst = emit_x86_instruction(compiler, 1, dst, dstw, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } else if (FAST_IS_REG(src2)) { /* Special exception for sljit_emit_op_flags. */ inst = emit_x86_instruction(compiler, 1, src2, src2w, dst, dstw); FAIL_IF(!inst); *inst = op_mr; } else { EMIT_MOV(compiler, TMP_REG1, 0, src2, src2w); inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw); FAIL_IF(!inst); *inst = op_mr; } return SLJIT_SUCCESS; } /* Only for cumulative operations. */ if (dst == src2 && dstw == src2w) { if (src1 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((dst == SLJIT_R0) && (src1w > 127 || src1w < -128) && (compiler->mode32 || IS_HALFWORD(src1w))) { #else if ((dst == SLJIT_R0) && (src1w > 127 || src1w < -128)) { #endif BINARY_EAX_IMM(op_eax_imm, src1w); } else { BINARY_IMM(op_imm, op_mr, src1w, dst, dstw); } } else if (FAST_IS_REG(dst)) { inst = emit_x86_instruction(compiler, 1, dst, dstw, src1, src1w); FAIL_IF(!inst); *inst = op_rm; } else if (FAST_IS_REG(src1)) { inst = emit_x86_instruction(compiler, 1, src1, src1w, dst, dstw); FAIL_IF(!inst); *inst = op_mr; } else { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw); FAIL_IF(!inst); *inst = op_mr; } return SLJIT_SUCCESS; } /* General version. */ if (FAST_IS_REG(dst)) { EMIT_MOV(compiler, dst, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, dst, 0); } else { inst = emit_x86_instruction(compiler, 1, dst, 0, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } } else { /* This version requires less memory writing. */ EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REG1, 0); } else { inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0); } return SLJIT_SUCCESS; } static sljit_s32 emit_non_cum_binary(struct sljit_compiler *compiler, sljit_u32 op_types, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { sljit_u8* inst; sljit_u8 op_eax_imm = (op_types >> 24); sljit_u8 op_rm = (op_types >> 16) & 0xff; sljit_u8 op_mr = (op_types >> 8) & 0xff; sljit_u8 op_imm = op_types & 0xff; if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REG1, 0); } else { inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } return SLJIT_SUCCESS; } if (dst == src1 && dstw == src1w) { if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(op_eax_imm, src2w); } else { BINARY_IMM(op_imm, op_mr, src2w, dst, dstw); } } else if (FAST_IS_REG(dst)) { inst = emit_x86_instruction(compiler, 1, dst, dstw, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } else if (FAST_IS_REG(src2)) { inst = emit_x86_instruction(compiler, 1, src2, src2w, dst, dstw); FAIL_IF(!inst); *inst = op_mr; } else { EMIT_MOV(compiler, TMP_REG1, 0, src2, src2w); inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw); FAIL_IF(!inst); *inst = op_mr; } return SLJIT_SUCCESS; } /* General version. */ if (FAST_IS_REG(dst) && dst != src2) { EMIT_MOV(compiler, dst, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, dst, 0); } else { inst = emit_x86_instruction(compiler, 1, dst, 0, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } } else { /* This version requires less memory writing. */ EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REG1, 0); } else { inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w); FAIL_IF(!inst); *inst = op_rm; } EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0); } return SLJIT_SUCCESS; } static sljit_s32 emit_mul(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { sljit_u8* inst; sljit_s32 dst_r; dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1; /* Register destination. */ if (dst_r == src1 && !(src2 & SLJIT_IMM)) { inst = emit_x86_instruction(compiler, 2, dst_r, 0, src2, src2w); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = IMUL_r_rm; } else if (dst_r == src2 && !(src1 & SLJIT_IMM)) { inst = emit_x86_instruction(compiler, 2, dst_r, 0, src1, src1w); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = IMUL_r_rm; } else if (src1 & SLJIT_IMM) { if (src2 & SLJIT_IMM) { EMIT_MOV(compiler, dst_r, 0, SLJIT_IMM, src2w); src2 = dst_r; src2w = 0; } if (src1w <= 127 && src1w >= -128) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w); FAIL_IF(!inst); *inst = IMUL_r_rm_i8; inst = (sljit_u8*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); *inst = (sljit_s8)src1w; } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) else { inst = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w); FAIL_IF(!inst); *inst = IMUL_r_rm_i32; inst = (sljit_u8*)ensure_buf(compiler, 1 + 4); FAIL_IF(!inst); INC_SIZE(4); sljit_unaligned_store_sw(inst, src1w); } #else else if (IS_HALFWORD(src1w)) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w); FAIL_IF(!inst); *inst = IMUL_r_rm_i32; inst = (sljit_u8*)ensure_buf(compiler, 1 + 4); FAIL_IF(!inst); INC_SIZE(4); sljit_unaligned_store_s32(inst, (sljit_s32)src1w); } else { if (dst_r != src2) EMIT_MOV(compiler, dst_r, 0, src2, src2w); FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src1w)); inst = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG2, 0); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = IMUL_r_rm; } #endif } else if (src2 & SLJIT_IMM) { /* Note: src1 is NOT immediate. */ if (src2w <= 127 && src2w >= -128) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w); FAIL_IF(!inst); *inst = IMUL_r_rm_i8; inst = (sljit_u8*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); *inst = (sljit_s8)src2w; } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) else { inst = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w); FAIL_IF(!inst); *inst = IMUL_r_rm_i32; inst = (sljit_u8*)ensure_buf(compiler, 1 + 4); FAIL_IF(!inst); INC_SIZE(4); sljit_unaligned_store_sw(inst, src2w); } #else else if (IS_HALFWORD(src2w)) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w); FAIL_IF(!inst); *inst = IMUL_r_rm_i32; inst = (sljit_u8*)ensure_buf(compiler, 1 + 4); FAIL_IF(!inst); INC_SIZE(4); sljit_unaligned_store_s32(inst, (sljit_s32)src2w); } else { if (dst_r != src1) EMIT_MOV(compiler, dst_r, 0, src1, src1w); FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src2w)); inst = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG2, 0); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = IMUL_r_rm; } #endif } else { /* Neither argument is immediate. */ if (ADDRESSING_DEPENDS_ON(src2, dst_r)) dst_r = TMP_REG1; EMIT_MOV(compiler, dst_r, 0, src1, src1w); inst = emit_x86_instruction(compiler, 2, dst_r, 0, src2, src2w); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = IMUL_r_rm; } if (dst & SLJIT_MEM) EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0); return SLJIT_SUCCESS; } static sljit_s32 emit_lea_binary(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { sljit_u8* inst; sljit_s32 dst_r, done = 0; /* These cases better be left to handled by normal way. */ if (dst == src1 && dstw == src1w) return SLJIT_ERR_UNSUPPORTED; if (dst == src2 && dstw == src2w) return SLJIT_ERR_UNSUPPORTED; dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; if (FAST_IS_REG(src1)) { if (FAST_IS_REG(src2)) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM2(src1, src2), 0); FAIL_IF(!inst); *inst = LEA_r_m; done = 1; } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((src2 & SLJIT_IMM) && (compiler->mode32 || IS_HALFWORD(src2w))) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src1), (sljit_s32)src2w); #else if (src2 & SLJIT_IMM) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src1), src2w); #endif FAIL_IF(!inst); *inst = LEA_r_m; done = 1; } } else if (FAST_IS_REG(src2)) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((src1 & SLJIT_IMM) && (compiler->mode32 || IS_HALFWORD(src1w))) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src2), (sljit_s32)src1w); #else if (src1 & SLJIT_IMM) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src2), src1w); #endif FAIL_IF(!inst); *inst = LEA_r_m; done = 1; } } if (done) { if (dst_r == TMP_REG1) return emit_mov(compiler, dst, dstw, TMP_REG1, 0); return SLJIT_SUCCESS; } return SLJIT_ERR_UNSUPPORTED; } static sljit_s32 emit_cmp_binary(struct sljit_compiler *compiler, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { sljit_u8* inst; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (src1 == SLJIT_R0 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if (src1 == SLJIT_R0 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(CMP_EAX_i32, src2w); return SLJIT_SUCCESS; } if (FAST_IS_REG(src1)) { if (src2 & SLJIT_IMM) { BINARY_IMM(CMP, CMP_rm_r, src2w, src1, 0); } else { inst = emit_x86_instruction(compiler, 1, src1, 0, src2, src2w); FAIL_IF(!inst); *inst = CMP_r_rm; } return SLJIT_SUCCESS; } if (FAST_IS_REG(src2) && !(src1 & SLJIT_IMM)) { inst = emit_x86_instruction(compiler, 1, src2, 0, src1, src1w); FAIL_IF(!inst); *inst = CMP_rm_r; return SLJIT_SUCCESS; } if (src2 & SLJIT_IMM) { if (src1 & SLJIT_IMM) { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); src1 = TMP_REG1; src1w = 0; } BINARY_IMM(CMP, CMP_rm_r, src2w, src1, src1w); } else { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w); FAIL_IF(!inst); *inst = CMP_r_rm; } return SLJIT_SUCCESS; } static sljit_s32 emit_test_binary(struct sljit_compiler *compiler, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { sljit_u8* inst; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (src1 == SLJIT_R0 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if (src1 == SLJIT_R0 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(TEST_EAX_i32, src2w); return SLJIT_SUCCESS; } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (src2 == SLJIT_R0 && (src1 & SLJIT_IMM) && (src1w > 127 || src1w < -128) && (compiler->mode32 || IS_HALFWORD(src1w))) { #else if (src2 == SLJIT_R0 && (src1 & SLJIT_IMM) && (src1w > 127 || src1w < -128)) { #endif BINARY_EAX_IMM(TEST_EAX_i32, src1w); return SLJIT_SUCCESS; } if (!(src1 & SLJIT_IMM)) { if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (IS_HALFWORD(src2w) || compiler->mode32) { inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, src1, src1w); FAIL_IF(!inst); *inst = GROUP_F7; } else { FAIL_IF(emit_load_imm64(compiler, TMP_REG1, src2w)); inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src1, src1w); FAIL_IF(!inst); *inst = TEST_rm_r; } #else inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, src1, src1w); FAIL_IF(!inst); *inst = GROUP_F7; #endif return SLJIT_SUCCESS; } else if (FAST_IS_REG(src1)) { inst = emit_x86_instruction(compiler, 1, src1, 0, src2, src2w); FAIL_IF(!inst); *inst = TEST_rm_r; return SLJIT_SUCCESS; } } if (!(src2 & SLJIT_IMM)) { if (src1 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (IS_HALFWORD(src1w) || compiler->mode32) { inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src1w, src2, src2w); FAIL_IF(!inst); *inst = GROUP_F7; } else { FAIL_IF(emit_load_imm64(compiler, TMP_REG1, src1w)); inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w); FAIL_IF(!inst); *inst = TEST_rm_r; } #else inst = emit_x86_instruction(compiler, 1, src1, src1w, src2, src2w); FAIL_IF(!inst); *inst = GROUP_F7; #endif return SLJIT_SUCCESS; } else if (FAST_IS_REG(src2)) { inst = emit_x86_instruction(compiler, 1, src2, 0, src1, src1w); FAIL_IF(!inst); *inst = TEST_rm_r; return SLJIT_SUCCESS; } } EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (IS_HALFWORD(src2w) || compiler->mode32) { inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, TMP_REG1, 0); FAIL_IF(!inst); *inst = GROUP_F7; } else { FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src2w)); inst = emit_x86_instruction(compiler, 1, TMP_REG2, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst = TEST_rm_r; } #else inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, TMP_REG1, 0); FAIL_IF(!inst); *inst = GROUP_F7; #endif } else { inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w); FAIL_IF(!inst); *inst = TEST_rm_r; } return SLJIT_SUCCESS; } static sljit_s32 emit_shift(struct sljit_compiler *compiler, sljit_u8 mode, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { sljit_u8* inst; if ((src2 & SLJIT_IMM) || (src2 == SLJIT_PREF_SHIFT_REG)) { if (dst == src1 && dstw == src1w) { inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, dst, dstw); FAIL_IF(!inst); *inst |= mode; return SLJIT_SUCCESS; } if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, TMP_REG1, 0); FAIL_IF(!inst); *inst |= mode; return SLJIT_SUCCESS; } if (dst == SLJIT_PREF_SHIFT_REG && src2 == SLJIT_PREF_SHIFT_REG) { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst |= mode; EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0); return SLJIT_SUCCESS; } if (FAST_IS_REG(dst)) { EMIT_MOV(compiler, dst, 0, src1, src1w); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, dst, 0); FAIL_IF(!inst); *inst |= mode; return SLJIT_SUCCESS; } EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, TMP_REG1, 0); FAIL_IF(!inst); *inst |= mode; EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0); return SLJIT_SUCCESS; } if (dst == SLJIT_PREF_SHIFT_REG) { EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst |= mode; EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0); } else if (SLOW_IS_REG(dst) && dst != src2 && !ADDRESSING_DEPENDS_ON(src2, dst)) { if (src1 != dst) EMIT_MOV(compiler, dst, 0, src1, src1w); EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_PREF_SHIFT_REG, 0); EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, dst, 0); FAIL_IF(!inst); *inst |= mode; EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0); } else { /* This case is complex since ecx itself may be used for addressing, and this case must be supported as well. */ EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w); #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) EMIT_MOV(compiler, SLJIT_MEM1(SLJIT_SP), 0, SLJIT_PREF_SHIFT_REG, 0); EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst |= mode; EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, SLJIT_MEM1(SLJIT_SP), 0); #else EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_PREF_SHIFT_REG, 0); EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w); inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0); FAIL_IF(!inst); *inst |= mode; EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG2, 0); #endif if (dst != SLJIT_UNUSED) return emit_mov(compiler, dst, dstw, TMP_REG1, 0); } return SLJIT_SUCCESS; } static sljit_s32 emit_shift_with_flags(struct sljit_compiler *compiler, sljit_u8 mode, sljit_s32 set_flags, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { /* The CPU does not set flags if the shift count is 0. */ if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((src2w & 0x3f) != 0 || (compiler->mode32 && (src2w & 0x1f) != 0)) return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w); #else if ((src2w & 0x1f) != 0) return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w); #endif if (!set_flags) return emit_mov(compiler, dst, dstw, src1, src1w); /* OR dst, src, 0 */ return emit_cum_binary(compiler, BINARY_OPCODE(OR), dst, dstw, src1, src1w, SLJIT_IMM, 0); } if (!set_flags) return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w); if (!FAST_IS_REG(dst)) FAIL_IF(emit_cmp_binary(compiler, src1, src1w, SLJIT_IMM, 0)); FAIL_IF(emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w)); if (FAST_IS_REG(dst)) return emit_cmp_binary(compiler, (dst == SLJIT_UNUSED) ? TMP_REG1 : dst, dstw, SLJIT_IMM, 0); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { CHECK_ERROR(); CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); CHECK_EXTRA_REGS(dst, dstw, (void)0); CHECK_EXTRA_REGS(src1, src1w, (void)0); CHECK_EXTRA_REGS(src2, src2w, (void)0); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = op & SLJIT_I32_OP; #endif if (dst == SLJIT_UNUSED && !HAS_FLAGS(op)) return SLJIT_SUCCESS; switch (GET_OPCODE(op)) { case SLJIT_ADD: if (!HAS_FLAGS(op)) { if (emit_lea_binary(compiler, dst, dstw, src1, src1w, src2, src2w) != SLJIT_ERR_UNSUPPORTED) return compiler->error; } return emit_cum_binary(compiler, BINARY_OPCODE(ADD), dst, dstw, src1, src1w, src2, src2w); case SLJIT_ADDC: return emit_cum_binary(compiler, BINARY_OPCODE(ADC), dst, dstw, src1, src1w, src2, src2w); case SLJIT_SUB: if (!HAS_FLAGS(op)) { if ((src2 & SLJIT_IMM) && emit_lea_binary(compiler, dst, dstw, src1, src1w, SLJIT_IMM, -src2w) != SLJIT_ERR_UNSUPPORTED) return compiler->error; } if (dst == SLJIT_UNUSED) return emit_cmp_binary(compiler, src1, src1w, src2, src2w); return emit_non_cum_binary(compiler, BINARY_OPCODE(SUB), dst, dstw, src1, src1w, src2, src2w); case SLJIT_SUBC: return emit_non_cum_binary(compiler, BINARY_OPCODE(SBB), dst, dstw, src1, src1w, src2, src2w); case SLJIT_MUL: return emit_mul(compiler, dst, dstw, src1, src1w, src2, src2w); case SLJIT_AND: if (dst == SLJIT_UNUSED) return emit_test_binary(compiler, src1, src1w, src2, src2w); return emit_cum_binary(compiler, BINARY_OPCODE(AND), dst, dstw, src1, src1w, src2, src2w); case SLJIT_OR: return emit_cum_binary(compiler, BINARY_OPCODE(OR), dst, dstw, src1, src1w, src2, src2w); case SLJIT_XOR: return emit_cum_binary(compiler, BINARY_OPCODE(XOR), dst, dstw, src1, src1w, src2, src2w); case SLJIT_SHL: return emit_shift_with_flags(compiler, SHL, HAS_FLAGS(op), dst, dstw, src1, src1w, src2, src2w); case SLJIT_LSHR: return emit_shift_with_flags(compiler, SHR, HAS_FLAGS(op), dst, dstw, src1, src1w, src2, src2w); case SLJIT_ASHR: return emit_shift_with_flags(compiler, SAR, HAS_FLAGS(op), dst, dstw, src1, src1w, src2, src2w); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg) { CHECK_REG_INDEX(check_sljit_get_register_index(reg)); #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (reg >= SLJIT_R3 && reg <= SLJIT_R8) return -1; #endif return reg_map[reg]; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg) { CHECK_REG_INDEX(check_sljit_get_float_register_index(reg)); #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) return reg; #else return freg_map[reg]; #endif } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler, void *instruction, sljit_s32 size) { sljit_u8 *inst; CHECK_ERROR(); CHECK(check_sljit_emit_op_custom(compiler, instruction, size)); inst = (sljit_u8*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); SLJIT_MEMCPY(inst, instruction, size); return SLJIT_SUCCESS; } /* --------------------------------------------------------------------- */ /* Floating point operators */ /* --------------------------------------------------------------------- */ /* Alignment(3) + 4 * 16 bytes. */ static sljit_s32 sse2_data[3 + (4 * 4)]; static sljit_s32 *sse2_buffer; static void init_compiler(void) { /* Align to 16 bytes. */ sse2_buffer = (sljit_s32*)(((sljit_uw)sse2_data + 15) & ~0xf); /* Single precision constants (each constant is 16 byte long). */ sse2_buffer[0] = 0x80000000; sse2_buffer[4] = 0x7fffffff; /* Double precision constants (each constant is 16 byte long). */ sse2_buffer[8] = 0; sse2_buffer[9] = 0x80000000; sse2_buffer[12] = 0xffffffff; sse2_buffer[13] = 0x7fffffff; } static sljit_s32 emit_sse2(struct sljit_compiler *compiler, sljit_u8 opcode, sljit_s32 single, sljit_s32 xmm1, sljit_s32 xmm2, sljit_sw xmm2w) { sljit_u8 *inst; inst = emit_x86_instruction(compiler, 2 | (single ? EX86_PREF_F3 : EX86_PREF_F2) | EX86_SSE2, xmm1, 0, xmm2, xmm2w); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = opcode; return SLJIT_SUCCESS; } static sljit_s32 emit_sse2_logic(struct sljit_compiler *compiler, sljit_u8 opcode, sljit_s32 pref66, sljit_s32 xmm1, sljit_s32 xmm2, sljit_sw xmm2w) { sljit_u8 *inst; inst = emit_x86_instruction(compiler, 2 | (pref66 ? EX86_PREF_66 : 0) | EX86_SSE2, xmm1, 0, xmm2, xmm2w); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = opcode; return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 emit_sse2_load(struct sljit_compiler *compiler, sljit_s32 single, sljit_s32 dst, sljit_s32 src, sljit_sw srcw) { return emit_sse2(compiler, MOVSD_x_xm, single, dst, src, srcw); } static SLJIT_INLINE sljit_s32 emit_sse2_store(struct sljit_compiler *compiler, sljit_s32 single, sljit_s32 dst, sljit_sw dstw, sljit_s32 src) { return emit_sse2(compiler, MOVSD_xm_x, single, src, dst, dstw); } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_sw_from_f64(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; sljit_u8 *inst; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (GET_OPCODE(op) == SLJIT_CONV_SW_FROM_F64) compiler->mode32 = 0; #endif inst = emit_x86_instruction(compiler, 2 | ((op & SLJIT_F32_OP) ? EX86_PREF_F3 : EX86_PREF_F2) | EX86_SSE2_OP2, dst_r, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = CVTTSD2SI_r_xm; if (dst & SLJIT_MEM) return emit_mov(compiler, dst, dstw, TMP_REG1, 0); return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_sw(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG; sljit_u8 *inst; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_SW) compiler->mode32 = 0; #endif if (src & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_S32) srcw = (sljit_s32)srcw; #endif EMIT_MOV(compiler, TMP_REG1, 0, src, srcw); src = TMP_REG1; srcw = 0; } inst = emit_x86_instruction(compiler, 2 | ((op & SLJIT_F32_OP) ? EX86_PREF_F3 : EX86_PREF_F2) | EX86_SSE2_OP1, dst_r, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = CVTSI2SD_x_rm; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 1; #endif if (dst_r == TMP_FREG) return emit_sse2_store(compiler, op & SLJIT_F32_OP, dst, dstw, TMP_FREG); return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { if (!FAST_IS_REG(src1)) { FAIL_IF(emit_sse2_load(compiler, op & SLJIT_F32_OP, TMP_FREG, src1, src1w)); src1 = TMP_FREG; } return emit_sse2_logic(compiler, UCOMISD_x_xm, !(op & SLJIT_F32_OP), src1, src2, src2w); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_s32 dst_r; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 1; #endif CHECK_ERROR(); SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw); if (GET_OPCODE(op) == SLJIT_MOV_F64) { if (FAST_IS_REG(dst)) return emit_sse2_load(compiler, op & SLJIT_F32_OP, dst, src, srcw); if (FAST_IS_REG(src)) return emit_sse2_store(compiler, op & SLJIT_F32_OP, dst, dstw, src); FAIL_IF(emit_sse2_load(compiler, op & SLJIT_F32_OP, TMP_FREG, src, srcw)); return emit_sse2_store(compiler, op & SLJIT_F32_OP, dst, dstw, TMP_FREG); } if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_F32) { dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG; if (FAST_IS_REG(src)) { /* We overwrite the high bits of source. From SLJIT point of view, this is not an issue. Note: In SSE3, we could also use MOVDDUP and MOVSLDUP. */ FAIL_IF(emit_sse2_logic(compiler, UNPCKLPD_x_xm, op & SLJIT_F32_OP, src, src, 0)); } else { FAIL_IF(emit_sse2_load(compiler, !(op & SLJIT_F32_OP), TMP_FREG, src, srcw)); src = TMP_FREG; } FAIL_IF(emit_sse2_logic(compiler, CVTPD2PS_x_xm, op & SLJIT_F32_OP, dst_r, src, 0)); if (dst_r == TMP_FREG) return emit_sse2_store(compiler, op & SLJIT_F32_OP, dst, dstw, TMP_FREG); return SLJIT_SUCCESS; } if (FAST_IS_REG(dst)) { dst_r = dst; if (dst != src) FAIL_IF(emit_sse2_load(compiler, op & SLJIT_F32_OP, dst_r, src, srcw)); } else { dst_r = TMP_FREG; FAIL_IF(emit_sse2_load(compiler, op & SLJIT_F32_OP, dst_r, src, srcw)); } switch (GET_OPCODE(op)) { case SLJIT_NEG_F64: FAIL_IF(emit_sse2_logic(compiler, XORPD_x_xm, 1, dst_r, SLJIT_MEM0(), (sljit_sw)(op & SLJIT_F32_OP ? sse2_buffer : sse2_buffer + 8))); break; case SLJIT_ABS_F64: FAIL_IF(emit_sse2_logic(compiler, ANDPD_x_xm, 1, dst_r, SLJIT_MEM0(), (sljit_sw)(op & SLJIT_F32_OP ? sse2_buffer + 4 : sse2_buffer + 12))); break; } if (dst_r == TMP_FREG) return emit_sse2_store(compiler, op & SLJIT_F32_OP, dst, dstw, TMP_FREG); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { sljit_s32 dst_r; CHECK_ERROR(); CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 1; #endif if (FAST_IS_REG(dst)) { dst_r = dst; if (dst == src1) ; /* Do nothing here. */ else if (dst == src2 && (op == SLJIT_ADD_F64 || op == SLJIT_MUL_F64)) { /* Swap arguments. */ src2 = src1; src2w = src1w; } else if (dst != src2) FAIL_IF(emit_sse2_load(compiler, op & SLJIT_F32_OP, dst_r, src1, src1w)); else { dst_r = TMP_FREG; FAIL_IF(emit_sse2_load(compiler, op & SLJIT_F32_OP, TMP_FREG, src1, src1w)); } } else { dst_r = TMP_FREG; FAIL_IF(emit_sse2_load(compiler, op & SLJIT_F32_OP, TMP_FREG, src1, src1w)); } switch (GET_OPCODE(op)) { case SLJIT_ADD_F64: FAIL_IF(emit_sse2(compiler, ADDSD_x_xm, op & SLJIT_F32_OP, dst_r, src2, src2w)); break; case SLJIT_SUB_F64: FAIL_IF(emit_sse2(compiler, SUBSD_x_xm, op & SLJIT_F32_OP, dst_r, src2, src2w)); break; case SLJIT_MUL_F64: FAIL_IF(emit_sse2(compiler, MULSD_x_xm, op & SLJIT_F32_OP, dst_r, src2, src2w)); break; case SLJIT_DIV_F64: FAIL_IF(emit_sse2(compiler, DIVSD_x_xm, op & SLJIT_F32_OP, dst_r, src2, src2w)); break; } if (dst_r == TMP_FREG) return emit_sse2_store(compiler, op & SLJIT_F32_OP, dst, dstw, TMP_FREG); return SLJIT_SUCCESS; } /* --------------------------------------------------------------------- */ /* Conditional instructions */ /* --------------------------------------------------------------------- */ SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler) { sljit_u8 *inst; struct sljit_label *label; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_label(compiler)); if (compiler->last_label && compiler->last_label->size == compiler->size) return compiler->last_label; label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label)); PTR_FAIL_IF(!label); set_label(label, compiler); inst = (sljit_u8*)ensure_buf(compiler, 2); PTR_FAIL_IF(!inst); *inst++ = 0; *inst++ = 0; return label; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type) { sljit_u8 *inst; struct sljit_jump *jump; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_jump(compiler, type)); jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); PTR_FAIL_IF_NULL(jump); set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP); type &= 0xff; /* Worst case size. */ #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) compiler->size += (type >= SLJIT_JUMP) ? 5 : 6; #else compiler->size += (type >= SLJIT_JUMP) ? (10 + 3) : (2 + 10 + 3); #endif inst = (sljit_u8*)ensure_buf(compiler, 2); PTR_FAIL_IF_NULL(inst); *inst++ = 0; *inst++ = type + 2; return jump; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw) { sljit_u8 *inst; struct sljit_jump *jump; CHECK_ERROR(); CHECK(check_sljit_emit_ijump(compiler, type, src, srcw)); ADJUST_LOCAL_OFFSET(src, srcw); CHECK_EXTRA_REGS(src, srcw, (void)0); if (src == SLJIT_IMM) { jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); FAIL_IF_NULL(jump); set_jump(jump, compiler, JUMP_ADDR); jump->u.target = srcw; /* Worst case size. */ #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) compiler->size += 5; #else compiler->size += 10 + 3; #endif inst = (sljit_u8*)ensure_buf(compiler, 2); FAIL_IF_NULL(inst); *inst++ = 0; *inst++ = type + 2; } else { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) /* REX_W is not necessary (src is not immediate). */ compiler->mode32 = 1; #endif inst = emit_x86_instruction(compiler, 1, 0, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_FF; *inst |= (type >= SLJIT_FAST_CALL) ? CALL_rm : JMP_rm; } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 type) { sljit_u8 *inst; sljit_u8 cond_set = 0; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) sljit_s32 reg; #endif /* ADJUST_LOCAL_OFFSET and CHECK_EXTRA_REGS might overwrite these values. */ sljit_s32 dst_save = dst; sljit_sw dstw_save = dstw; CHECK_ERROR(); CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, type)); ADJUST_LOCAL_OFFSET(dst, dstw); CHECK_EXTRA_REGS(dst, dstw, (void)0); type &= 0xff; /* setcc = jcc + 0x10. */ cond_set = get_jump_code(type) + 0x10; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (GET_OPCODE(op) == SLJIT_OR && !GET_ALL_FLAGS(op) && FAST_IS_REG(dst)) { inst = (sljit_u8*)ensure_buf(compiler, 1 + 4 + 3); FAIL_IF(!inst); INC_SIZE(4 + 3); /* Set low register to conditional flag. */ *inst++ = (reg_map[TMP_REG1] <= 7) ? REX : REX_B; *inst++ = GROUP_0F; *inst++ = cond_set; *inst++ = MOD_REG | reg_lmap[TMP_REG1]; *inst++ = REX | (reg_map[TMP_REG1] <= 7 ? 0 : REX_R) | (reg_map[dst] <= 7 ? 0 : REX_B); *inst++ = OR_rm8_r8; *inst++ = MOD_REG | (reg_lmap[TMP_REG1] << 3) | reg_lmap[dst]; return SLJIT_SUCCESS; } reg = (GET_OPCODE(op) < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG1; inst = (sljit_u8*)ensure_buf(compiler, 1 + 4 + 4); FAIL_IF(!inst); INC_SIZE(4 + 4); /* Set low register to conditional flag. */ *inst++ = (reg_map[reg] <= 7) ? REX : REX_B; *inst++ = GROUP_0F; *inst++ = cond_set; *inst++ = MOD_REG | reg_lmap[reg]; *inst++ = REX_W | (reg_map[reg] <= 7 ? 0 : (REX_B | REX_R)); /* The movzx instruction does not affect flags. */ *inst++ = GROUP_0F; *inst++ = MOVZX_r_rm8; *inst = MOD_REG | (reg_lmap[reg] << 3) | reg_lmap[reg]; if (reg != TMP_REG1) return SLJIT_SUCCESS; if (GET_OPCODE(op) < SLJIT_ADD) { compiler->mode32 = GET_OPCODE(op) != SLJIT_MOV; return emit_mov(compiler, dst, dstw, TMP_REG1, 0); } #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \ || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) compiler->skip_checks = 1; #endif return sljit_emit_op2(compiler, op, dst_save, dstw_save, dst_save, dstw_save, TMP_REG1, 0); #else /* The SLJIT_CONFIG_X86_32 code path starts here. */ if (GET_OPCODE(op) < SLJIT_ADD && FAST_IS_REG(dst)) { if (reg_map[dst] <= 4) { /* Low byte is accessible. */ inst = (sljit_u8*)ensure_buf(compiler, 1 + 3 + 3); FAIL_IF(!inst); INC_SIZE(3 + 3); /* Set low byte to conditional flag. */ *inst++ = GROUP_0F; *inst++ = cond_set; *inst++ = MOD_REG | reg_map[dst]; *inst++ = GROUP_0F; *inst++ = MOVZX_r_rm8; *inst = MOD_REG | (reg_map[dst] << 3) | reg_map[dst]; return SLJIT_SUCCESS; } /* Low byte is not accessible. */ if (cpu_has_cmov == -1) get_cpu_features(); if (cpu_has_cmov) { EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, 1); /* a xor reg, reg operation would overwrite the flags. */ EMIT_MOV(compiler, dst, 0, SLJIT_IMM, 0); inst = (sljit_u8*)ensure_buf(compiler, 1 + 3); FAIL_IF(!inst); INC_SIZE(3); *inst++ = GROUP_0F; /* cmovcc = setcc - 0x50. */ *inst++ = cond_set - 0x50; *inst++ = MOD_REG | (reg_map[dst] << 3) | reg_map[TMP_REG1]; return SLJIT_SUCCESS; } inst = (sljit_u8*)ensure_buf(compiler, 1 + 1 + 3 + 3 + 1); FAIL_IF(!inst); INC_SIZE(1 + 3 + 3 + 1); *inst++ = XCHG_EAX_r + reg_map[TMP_REG1]; /* Set al to conditional flag. */ *inst++ = GROUP_0F; *inst++ = cond_set; *inst++ = MOD_REG | 0 /* eax */; *inst++ = GROUP_0F; *inst++ = MOVZX_r_rm8; *inst++ = MOD_REG | (reg_map[dst] << 3) | 0 /* eax */; *inst++ = XCHG_EAX_r + reg_map[TMP_REG1]; return SLJIT_SUCCESS; } if (GET_OPCODE(op) == SLJIT_OR && !GET_ALL_FLAGS(op) && FAST_IS_REG(dst) && reg_map[dst] <= 4) { SLJIT_ASSERT(reg_map[SLJIT_R0] == 0); if (dst != SLJIT_R0) { inst = (sljit_u8*)ensure_buf(compiler, 1 + 1 + 3 + 2 + 1); FAIL_IF(!inst); INC_SIZE(1 + 3 + 2 + 1); /* Set low register to conditional flag. */ *inst++ = XCHG_EAX_r + reg_map[TMP_REG1]; *inst++ = GROUP_0F; *inst++ = cond_set; *inst++ = MOD_REG | 0 /* eax */; *inst++ = OR_rm8_r8; *inst++ = MOD_REG | (0 /* eax */ << 3) | reg_map[dst]; *inst++ = XCHG_EAX_r + reg_map[TMP_REG1]; } else { inst = (sljit_u8*)ensure_buf(compiler, 1 + 2 + 3 + 2 + 2); FAIL_IF(!inst); INC_SIZE(2 + 3 + 2 + 2); /* Set low register to conditional flag. */ *inst++ = XCHG_r_rm; *inst++ = MOD_REG | (1 /* ecx */ << 3) | reg_map[TMP_REG1]; *inst++ = GROUP_0F; *inst++ = cond_set; *inst++ = MOD_REG | 1 /* ecx */; *inst++ = OR_rm8_r8; *inst++ = MOD_REG | (1 /* ecx */ << 3) | 0 /* eax */; *inst++ = XCHG_r_rm; *inst++ = MOD_REG | (1 /* ecx */ << 3) | reg_map[TMP_REG1]; } return SLJIT_SUCCESS; } /* Set TMP_REG1 to the bit. */ inst = (sljit_u8*)ensure_buf(compiler, 1 + 1 + 3 + 3 + 1); FAIL_IF(!inst); INC_SIZE(1 + 3 + 3 + 1); *inst++ = XCHG_EAX_r + reg_map[TMP_REG1]; /* Set al to conditional flag. */ *inst++ = GROUP_0F; *inst++ = cond_set; *inst++ = MOD_REG | 0 /* eax */; *inst++ = GROUP_0F; *inst++ = MOVZX_r_rm8; *inst++ = MOD_REG | (0 << 3) /* eax */ | 0 /* eax */; *inst++ = XCHG_EAX_r + reg_map[TMP_REG1]; if (GET_OPCODE(op) < SLJIT_ADD) return emit_mov(compiler, dst, dstw, TMP_REG1, 0); #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \ || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) compiler->skip_checks = 1; #endif return sljit_emit_op2(compiler, op, dst_save, dstw_save, dst_save, dstw_save, TMP_REG1, 0); #endif /* SLJIT_CONFIG_X86_64 */ } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 dst_reg, sljit_s32 src, sljit_sw srcw) { sljit_u8* inst; CHECK_ERROR(); CHECK(check_sljit_emit_cmov(compiler, type, dst_reg, src, srcw)); #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) dst_reg &= ~SLJIT_I32_OP; if (!sljit_has_cpu_feature(SLJIT_HAS_CMOV) || (dst_reg >= SLJIT_R3 && dst_reg <= SLJIT_S3)) return sljit_emit_cmov_generic(compiler, type, dst_reg, src, srcw); #else if (!sljit_has_cpu_feature(SLJIT_HAS_CMOV)) return sljit_emit_cmov_generic(compiler, type, dst_reg, src, srcw); #endif /* ADJUST_LOCAL_OFFSET is not needed. */ CHECK_EXTRA_REGS(src, srcw, (void)0); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = dst_reg & SLJIT_I32_OP; dst_reg &= ~SLJIT_I32_OP; #endif if (SLJIT_UNLIKELY(src & SLJIT_IMM)) { EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, srcw); src = TMP_REG1; srcw = 0; } inst = emit_x86_instruction(compiler, 2, dst_reg, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_0F; *inst = get_jump_code(type & 0xff) - 0x40; return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset) { CHECK_ERROR(); CHECK(check_sljit_get_local_base(compiler, dst, dstw, offset)); ADJUST_LOCAL_OFFSET(dst, dstw); CHECK_EXTRA_REGS(dst, dstw, (void)0); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; #endif ADJUST_LOCAL_OFFSET(SLJIT_MEM1(SLJIT_SP), offset); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (NOT_HALFWORD(offset)) { FAIL_IF(emit_load_imm64(compiler, TMP_REG1, offset)); #if (defined SLJIT_DEBUG && SLJIT_DEBUG) SLJIT_ASSERT(emit_lea_binary(compiler, dst, dstw, SLJIT_SP, 0, TMP_REG1, 0) != SLJIT_ERR_UNSUPPORTED); return compiler->error; #else return emit_lea_binary(compiler, dst, dstw, SLJIT_SP, 0, TMP_REG1, 0); #endif } #endif if (offset != 0) return emit_lea_binary(compiler, dst, dstw, SLJIT_SP, 0, SLJIT_IMM, offset); return emit_mov(compiler, dst, dstw, SLJIT_SP, 0); } SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value) { sljit_u8 *inst; struct sljit_const *const_; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) sljit_s32 reg; #endif CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value)); ADJUST_LOCAL_OFFSET(dst, dstw); CHECK_EXTRA_REGS(dst, dstw, (void)0); const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const)); PTR_FAIL_IF(!const_); set_const(const_, compiler); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; reg = FAST_IS_REG(dst) ? dst : TMP_REG1; if (emit_load_imm64(compiler, reg, init_value)) return NULL; #else if (emit_mov(compiler, dst, dstw, SLJIT_IMM, init_value)) return NULL; #endif inst = (sljit_u8*)ensure_buf(compiler, 2); PTR_FAIL_IF(!inst); *inst++ = 0; *inst++ = 1; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (dst & SLJIT_MEM) if (emit_mov(compiler, dst, dstw, TMP_REG1, 0)) return NULL; #endif return const_; } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset) { SLJIT_UNUSED_ARG(executable_offset); #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) sljit_unaligned_store_sw((void*)addr, new_target - (addr + 4) - (sljit_uw)executable_offset); #else sljit_unaligned_store_sw((void*)addr, (sljit_sw) new_target); #endif } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset) { SLJIT_UNUSED_ARG(executable_offset); sljit_unaligned_store_sw((void*)addr, new_constant); }