//===-- HexagonMCCodeEmitter.cpp - Hexagon Target Descriptions ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Hexagon.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonFixupKinds.h"
#include "MCTargetDesc/HexagonMCCodeEmitter.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "mccodeemitter"
using namespace llvm;
using namespace Hexagon;
STATISTIC(MCNumEmitted, "Number of MC instructions emitted");
HexagonMCCodeEmitter::HexagonMCCodeEmitter(MCInstrInfo const &aMII,
MCContext &aMCT)
: MCT(aMCT), MCII(aMII), Addend(new unsigned(0)),
Extended(new bool(false)), CurrentBundle(new MCInst const *) {}
uint32_t HexagonMCCodeEmitter::parseBits(size_t Instruction, size_t Last,
MCInst const &MCB,
MCInst const &MCI) const {
bool Duplex = HexagonMCInstrInfo::isDuplex(MCII, MCI);
if (Instruction == 0) {
if (HexagonMCInstrInfo::isInnerLoop(MCB)) {
assert(!Duplex);
assert(Instruction != Last);
return HexagonII::INST_PARSE_LOOP_END;
}
}
if (Instruction == 1) {
if (HexagonMCInstrInfo::isOuterLoop(MCB)) {
assert(!Duplex);
assert(Instruction != Last);
return HexagonII::INST_PARSE_LOOP_END;
}
}
if (Duplex) {
assert(Instruction == Last);
return HexagonII::INST_PARSE_DUPLEX;
}
if(Instruction == Last)
return HexagonII::INST_PARSE_PACKET_END;
return HexagonII::INST_PARSE_NOT_END;
}
void HexagonMCCodeEmitter::encodeInstruction(MCInst const &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
MCSubtargetInfo const &STI) const {
MCInst &HMB = const_cast<MCInst &>(MI);
assert(HexagonMCInstrInfo::isBundle(HMB));
DEBUG(dbgs() << "Encoding bundle\n";);
*Addend = 0;
*Extended = false;
*CurrentBundle = &MI;
size_t Instruction = 0;
size_t Last = HexagonMCInstrInfo::bundleSize(HMB) - 1;
for (auto &I : HexagonMCInstrInfo::bundleInstructions(HMB)) {
MCInst &HMI = const_cast<MCInst &>(*I.getInst());
EncodeSingleInstruction(HMI, OS, Fixups, STI,
parseBits(Instruction, Last, HMB, HMI),
Instruction);
*Extended = HexagonMCInstrInfo::isImmext(HMI);
*Addend += HEXAGON_INSTR_SIZE;
++Instruction;
}
return;
}
static bool RegisterMatches(unsigned Consumer, unsigned Producer,
unsigned Producer2) {
if (Consumer == Producer)
return true;
if (Consumer == Producer2)
return true;
// Calculate if we're a single vector consumer referencing a double producer
if (Producer >= Hexagon::W0 && Producer <= Hexagon::W15)
if (Consumer >= Hexagon::V0 && Consumer <= Hexagon::V31)
return ((Consumer - Hexagon::V0) >> 1) == (Producer - Hexagon::W0);
return false;
}
/// EncodeSingleInstruction - Emit a single
void HexagonMCCodeEmitter::EncodeSingleInstruction(
const MCInst &MI, raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI, uint32_t Parse, size_t Index) const {
MCInst HMB = MI;
assert(!HexagonMCInstrInfo::isBundle(HMB));
uint64_t Binary;
// Compound instructions are limited to using registers 0-7 and 16-23
// and here we make a map 16-23 to 8-15 so they can be correctly encoded.
static unsigned RegMap[8] = {Hexagon::R8, Hexagon::R9, Hexagon::R10,
Hexagon::R11, Hexagon::R12, Hexagon::R13,
Hexagon::R14, Hexagon::R15};
// Pseudo instructions don't get encoded and shouldn't be here
// in the first place!
assert(!HexagonMCInstrInfo::getDesc(MCII, HMB).isPseudo() &&
"pseudo-instruction found");
DEBUG(dbgs() << "Encoding insn"
" `" << HexagonMCInstrInfo::getName(MCII, HMB) << "'"
"\n");
if (llvm::HexagonMCInstrInfo::getType(MCII, HMB) == HexagonII::TypeCOMPOUND) {
for (unsigned i = 0; i < HMB.getNumOperands(); ++i)
if (HMB.getOperand(i).isReg()) {
unsigned Reg =
MCT.getRegisterInfo()->getEncodingValue(HMB.getOperand(i).getReg());
if ((Reg <= 23) && (Reg >= 16))
HMB.getOperand(i).setReg(RegMap[Reg - 16]);
}
}
if (HexagonMCInstrInfo::isNewValue(MCII, HMB)) {
// Calculate the new value distance to the associated producer
MCOperand &MCO =
HMB.getOperand(HexagonMCInstrInfo::getNewValueOp(MCII, HMB));
unsigned SOffset = 0;
unsigned VOffset = 0;
unsigned Register = MCO.getReg();
unsigned Register1;
unsigned Register2;
auto Instructions = HexagonMCInstrInfo::bundleInstructions(**CurrentBundle);
auto i = Instructions.begin() + Index - 1;
for (;; --i) {
assert(i != Instructions.begin() - 1 && "Couldn't find producer");
MCInst const &Inst = *i->getInst();
if (HexagonMCInstrInfo::isImmext(Inst))
continue;
++SOffset;
if (HexagonMCInstrInfo::isVector(MCII, Inst))
// Vector instructions don't count scalars
++VOffset;
Register1 =
HexagonMCInstrInfo::hasNewValue(MCII, Inst)
? HexagonMCInstrInfo::getNewValueOperand(MCII, Inst).getReg()
: static_cast<unsigned>(Hexagon::NoRegister);
Register2 =
HexagonMCInstrInfo::hasNewValue2(MCII, Inst)
? HexagonMCInstrInfo::getNewValueOperand2(MCII, Inst).getReg()
: static_cast<unsigned>(Hexagon::NoRegister);
if (!RegisterMatches(Register, Register1, Register2))
// This isn't the register we're looking for
continue;
if (!HexagonMCInstrInfo::isPredicated(MCII, Inst))
// Producer is unpredicated
break;
assert(HexagonMCInstrInfo::isPredicated(MCII, HMB) &&
"Unpredicated consumer depending on predicated producer");
if (HexagonMCInstrInfo::isPredicatedTrue(MCII, Inst) ==
HexagonMCInstrInfo::isPredicatedTrue(MCII, HMB))
// Producer predicate sense matched ours
break;
}
// Hexagon PRM 10.11 Construct Nt from distance
unsigned Offset =
HexagonMCInstrInfo::isVector(MCII, HMB) ? VOffset : SOffset;
Offset <<= 1;
Offset |=
HexagonMCInstrInfo::SubregisterBit(Register, Register1, Register2);
MCO.setReg(Offset + Hexagon::R0);
}
Binary = getBinaryCodeForInstr(HMB, Fixups, STI);
// Check for unimplemented instructions. Immediate extenders
// are encoded as zero, so they need to be accounted for.
if ((!Binary) &&
((HMB.getOpcode() != DuplexIClass0) && (HMB.getOpcode() != A4_ext) &&
(HMB.getOpcode() != A4_ext_b) && (HMB.getOpcode() != A4_ext_c) &&
(HMB.getOpcode() != A4_ext_g))) {
DEBUG(dbgs() << "Unimplemented inst: "
" `" << HexagonMCInstrInfo::getName(MCII, HMB) << "'"
"\n");
llvm_unreachable("Unimplemented Instruction");
}
Binary |= Parse;
// if we need to emit a duplexed instruction
if (HMB.getOpcode() >= Hexagon::DuplexIClass0 &&
HMB.getOpcode() <= Hexagon::DuplexIClassF) {
assert(Parse == HexagonII::INST_PARSE_DUPLEX &&
"Emitting duplex without duplex parse bits");
unsigned dupIClass;
switch (HMB.getOpcode()) {
case Hexagon::DuplexIClass0:
dupIClass = 0;
break;
case Hexagon::DuplexIClass1:
dupIClass = 1;
break;
case Hexagon::DuplexIClass2:
dupIClass = 2;
break;
case Hexagon::DuplexIClass3:
dupIClass = 3;
break;
case Hexagon::DuplexIClass4:
dupIClass = 4;
break;
case Hexagon::DuplexIClass5:
dupIClass = 5;
break;
case Hexagon::DuplexIClass6:
dupIClass = 6;
break;
case Hexagon::DuplexIClass7:
dupIClass = 7;
break;
case Hexagon::DuplexIClass8:
dupIClass = 8;
break;
case Hexagon::DuplexIClass9:
dupIClass = 9;
break;
case Hexagon::DuplexIClassA:
dupIClass = 10;
break;
case Hexagon::DuplexIClassB:
dupIClass = 11;
break;
case Hexagon::DuplexIClassC:
dupIClass = 12;
break;
case Hexagon::DuplexIClassD:
dupIClass = 13;
break;
case Hexagon::DuplexIClassE:
dupIClass = 14;
break;
case Hexagon::DuplexIClassF:
dupIClass = 15;
break;
default:
llvm_unreachable("Unimplemented DuplexIClass");
break;
}
// 29 is the bit position.
// 0b1110 =0xE bits are masked off and down shifted by 1 bit.
// Last bit is moved to bit position 13
Binary = ((dupIClass & 0xE) << (29 - 1)) | ((dupIClass & 0x1) << 13);
const MCInst *subInst0 = HMB.getOperand(0).getInst();
const MCInst *subInst1 = HMB.getOperand(1).getInst();
// get subinstruction slot 0
unsigned subInstSlot0Bits = getBinaryCodeForInstr(*subInst0, Fixups, STI);
// get subinstruction slot 1
unsigned subInstSlot1Bits = getBinaryCodeForInstr(*subInst1, Fixups, STI);
Binary |= subInstSlot0Bits | (subInstSlot1Bits << 16);
}
support::endian::Writer<support::little>(OS).write<uint32_t>(Binary);
++MCNumEmitted;
}
namespace {
void raise_relocation_error(unsigned bits, unsigned kind) {
std::string Text;
{
llvm::raw_string_ostream Stream(Text);
Stream << "Unrecognized relocation combination bits: " << bits
<< " kind: " << kind;
}
report_fatal_error(Text);
}
}
/// getFixupNoBits - Some insns are not extended and thus have no
/// bits. These cases require a more brute force method for determining
/// the correct relocation.
namespace {
Hexagon::Fixups getFixupNoBits(MCInstrInfo const &MCII, const MCInst &MI,
const MCOperand &MO,
const MCSymbolRefExpr::VariantKind kind) {
const MCInstrDesc &MCID = HexagonMCInstrInfo::getDesc(MCII, MI);
unsigned insnType = llvm::HexagonMCInstrInfo::getType(MCII, MI);
if (insnType == HexagonII::TypePREFIX) {
switch (kind) {
case MCSymbolRefExpr::VK_GOTREL:
return Hexagon::fixup_Hexagon_GOTREL_32_6_X;
case MCSymbolRefExpr::VK_GOT:
return Hexagon::fixup_Hexagon_GOT_32_6_X;
case MCSymbolRefExpr::VK_TPREL:
return Hexagon::fixup_Hexagon_TPREL_32_6_X;
case MCSymbolRefExpr::VK_DTPREL:
return Hexagon::fixup_Hexagon_DTPREL_32_6_X;
case MCSymbolRefExpr::VK_Hexagon_GD_GOT:
return Hexagon::fixup_Hexagon_GD_GOT_32_6_X;
case MCSymbolRefExpr::VK_Hexagon_LD_GOT:
return Hexagon::fixup_Hexagon_LD_GOT_32_6_X;
case MCSymbolRefExpr::VK_Hexagon_IE:
return Hexagon::fixup_Hexagon_IE_32_6_X;
case MCSymbolRefExpr::VK_Hexagon_IE_GOT:
return Hexagon::fixup_Hexagon_IE_GOT_32_6_X;
case MCSymbolRefExpr::VK_Hexagon_PCREL:
case MCSymbolRefExpr::VK_None:
if (MCID.isBranch())
return Hexagon::fixup_Hexagon_B32_PCREL_X;
else
return Hexagon::fixup_Hexagon_32_6_X;
default:
raise_relocation_error(0, kind);
}
} else if (MCID.isBranch())
return Hexagon::fixup_Hexagon_B13_PCREL;
switch (MCID.getOpcode()) {
case Hexagon::HI:
case Hexagon::A2_tfrih:
switch (kind) {
case MCSymbolRefExpr::VK_GOT:
return Hexagon::fixup_Hexagon_GOT_HI16;
case MCSymbolRefExpr::VK_GOTREL:
return Hexagon::fixup_Hexagon_GOTREL_HI16;
case MCSymbolRefExpr::VK_Hexagon_GD_GOT:
return Hexagon::fixup_Hexagon_GD_GOT_HI16;
case MCSymbolRefExpr::VK_Hexagon_LD_GOT:
return Hexagon::fixup_Hexagon_LD_GOT_HI16;
case MCSymbolRefExpr::VK_Hexagon_IE:
return Hexagon::fixup_Hexagon_IE_HI16;
case MCSymbolRefExpr::VK_Hexagon_IE_GOT:
return Hexagon::fixup_Hexagon_IE_GOT_HI16;
case MCSymbolRefExpr::VK_TPREL:
return Hexagon::fixup_Hexagon_TPREL_HI16;
case MCSymbolRefExpr::VK_DTPREL:
return Hexagon::fixup_Hexagon_DTPREL_HI16;
case MCSymbolRefExpr::VK_None:
return Hexagon::fixup_Hexagon_HI16;
default:
raise_relocation_error(0, kind);
}
case Hexagon::LO:
case Hexagon::A2_tfril:
switch (kind) {
case MCSymbolRefExpr::VK_GOT:
return Hexagon::fixup_Hexagon_GOT_LO16;
case MCSymbolRefExpr::VK_GOTREL:
return Hexagon::fixup_Hexagon_GOTREL_LO16;
case MCSymbolRefExpr::VK_Hexagon_GD_GOT:
return Hexagon::fixup_Hexagon_GD_GOT_LO16;
case MCSymbolRefExpr::VK_Hexagon_LD_GOT:
return Hexagon::fixup_Hexagon_LD_GOT_LO16;
case MCSymbolRefExpr::VK_Hexagon_IE:
return Hexagon::fixup_Hexagon_IE_LO16;
case MCSymbolRefExpr::VK_Hexagon_IE_GOT:
return Hexagon::fixup_Hexagon_IE_GOT_LO16;
case MCSymbolRefExpr::VK_TPREL:
return Hexagon::fixup_Hexagon_TPREL_LO16;
case MCSymbolRefExpr::VK_DTPREL:
return Hexagon::fixup_Hexagon_DTPREL_LO16;
case MCSymbolRefExpr::VK_None:
return Hexagon::fixup_Hexagon_LO16;
default:
raise_relocation_error(0, kind);
}
// The only relocs left should be GP relative:
default:
if (MCID.mayStore() || MCID.mayLoad()) {
for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses;
++ImpUses) {
if (*ImpUses != Hexagon::GP)
continue;
switch (HexagonMCInstrInfo::getAccessSize(MCII, MI)) {
case HexagonII::MemAccessSize::ByteAccess:
return fixup_Hexagon_GPREL16_0;
case HexagonII::MemAccessSize::HalfWordAccess:
return fixup_Hexagon_GPREL16_1;
case HexagonII::MemAccessSize::WordAccess:
return fixup_Hexagon_GPREL16_2;
case HexagonII::MemAccessSize::DoubleWordAccess:
return fixup_Hexagon_GPREL16_3;
default:
raise_relocation_error(0, kind);
}
}
}
raise_relocation_error(0, kind);
}
llvm_unreachable("Relocation exit not taken");
}
}
namespace llvm {
extern const MCInstrDesc HexagonInsts[];
}
namespace {
bool isPCRel (unsigned Kind) {
switch(Kind){
case fixup_Hexagon_B22_PCREL:
case fixup_Hexagon_B15_PCREL:
case fixup_Hexagon_B7_PCREL:
case fixup_Hexagon_B13_PCREL:
case fixup_Hexagon_B9_PCREL:
case fixup_Hexagon_B32_PCREL_X:
case fixup_Hexagon_B22_PCREL_X:
case fixup_Hexagon_B15_PCREL_X:
case fixup_Hexagon_B13_PCREL_X:
case fixup_Hexagon_B9_PCREL_X:
case fixup_Hexagon_B7_PCREL_X:
case fixup_Hexagon_32_PCREL:
case fixup_Hexagon_PLT_B22_PCREL:
case fixup_Hexagon_GD_PLT_B22_PCREL:
case fixup_Hexagon_LD_PLT_B22_PCREL:
case fixup_Hexagon_6_PCREL_X:
return true;
default:
return false;
}
}
}
unsigned HexagonMCCodeEmitter::getExprOpValue(const MCInst &MI,
const MCOperand &MO,
const MCExpr *ME,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const
{
if (isa<HexagonMCExpr>(ME))
ME = &HexagonMCInstrInfo::getExpr(*ME);
int64_t Value;
if (ME->evaluateAsAbsolute(Value))
return Value;
assert(ME->getKind() == MCExpr::SymbolRef || ME->getKind() == MCExpr::Binary);
if (ME->getKind() == MCExpr::Binary) {
MCBinaryExpr const *Binary = cast<MCBinaryExpr>(ME);
getExprOpValue(MI, MO, Binary->getLHS(), Fixups, STI);
getExprOpValue(MI, MO, Binary->getRHS(), Fixups, STI);
return 0;
}
Hexagon::Fixups FixupKind =
Hexagon::Fixups(Hexagon::fixup_Hexagon_TPREL_LO16);
const MCSymbolRefExpr *MCSRE = static_cast<const MCSymbolRefExpr *>(ME);
const MCInstrDesc &MCID = HexagonMCInstrInfo::getDesc(MCII, MI);
unsigned bits = HexagonMCInstrInfo::getExtentBits(MCII, MI) -
HexagonMCInstrInfo::getExtentAlignment(MCII, MI);
const MCSymbolRefExpr::VariantKind kind = MCSRE->getKind();
DEBUG(dbgs() << "----------------------------------------\n");
DEBUG(dbgs() << "Opcode Name: " << HexagonMCInstrInfo::getName(MCII, MI)
<< "\n");
DEBUG(dbgs() << "Opcode: " << MCID.getOpcode() << "\n");
DEBUG(dbgs() << "Relocation bits: " << bits << "\n");
DEBUG(dbgs() << "Addend: " << *Addend << "\n");
DEBUG(dbgs() << "----------------------------------------\n");
switch (bits) {
default:
raise_relocation_error(bits, kind);
case 32:
switch (kind) {
case MCSymbolRefExpr::VK_DTPREL:
FixupKind = *Extended ? Hexagon::fixup_Hexagon_DTPREL_32_6_X
: Hexagon::fixup_Hexagon_DTPREL_32;
break;
case MCSymbolRefExpr::VK_GOT:
FixupKind = *Extended ? Hexagon::fixup_Hexagon_GOT_32_6_X
: Hexagon::fixup_Hexagon_GOT_32;
break;
case MCSymbolRefExpr::VK_GOTREL:
FixupKind = *Extended ? Hexagon::fixup_Hexagon_GOTREL_32_6_X
: Hexagon::fixup_Hexagon_GOTREL_32;
break;
case MCSymbolRefExpr::VK_Hexagon_GD_GOT:
FixupKind = *Extended ? Hexagon::fixup_Hexagon_GD_GOT_32_6_X
: Hexagon::fixup_Hexagon_GD_GOT_32;
break;
case MCSymbolRefExpr::VK_Hexagon_IE:
FixupKind = *Extended ? Hexagon::fixup_Hexagon_IE_32_6_X
: Hexagon::fixup_Hexagon_IE_32;
break;
case MCSymbolRefExpr::VK_Hexagon_IE_GOT:
FixupKind = *Extended ? Hexagon::fixup_Hexagon_IE_GOT_32_6_X
: Hexagon::fixup_Hexagon_IE_GOT_32;
break;
case MCSymbolRefExpr::VK_Hexagon_LD_GOT:
FixupKind = *Extended ? Hexagon::fixup_Hexagon_LD_GOT_32_6_X
: Hexagon::fixup_Hexagon_LD_GOT_32;
break;
case MCSymbolRefExpr::VK_Hexagon_PCREL:
FixupKind = Hexagon::fixup_Hexagon_32_PCREL;
break;
case MCSymbolRefExpr::VK_None:
FixupKind =
*Extended ? Hexagon::fixup_Hexagon_32_6_X : Hexagon::fixup_Hexagon_32;
break;
case MCSymbolRefExpr::VK_TPREL:
FixupKind = *Extended ? Hexagon::fixup_Hexagon_TPREL_32_6_X
: Hexagon::fixup_Hexagon_TPREL_32;
break;
default:
raise_relocation_error(bits, kind);
}
break;
case 22:
switch (kind) {
case MCSymbolRefExpr::VK_Hexagon_GD_PLT:
FixupKind = Hexagon::fixup_Hexagon_GD_PLT_B22_PCREL;
break;
case MCSymbolRefExpr::VK_Hexagon_LD_PLT:
FixupKind = Hexagon::fixup_Hexagon_LD_PLT_B22_PCREL;
break;
case MCSymbolRefExpr::VK_None:
FixupKind = *Extended ? Hexagon::fixup_Hexagon_B22_PCREL_X
: Hexagon::fixup_Hexagon_B22_PCREL;
break;
case MCSymbolRefExpr::VK_PLT:
FixupKind = Hexagon::fixup_Hexagon_PLT_B22_PCREL;
break;
default:
raise_relocation_error(bits, kind);
}
break;
case 16:
if (*Extended) {
switch (kind) {
case MCSymbolRefExpr::VK_DTPREL:
FixupKind = Hexagon::fixup_Hexagon_DTPREL_16_X;
break;
case MCSymbolRefExpr::VK_GOT:
FixupKind = Hexagon::fixup_Hexagon_GOT_16_X;
break;
case MCSymbolRefExpr::VK_GOTREL:
FixupKind = Hexagon::fixup_Hexagon_GOTREL_16_X;
break;
case MCSymbolRefExpr::VK_Hexagon_GD_GOT:
FixupKind = Hexagon::fixup_Hexagon_GD_GOT_16_X;
break;
case MCSymbolRefExpr::VK_Hexagon_IE:
FixupKind = Hexagon::fixup_Hexagon_IE_16_X;
break;
case MCSymbolRefExpr::VK_Hexagon_IE_GOT:
FixupKind = Hexagon::fixup_Hexagon_IE_GOT_16_X;
break;
case MCSymbolRefExpr::VK_Hexagon_LD_GOT:
FixupKind = Hexagon::fixup_Hexagon_LD_GOT_16_X;
break;
case MCSymbolRefExpr::VK_None:
FixupKind = Hexagon::fixup_Hexagon_16_X;
break;
case MCSymbolRefExpr::VK_TPREL:
FixupKind = Hexagon::fixup_Hexagon_TPREL_16_X;
break;
default:
raise_relocation_error(bits, kind);
}
} else
switch (kind) {
case MCSymbolRefExpr::VK_None: {
if (HexagonMCInstrInfo::s23_2_reloc(*MO.getExpr()))
FixupKind = Hexagon::fixup_Hexagon_23_REG;
else
raise_relocation_error(bits, kind);
break;
}
case MCSymbolRefExpr::VK_DTPREL:
FixupKind = Hexagon::fixup_Hexagon_DTPREL_16;
break;
case MCSymbolRefExpr::VK_GOTREL:
if (MCID.getOpcode() == Hexagon::HI)
FixupKind = Hexagon::fixup_Hexagon_GOTREL_HI16;
else
FixupKind = Hexagon::fixup_Hexagon_GOTREL_LO16;
break;
case MCSymbolRefExpr::VK_Hexagon_GD_GOT:
FixupKind = Hexagon::fixup_Hexagon_GD_GOT_16;
break;
case MCSymbolRefExpr::VK_Hexagon_GPREL:
FixupKind = Hexagon::fixup_Hexagon_GPREL16_0;
break;
case MCSymbolRefExpr::VK_Hexagon_HI16:
FixupKind = Hexagon::fixup_Hexagon_HI16;
break;
case MCSymbolRefExpr::VK_Hexagon_IE_GOT:
FixupKind = Hexagon::fixup_Hexagon_IE_GOT_16;
break;
case MCSymbolRefExpr::VK_Hexagon_LD_GOT:
FixupKind = Hexagon::fixup_Hexagon_LD_GOT_16;
break;
case MCSymbolRefExpr::VK_Hexagon_LO16:
FixupKind = Hexagon::fixup_Hexagon_LO16;
break;
case MCSymbolRefExpr::VK_TPREL:
FixupKind = Hexagon::fixup_Hexagon_TPREL_16;
break;
default:
raise_relocation_error(bits, kind);
}
break;
case 15:
switch (kind) {
case MCSymbolRefExpr::VK_None:
FixupKind = *Extended ? Hexagon::fixup_Hexagon_B15_PCREL_X
: Hexagon::fixup_Hexagon_B15_PCREL;
break;
default:
raise_relocation_error(bits, kind);
}
break;
case 13:
switch (kind) {
case MCSymbolRefExpr::VK_None:
FixupKind = Hexagon::fixup_Hexagon_B13_PCREL;
break;
default:
raise_relocation_error(bits, kind);
}
break;
case 12:
if (*Extended)
switch (kind) {
// There isn't a GOT_12_X, both 11_X and 16_X resolve to 6/26
case MCSymbolRefExpr::VK_GOT:
FixupKind = Hexagon::fixup_Hexagon_GOT_16_X;
break;
case MCSymbolRefExpr::VK_GOTREL:
FixupKind = Hexagon::fixup_Hexagon_GOTREL_16_X;
break;
case MCSymbolRefExpr::VK_None:
FixupKind = Hexagon::fixup_Hexagon_12_X;
break;
default:
raise_relocation_error(bits, kind);
}
else
raise_relocation_error(bits, kind);
break;
case 11:
if (*Extended)
switch (kind) {
case MCSymbolRefExpr::VK_DTPREL:
FixupKind = Hexagon::fixup_Hexagon_DTPREL_11_X;
break;
case MCSymbolRefExpr::VK_GOT:
FixupKind = Hexagon::fixup_Hexagon_GOT_11_X;
break;
case MCSymbolRefExpr::VK_GOTREL:
FixupKind = Hexagon::fixup_Hexagon_GOTREL_11_X;
break;
case MCSymbolRefExpr::VK_Hexagon_GD_GOT:
FixupKind = Hexagon::fixup_Hexagon_GD_GOT_11_X;
break;
case MCSymbolRefExpr::VK_Hexagon_IE_GOT:
FixupKind = Hexagon::fixup_Hexagon_IE_GOT_11_X;
break;
case MCSymbolRefExpr::VK_Hexagon_LD_GOT:
FixupKind = Hexagon::fixup_Hexagon_LD_GOT_11_X;
break;
case MCSymbolRefExpr::VK_None:
FixupKind = Hexagon::fixup_Hexagon_11_X;
break;
case MCSymbolRefExpr::VK_TPREL:
FixupKind = Hexagon::fixup_Hexagon_TPREL_11_X;
break;
default:
raise_relocation_error(bits, kind);
}
else {
switch (kind) {
case MCSymbolRefExpr::VK_TPREL:
FixupKind = Hexagon::fixup_Hexagon_TPREL_11_X;
break;
default:
raise_relocation_error(bits, kind);
}
}
break;
case 10:
if (*Extended) {
switch (kind) {
case MCSymbolRefExpr::VK_None:
FixupKind = Hexagon::fixup_Hexagon_10_X;
break;
default:
raise_relocation_error(bits, kind);
}
} else
raise_relocation_error(bits, kind);
break;
case 9:
if (MCID.isBranch() ||
(HexagonMCInstrInfo::getType(MCII, MI) == HexagonII::TypeCR))
FixupKind = *Extended ? Hexagon::fixup_Hexagon_B9_PCREL_X
: Hexagon::fixup_Hexagon_B9_PCREL;
else if (*Extended)
FixupKind = Hexagon::fixup_Hexagon_9_X;
else
raise_relocation_error(bits, kind);
break;
case 8:
if (*Extended)
FixupKind = Hexagon::fixup_Hexagon_8_X;
else
raise_relocation_error(bits, kind);
break;
case 7:
if (MCID.isBranch() ||
(HexagonMCInstrInfo::getType(MCII, MI) == HexagonII::TypeCR))
FixupKind = *Extended ? Hexagon::fixup_Hexagon_B7_PCREL_X
: Hexagon::fixup_Hexagon_B7_PCREL;
else if (*Extended)
FixupKind = Hexagon::fixup_Hexagon_7_X;
else
raise_relocation_error(bits, kind);
break;
case 6:
if (*Extended) {
switch (kind) {
case MCSymbolRefExpr::VK_DTPREL:
FixupKind = Hexagon::fixup_Hexagon_DTPREL_16_X;
break;
// This is part of an extender, GOT_11 is a
// Word32_U6 unsigned/truncated reloc.
case MCSymbolRefExpr::VK_GOT:
FixupKind = Hexagon::fixup_Hexagon_GOT_11_X;
break;
case MCSymbolRefExpr::VK_GOTREL:
FixupKind = Hexagon::fixup_Hexagon_GOTREL_11_X;
break;
case MCSymbolRefExpr::VK_Hexagon_PCREL:
FixupKind = Hexagon::fixup_Hexagon_6_PCREL_X;
break;
case MCSymbolRefExpr::VK_TPREL:
FixupKind = Hexagon::fixup_Hexagon_TPREL_16_X;
break;
case MCSymbolRefExpr::VK_None:
FixupKind = Hexagon::fixup_Hexagon_6_X;
break;
default:
raise_relocation_error(bits, kind);
}
} else
raise_relocation_error(bits, kind);
break;
case 0:
FixupKind = getFixupNoBits(MCII, MI, MO, kind);
break;
}
MCExpr const *FixupExpression =
(*Addend > 0 && isPCRel(FixupKind))
? MCBinaryExpr::createAdd(MO.getExpr(),
MCConstantExpr::create(*Addend, MCT), MCT)
: MO.getExpr();
MCFixup fixup = MCFixup::create(*Addend, FixupExpression,
MCFixupKind(FixupKind), MI.getLoc());
Fixups.push_back(fixup);
// All of the information is in the fixup.
return 0;
}
unsigned
HexagonMCCodeEmitter::getMachineOpValue(MCInst const &MI, MCOperand const &MO,
SmallVectorImpl<MCFixup> &Fixups,
MCSubtargetInfo const &STI) const {
assert(!MO.isImm());
if (MO.isReg()) {
unsigned Reg = MO.getReg();
if (HexagonMCInstrInfo::isSubInstruction(MI))
return HexagonMCInstrInfo::getDuplexRegisterNumbering(Reg);
switch(MI.getOpcode()){
case Hexagon::A2_tfrrcr:
case Hexagon::A2_tfrcrr:
if(Reg == Hexagon::M0)
Reg = Hexagon::C6;
if(Reg == Hexagon::M1)
Reg = Hexagon::C7;
}
return MCT.getRegisterInfo()->getEncodingValue(Reg);
}
return getExprOpValue(MI, MO, MO.getExpr(), Fixups, STI);
}
MCCodeEmitter *llvm::createHexagonMCCodeEmitter(MCInstrInfo const &MII,
MCRegisterInfo const &MRI,
MCContext &MCT) {
return new HexagonMCCodeEmitter(MII, MCT);
}
#include "HexagonGenMCCodeEmitter.inc"