//===-- HexagonMCCodeEmitter.cpp - Hexagon Target Descriptions ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Hexagon.h" #include "MCTargetDesc/HexagonBaseInfo.h" #include "MCTargetDesc/HexagonFixupKinds.h" #include "MCTargetDesc/HexagonMCCodeEmitter.h" #include "MCTargetDesc/HexagonMCInstrInfo.h" #include "MCTargetDesc/HexagonMCTargetDesc.h" #include "llvm/ADT/Statistic.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "mccodeemitter" using namespace llvm; using namespace Hexagon; STATISTIC(MCNumEmitted, "Number of MC instructions emitted"); HexagonMCCodeEmitter::HexagonMCCodeEmitter(MCInstrInfo const &aMII, MCContext &aMCT) : MCT(aMCT), MCII(aMII), Addend(new unsigned(0)), Extended(new bool(false)), CurrentBundle(new MCInst const *) {} uint32_t HexagonMCCodeEmitter::parseBits(size_t Instruction, size_t Last, MCInst const &MCB, MCInst const &MCI) const { bool Duplex = HexagonMCInstrInfo::isDuplex(MCII, MCI); if (Instruction == 0) { if (HexagonMCInstrInfo::isInnerLoop(MCB)) { assert(!Duplex); assert(Instruction != Last); return HexagonII::INST_PARSE_LOOP_END; } } if (Instruction == 1) { if (HexagonMCInstrInfo::isOuterLoop(MCB)) { assert(!Duplex); assert(Instruction != Last); return HexagonII::INST_PARSE_LOOP_END; } } if (Duplex) { assert(Instruction == Last); return HexagonII::INST_PARSE_DUPLEX; } if(Instruction == Last) return HexagonII::INST_PARSE_PACKET_END; return HexagonII::INST_PARSE_NOT_END; } void HexagonMCCodeEmitter::encodeInstruction(MCInst const &MI, raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups, MCSubtargetInfo const &STI) const { MCInst &HMB = const_cast<MCInst &>(MI); assert(HexagonMCInstrInfo::isBundle(HMB)); DEBUG(dbgs() << "Encoding bundle\n";); *Addend = 0; *Extended = false; *CurrentBundle = &MI; size_t Instruction = 0; size_t Last = HexagonMCInstrInfo::bundleSize(HMB) - 1; for (auto &I : HexagonMCInstrInfo::bundleInstructions(HMB)) { MCInst &HMI = const_cast<MCInst &>(*I.getInst()); EncodeSingleInstruction(HMI, OS, Fixups, STI, parseBits(Instruction, Last, HMB, HMI), Instruction); *Extended = HexagonMCInstrInfo::isImmext(HMI); *Addend += HEXAGON_INSTR_SIZE; ++Instruction; } return; } static bool RegisterMatches(unsigned Consumer, unsigned Producer, unsigned Producer2) { if (Consumer == Producer) return true; if (Consumer == Producer2) return true; // Calculate if we're a single vector consumer referencing a double producer if (Producer >= Hexagon::W0 && Producer <= Hexagon::W15) if (Consumer >= Hexagon::V0 && Consumer <= Hexagon::V31) return ((Consumer - Hexagon::V0) >> 1) == (Producer - Hexagon::W0); return false; } /// EncodeSingleInstruction - Emit a single void HexagonMCCodeEmitter::EncodeSingleInstruction( const MCInst &MI, raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups, const MCSubtargetInfo &STI, uint32_t Parse, size_t Index) const { MCInst HMB = MI; assert(!HexagonMCInstrInfo::isBundle(HMB)); uint64_t Binary; // Compound instructions are limited to using registers 0-7 and 16-23 // and here we make a map 16-23 to 8-15 so they can be correctly encoded. static unsigned RegMap[8] = {Hexagon::R8, Hexagon::R9, Hexagon::R10, Hexagon::R11, Hexagon::R12, Hexagon::R13, Hexagon::R14, Hexagon::R15}; // Pseudo instructions don't get encoded and shouldn't be here // in the first place! assert(!HexagonMCInstrInfo::getDesc(MCII, HMB).isPseudo() && "pseudo-instruction found"); DEBUG(dbgs() << "Encoding insn" " `" << HexagonMCInstrInfo::getName(MCII, HMB) << "'" "\n"); if (llvm::HexagonMCInstrInfo::getType(MCII, HMB) == HexagonII::TypeCOMPOUND) { for (unsigned i = 0; i < HMB.getNumOperands(); ++i) if (HMB.getOperand(i).isReg()) { unsigned Reg = MCT.getRegisterInfo()->getEncodingValue(HMB.getOperand(i).getReg()); if ((Reg <= 23) && (Reg >= 16)) HMB.getOperand(i).setReg(RegMap[Reg - 16]); } } if (HexagonMCInstrInfo::isNewValue(MCII, HMB)) { // Calculate the new value distance to the associated producer MCOperand &MCO = HMB.getOperand(HexagonMCInstrInfo::getNewValueOp(MCII, HMB)); unsigned SOffset = 0; unsigned VOffset = 0; unsigned Register = MCO.getReg(); unsigned Register1; unsigned Register2; auto Instructions = HexagonMCInstrInfo::bundleInstructions(**CurrentBundle); auto i = Instructions.begin() + Index - 1; for (;; --i) { assert(i != Instructions.begin() - 1 && "Couldn't find producer"); MCInst const &Inst = *i->getInst(); if (HexagonMCInstrInfo::isImmext(Inst)) continue; ++SOffset; if (HexagonMCInstrInfo::isVector(MCII, Inst)) // Vector instructions don't count scalars ++VOffset; Register1 = HexagonMCInstrInfo::hasNewValue(MCII, Inst) ? HexagonMCInstrInfo::getNewValueOperand(MCII, Inst).getReg() : static_cast<unsigned>(Hexagon::NoRegister); Register2 = HexagonMCInstrInfo::hasNewValue2(MCII, Inst) ? HexagonMCInstrInfo::getNewValueOperand2(MCII, Inst).getReg() : static_cast<unsigned>(Hexagon::NoRegister); if (!RegisterMatches(Register, Register1, Register2)) // This isn't the register we're looking for continue; if (!HexagonMCInstrInfo::isPredicated(MCII, Inst)) // Producer is unpredicated break; assert(HexagonMCInstrInfo::isPredicated(MCII, HMB) && "Unpredicated consumer depending on predicated producer"); if (HexagonMCInstrInfo::isPredicatedTrue(MCII, Inst) == HexagonMCInstrInfo::isPredicatedTrue(MCII, HMB)) // Producer predicate sense matched ours break; } // Hexagon PRM 10.11 Construct Nt from distance unsigned Offset = HexagonMCInstrInfo::isVector(MCII, HMB) ? VOffset : SOffset; Offset <<= 1; Offset |= HexagonMCInstrInfo::SubregisterBit(Register, Register1, Register2); MCO.setReg(Offset + Hexagon::R0); } Binary = getBinaryCodeForInstr(HMB, Fixups, STI); // Check for unimplemented instructions. Immediate extenders // are encoded as zero, so they need to be accounted for. if ((!Binary) && ((HMB.getOpcode() != DuplexIClass0) && (HMB.getOpcode() != A4_ext) && (HMB.getOpcode() != A4_ext_b) && (HMB.getOpcode() != A4_ext_c) && (HMB.getOpcode() != A4_ext_g))) { DEBUG(dbgs() << "Unimplemented inst: " " `" << HexagonMCInstrInfo::getName(MCII, HMB) << "'" "\n"); llvm_unreachable("Unimplemented Instruction"); } Binary |= Parse; // if we need to emit a duplexed instruction if (HMB.getOpcode() >= Hexagon::DuplexIClass0 && HMB.getOpcode() <= Hexagon::DuplexIClassF) { assert(Parse == HexagonII::INST_PARSE_DUPLEX && "Emitting duplex without duplex parse bits"); unsigned dupIClass; switch (HMB.getOpcode()) { case Hexagon::DuplexIClass0: dupIClass = 0; break; case Hexagon::DuplexIClass1: dupIClass = 1; break; case Hexagon::DuplexIClass2: dupIClass = 2; break; case Hexagon::DuplexIClass3: dupIClass = 3; break; case Hexagon::DuplexIClass4: dupIClass = 4; break; case Hexagon::DuplexIClass5: dupIClass = 5; break; case Hexagon::DuplexIClass6: dupIClass = 6; break; case Hexagon::DuplexIClass7: dupIClass = 7; break; case Hexagon::DuplexIClass8: dupIClass = 8; break; case Hexagon::DuplexIClass9: dupIClass = 9; break; case Hexagon::DuplexIClassA: dupIClass = 10; break; case Hexagon::DuplexIClassB: dupIClass = 11; break; case Hexagon::DuplexIClassC: dupIClass = 12; break; case Hexagon::DuplexIClassD: dupIClass = 13; break; case Hexagon::DuplexIClassE: dupIClass = 14; break; case Hexagon::DuplexIClassF: dupIClass = 15; break; default: llvm_unreachable("Unimplemented DuplexIClass"); break; } // 29 is the bit position. // 0b1110 =0xE bits are masked off and down shifted by 1 bit. // Last bit is moved to bit position 13 Binary = ((dupIClass & 0xE) << (29 - 1)) | ((dupIClass & 0x1) << 13); const MCInst *subInst0 = HMB.getOperand(0).getInst(); const MCInst *subInst1 = HMB.getOperand(1).getInst(); // get subinstruction slot 0 unsigned subInstSlot0Bits = getBinaryCodeForInstr(*subInst0, Fixups, STI); // get subinstruction slot 1 unsigned subInstSlot1Bits = getBinaryCodeForInstr(*subInst1, Fixups, STI); Binary |= subInstSlot0Bits | (subInstSlot1Bits << 16); } support::endian::Writer<support::little>(OS).write<uint32_t>(Binary); ++MCNumEmitted; } namespace { void raise_relocation_error(unsigned bits, unsigned kind) { std::string Text; { llvm::raw_string_ostream Stream(Text); Stream << "Unrecognized relocation combination bits: " << bits << " kind: " << kind; } report_fatal_error(Text); } } /// getFixupNoBits - Some insns are not extended and thus have no /// bits. These cases require a more brute force method for determining /// the correct relocation. namespace { Hexagon::Fixups getFixupNoBits(MCInstrInfo const &MCII, const MCInst &MI, const MCOperand &MO, const MCSymbolRefExpr::VariantKind kind) { const MCInstrDesc &MCID = HexagonMCInstrInfo::getDesc(MCII, MI); unsigned insnType = llvm::HexagonMCInstrInfo::getType(MCII, MI); if (insnType == HexagonII::TypePREFIX) { switch (kind) { case MCSymbolRefExpr::VK_GOTREL: return Hexagon::fixup_Hexagon_GOTREL_32_6_X; case MCSymbolRefExpr::VK_GOT: return Hexagon::fixup_Hexagon_GOT_32_6_X; case MCSymbolRefExpr::VK_TPREL: return Hexagon::fixup_Hexagon_TPREL_32_6_X; case MCSymbolRefExpr::VK_DTPREL: return Hexagon::fixup_Hexagon_DTPREL_32_6_X; case MCSymbolRefExpr::VK_Hexagon_GD_GOT: return Hexagon::fixup_Hexagon_GD_GOT_32_6_X; case MCSymbolRefExpr::VK_Hexagon_LD_GOT: return Hexagon::fixup_Hexagon_LD_GOT_32_6_X; case MCSymbolRefExpr::VK_Hexagon_IE: return Hexagon::fixup_Hexagon_IE_32_6_X; case MCSymbolRefExpr::VK_Hexagon_IE_GOT: return Hexagon::fixup_Hexagon_IE_GOT_32_6_X; case MCSymbolRefExpr::VK_Hexagon_PCREL: case MCSymbolRefExpr::VK_None: if (MCID.isBranch()) return Hexagon::fixup_Hexagon_B32_PCREL_X; else return Hexagon::fixup_Hexagon_32_6_X; default: raise_relocation_error(0, kind); } } else if (MCID.isBranch()) return Hexagon::fixup_Hexagon_B13_PCREL; switch (MCID.getOpcode()) { case Hexagon::HI: case Hexagon::A2_tfrih: switch (kind) { case MCSymbolRefExpr::VK_GOT: return Hexagon::fixup_Hexagon_GOT_HI16; case MCSymbolRefExpr::VK_GOTREL: return Hexagon::fixup_Hexagon_GOTREL_HI16; case MCSymbolRefExpr::VK_Hexagon_GD_GOT: return Hexagon::fixup_Hexagon_GD_GOT_HI16; case MCSymbolRefExpr::VK_Hexagon_LD_GOT: return Hexagon::fixup_Hexagon_LD_GOT_HI16; case MCSymbolRefExpr::VK_Hexagon_IE: return Hexagon::fixup_Hexagon_IE_HI16; case MCSymbolRefExpr::VK_Hexagon_IE_GOT: return Hexagon::fixup_Hexagon_IE_GOT_HI16; case MCSymbolRefExpr::VK_TPREL: return Hexagon::fixup_Hexagon_TPREL_HI16; case MCSymbolRefExpr::VK_DTPREL: return Hexagon::fixup_Hexagon_DTPREL_HI16; case MCSymbolRefExpr::VK_None: return Hexagon::fixup_Hexagon_HI16; default: raise_relocation_error(0, kind); } case Hexagon::LO: case Hexagon::A2_tfril: switch (kind) { case MCSymbolRefExpr::VK_GOT: return Hexagon::fixup_Hexagon_GOT_LO16; case MCSymbolRefExpr::VK_GOTREL: return Hexagon::fixup_Hexagon_GOTREL_LO16; case MCSymbolRefExpr::VK_Hexagon_GD_GOT: return Hexagon::fixup_Hexagon_GD_GOT_LO16; case MCSymbolRefExpr::VK_Hexagon_LD_GOT: return Hexagon::fixup_Hexagon_LD_GOT_LO16; case MCSymbolRefExpr::VK_Hexagon_IE: return Hexagon::fixup_Hexagon_IE_LO16; case MCSymbolRefExpr::VK_Hexagon_IE_GOT: return Hexagon::fixup_Hexagon_IE_GOT_LO16; case MCSymbolRefExpr::VK_TPREL: return Hexagon::fixup_Hexagon_TPREL_LO16; case MCSymbolRefExpr::VK_DTPREL: return Hexagon::fixup_Hexagon_DTPREL_LO16; case MCSymbolRefExpr::VK_None: return Hexagon::fixup_Hexagon_LO16; default: raise_relocation_error(0, kind); } // The only relocs left should be GP relative: default: if (MCID.mayStore() || MCID.mayLoad()) { for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) { if (*ImpUses != Hexagon::GP) continue; switch (HexagonMCInstrInfo::getAccessSize(MCII, MI)) { case HexagonII::MemAccessSize::ByteAccess: return fixup_Hexagon_GPREL16_0; case HexagonII::MemAccessSize::HalfWordAccess: return fixup_Hexagon_GPREL16_1; case HexagonII::MemAccessSize::WordAccess: return fixup_Hexagon_GPREL16_2; case HexagonII::MemAccessSize::DoubleWordAccess: return fixup_Hexagon_GPREL16_3; default: raise_relocation_error(0, kind); } } } raise_relocation_error(0, kind); } llvm_unreachable("Relocation exit not taken"); } } namespace llvm { extern const MCInstrDesc HexagonInsts[]; } namespace { bool isPCRel (unsigned Kind) { switch(Kind){ case fixup_Hexagon_B22_PCREL: case fixup_Hexagon_B15_PCREL: case fixup_Hexagon_B7_PCREL: case fixup_Hexagon_B13_PCREL: case fixup_Hexagon_B9_PCREL: case fixup_Hexagon_B32_PCREL_X: case fixup_Hexagon_B22_PCREL_X: case fixup_Hexagon_B15_PCREL_X: case fixup_Hexagon_B13_PCREL_X: case fixup_Hexagon_B9_PCREL_X: case fixup_Hexagon_B7_PCREL_X: case fixup_Hexagon_32_PCREL: case fixup_Hexagon_PLT_B22_PCREL: case fixup_Hexagon_GD_PLT_B22_PCREL: case fixup_Hexagon_LD_PLT_B22_PCREL: case fixup_Hexagon_6_PCREL_X: return true; default: return false; } } } unsigned HexagonMCCodeEmitter::getExprOpValue(const MCInst &MI, const MCOperand &MO, const MCExpr *ME, SmallVectorImpl<MCFixup> &Fixups, const MCSubtargetInfo &STI) const { if (isa<HexagonMCExpr>(ME)) ME = &HexagonMCInstrInfo::getExpr(*ME); int64_t Value; if (ME->evaluateAsAbsolute(Value)) return Value; assert(ME->getKind() == MCExpr::SymbolRef || ME->getKind() == MCExpr::Binary); if (ME->getKind() == MCExpr::Binary) { MCBinaryExpr const *Binary = cast<MCBinaryExpr>(ME); getExprOpValue(MI, MO, Binary->getLHS(), Fixups, STI); getExprOpValue(MI, MO, Binary->getRHS(), Fixups, STI); return 0; } Hexagon::Fixups FixupKind = Hexagon::Fixups(Hexagon::fixup_Hexagon_TPREL_LO16); const MCSymbolRefExpr *MCSRE = static_cast<const MCSymbolRefExpr *>(ME); const MCInstrDesc &MCID = HexagonMCInstrInfo::getDesc(MCII, MI); unsigned bits = HexagonMCInstrInfo::getExtentBits(MCII, MI) - HexagonMCInstrInfo::getExtentAlignment(MCII, MI); const MCSymbolRefExpr::VariantKind kind = MCSRE->getKind(); DEBUG(dbgs() << "----------------------------------------\n"); DEBUG(dbgs() << "Opcode Name: " << HexagonMCInstrInfo::getName(MCII, MI) << "\n"); DEBUG(dbgs() << "Opcode: " << MCID.getOpcode() << "\n"); DEBUG(dbgs() << "Relocation bits: " << bits << "\n"); DEBUG(dbgs() << "Addend: " << *Addend << "\n"); DEBUG(dbgs() << "----------------------------------------\n"); switch (bits) { default: raise_relocation_error(bits, kind); case 32: switch (kind) { case MCSymbolRefExpr::VK_DTPREL: FixupKind = *Extended ? Hexagon::fixup_Hexagon_DTPREL_32_6_X : Hexagon::fixup_Hexagon_DTPREL_32; break; case MCSymbolRefExpr::VK_GOT: FixupKind = *Extended ? Hexagon::fixup_Hexagon_GOT_32_6_X : Hexagon::fixup_Hexagon_GOT_32; break; case MCSymbolRefExpr::VK_GOTREL: FixupKind = *Extended ? Hexagon::fixup_Hexagon_GOTREL_32_6_X : Hexagon::fixup_Hexagon_GOTREL_32; break; case MCSymbolRefExpr::VK_Hexagon_GD_GOT: FixupKind = *Extended ? Hexagon::fixup_Hexagon_GD_GOT_32_6_X : Hexagon::fixup_Hexagon_GD_GOT_32; break; case MCSymbolRefExpr::VK_Hexagon_IE: FixupKind = *Extended ? Hexagon::fixup_Hexagon_IE_32_6_X : Hexagon::fixup_Hexagon_IE_32; break; case MCSymbolRefExpr::VK_Hexagon_IE_GOT: FixupKind = *Extended ? Hexagon::fixup_Hexagon_IE_GOT_32_6_X : Hexagon::fixup_Hexagon_IE_GOT_32; break; case MCSymbolRefExpr::VK_Hexagon_LD_GOT: FixupKind = *Extended ? Hexagon::fixup_Hexagon_LD_GOT_32_6_X : Hexagon::fixup_Hexagon_LD_GOT_32; break; case MCSymbolRefExpr::VK_Hexagon_PCREL: FixupKind = Hexagon::fixup_Hexagon_32_PCREL; break; case MCSymbolRefExpr::VK_None: FixupKind = *Extended ? Hexagon::fixup_Hexagon_32_6_X : Hexagon::fixup_Hexagon_32; break; case MCSymbolRefExpr::VK_TPREL: FixupKind = *Extended ? Hexagon::fixup_Hexagon_TPREL_32_6_X : Hexagon::fixup_Hexagon_TPREL_32; break; default: raise_relocation_error(bits, kind); } break; case 22: switch (kind) { case MCSymbolRefExpr::VK_Hexagon_GD_PLT: FixupKind = Hexagon::fixup_Hexagon_GD_PLT_B22_PCREL; break; case MCSymbolRefExpr::VK_Hexagon_LD_PLT: FixupKind = Hexagon::fixup_Hexagon_LD_PLT_B22_PCREL; break; case MCSymbolRefExpr::VK_None: FixupKind = *Extended ? Hexagon::fixup_Hexagon_B22_PCREL_X : Hexagon::fixup_Hexagon_B22_PCREL; break; case MCSymbolRefExpr::VK_PLT: FixupKind = Hexagon::fixup_Hexagon_PLT_B22_PCREL; break; default: raise_relocation_error(bits, kind); } break; case 16: if (*Extended) { switch (kind) { case MCSymbolRefExpr::VK_DTPREL: FixupKind = Hexagon::fixup_Hexagon_DTPREL_16_X; break; case MCSymbolRefExpr::VK_GOT: FixupKind = Hexagon::fixup_Hexagon_GOT_16_X; break; case MCSymbolRefExpr::VK_GOTREL: FixupKind = Hexagon::fixup_Hexagon_GOTREL_16_X; break; case MCSymbolRefExpr::VK_Hexagon_GD_GOT: FixupKind = Hexagon::fixup_Hexagon_GD_GOT_16_X; break; case MCSymbolRefExpr::VK_Hexagon_IE: FixupKind = Hexagon::fixup_Hexagon_IE_16_X; break; case MCSymbolRefExpr::VK_Hexagon_IE_GOT: FixupKind = Hexagon::fixup_Hexagon_IE_GOT_16_X; break; case MCSymbolRefExpr::VK_Hexagon_LD_GOT: FixupKind = Hexagon::fixup_Hexagon_LD_GOT_16_X; break; case MCSymbolRefExpr::VK_None: FixupKind = Hexagon::fixup_Hexagon_16_X; break; case MCSymbolRefExpr::VK_TPREL: FixupKind = Hexagon::fixup_Hexagon_TPREL_16_X; break; default: raise_relocation_error(bits, kind); } } else switch (kind) { case MCSymbolRefExpr::VK_None: { if (HexagonMCInstrInfo::s23_2_reloc(*MO.getExpr())) FixupKind = Hexagon::fixup_Hexagon_23_REG; else raise_relocation_error(bits, kind); break; } case MCSymbolRefExpr::VK_DTPREL: FixupKind = Hexagon::fixup_Hexagon_DTPREL_16; break; case MCSymbolRefExpr::VK_GOTREL: if (MCID.getOpcode() == Hexagon::HI) FixupKind = Hexagon::fixup_Hexagon_GOTREL_HI16; else FixupKind = Hexagon::fixup_Hexagon_GOTREL_LO16; break; case MCSymbolRefExpr::VK_Hexagon_GD_GOT: FixupKind = Hexagon::fixup_Hexagon_GD_GOT_16; break; case MCSymbolRefExpr::VK_Hexagon_GPREL: FixupKind = Hexagon::fixup_Hexagon_GPREL16_0; break; case MCSymbolRefExpr::VK_Hexagon_HI16: FixupKind = Hexagon::fixup_Hexagon_HI16; break; case MCSymbolRefExpr::VK_Hexagon_IE_GOT: FixupKind = Hexagon::fixup_Hexagon_IE_GOT_16; break; case MCSymbolRefExpr::VK_Hexagon_LD_GOT: FixupKind = Hexagon::fixup_Hexagon_LD_GOT_16; break; case MCSymbolRefExpr::VK_Hexagon_LO16: FixupKind = Hexagon::fixup_Hexagon_LO16; break; case MCSymbolRefExpr::VK_TPREL: FixupKind = Hexagon::fixup_Hexagon_TPREL_16; break; default: raise_relocation_error(bits, kind); } break; case 15: switch (kind) { case MCSymbolRefExpr::VK_None: FixupKind = *Extended ? Hexagon::fixup_Hexagon_B15_PCREL_X : Hexagon::fixup_Hexagon_B15_PCREL; break; default: raise_relocation_error(bits, kind); } break; case 13: switch (kind) { case MCSymbolRefExpr::VK_None: FixupKind = Hexagon::fixup_Hexagon_B13_PCREL; break; default: raise_relocation_error(bits, kind); } break; case 12: if (*Extended) switch (kind) { // There isn't a GOT_12_X, both 11_X and 16_X resolve to 6/26 case MCSymbolRefExpr::VK_GOT: FixupKind = Hexagon::fixup_Hexagon_GOT_16_X; break; case MCSymbolRefExpr::VK_GOTREL: FixupKind = Hexagon::fixup_Hexagon_GOTREL_16_X; break; case MCSymbolRefExpr::VK_None: FixupKind = Hexagon::fixup_Hexagon_12_X; break; default: raise_relocation_error(bits, kind); } else raise_relocation_error(bits, kind); break; case 11: if (*Extended) switch (kind) { case MCSymbolRefExpr::VK_DTPREL: FixupKind = Hexagon::fixup_Hexagon_DTPREL_11_X; break; case MCSymbolRefExpr::VK_GOT: FixupKind = Hexagon::fixup_Hexagon_GOT_11_X; break; case MCSymbolRefExpr::VK_GOTREL: FixupKind = Hexagon::fixup_Hexagon_GOTREL_11_X; break; case MCSymbolRefExpr::VK_Hexagon_GD_GOT: FixupKind = Hexagon::fixup_Hexagon_GD_GOT_11_X; break; case MCSymbolRefExpr::VK_Hexagon_IE_GOT: FixupKind = Hexagon::fixup_Hexagon_IE_GOT_11_X; break; case MCSymbolRefExpr::VK_Hexagon_LD_GOT: FixupKind = Hexagon::fixup_Hexagon_LD_GOT_11_X; break; case MCSymbolRefExpr::VK_None: FixupKind = Hexagon::fixup_Hexagon_11_X; break; case MCSymbolRefExpr::VK_TPREL: FixupKind = Hexagon::fixup_Hexagon_TPREL_11_X; break; default: raise_relocation_error(bits, kind); } else { switch (kind) { case MCSymbolRefExpr::VK_TPREL: FixupKind = Hexagon::fixup_Hexagon_TPREL_11_X; break; default: raise_relocation_error(bits, kind); } } break; case 10: if (*Extended) { switch (kind) { case MCSymbolRefExpr::VK_None: FixupKind = Hexagon::fixup_Hexagon_10_X; break; default: raise_relocation_error(bits, kind); } } else raise_relocation_error(bits, kind); break; case 9: if (MCID.isBranch() || (HexagonMCInstrInfo::getType(MCII, MI) == HexagonII::TypeCR)) FixupKind = *Extended ? Hexagon::fixup_Hexagon_B9_PCREL_X : Hexagon::fixup_Hexagon_B9_PCREL; else if (*Extended) FixupKind = Hexagon::fixup_Hexagon_9_X; else raise_relocation_error(bits, kind); break; case 8: if (*Extended) FixupKind = Hexagon::fixup_Hexagon_8_X; else raise_relocation_error(bits, kind); break; case 7: if (MCID.isBranch() || (HexagonMCInstrInfo::getType(MCII, MI) == HexagonII::TypeCR)) FixupKind = *Extended ? Hexagon::fixup_Hexagon_B7_PCREL_X : Hexagon::fixup_Hexagon_B7_PCREL; else if (*Extended) FixupKind = Hexagon::fixup_Hexagon_7_X; else raise_relocation_error(bits, kind); break; case 6: if (*Extended) { switch (kind) { case MCSymbolRefExpr::VK_DTPREL: FixupKind = Hexagon::fixup_Hexagon_DTPREL_16_X; break; // This is part of an extender, GOT_11 is a // Word32_U6 unsigned/truncated reloc. case MCSymbolRefExpr::VK_GOT: FixupKind = Hexagon::fixup_Hexagon_GOT_11_X; break; case MCSymbolRefExpr::VK_GOTREL: FixupKind = Hexagon::fixup_Hexagon_GOTREL_11_X; break; case MCSymbolRefExpr::VK_Hexagon_PCREL: FixupKind = Hexagon::fixup_Hexagon_6_PCREL_X; break; case MCSymbolRefExpr::VK_TPREL: FixupKind = Hexagon::fixup_Hexagon_TPREL_16_X; break; case MCSymbolRefExpr::VK_None: FixupKind = Hexagon::fixup_Hexagon_6_X; break; default: raise_relocation_error(bits, kind); } } else raise_relocation_error(bits, kind); break; case 0: FixupKind = getFixupNoBits(MCII, MI, MO, kind); break; } MCExpr const *FixupExpression = (*Addend > 0 && isPCRel(FixupKind)) ? MCBinaryExpr::createAdd(MO.getExpr(), MCConstantExpr::create(*Addend, MCT), MCT) : MO.getExpr(); MCFixup fixup = MCFixup::create(*Addend, FixupExpression, MCFixupKind(FixupKind), MI.getLoc()); Fixups.push_back(fixup); // All of the information is in the fixup. return 0; } unsigned HexagonMCCodeEmitter::getMachineOpValue(MCInst const &MI, MCOperand const &MO, SmallVectorImpl<MCFixup> &Fixups, MCSubtargetInfo const &STI) const { assert(!MO.isImm()); if (MO.isReg()) { unsigned Reg = MO.getReg(); if (HexagonMCInstrInfo::isSubInstruction(MI)) return HexagonMCInstrInfo::getDuplexRegisterNumbering(Reg); switch(MI.getOpcode()){ case Hexagon::A2_tfrrcr: case Hexagon::A2_tfrcrr: if(Reg == Hexagon::M0) Reg = Hexagon::C6; if(Reg == Hexagon::M1) Reg = Hexagon::C7; } return MCT.getRegisterInfo()->getEncodingValue(Reg); } return getExprOpValue(MI, MO, MO.getExpr(), Fixups, STI); } MCCodeEmitter *llvm::createHexagonMCCodeEmitter(MCInstrInfo const &MII, MCRegisterInfo const &MRI, MCContext &MCT) { return new HexagonMCCodeEmitter(MII, MCT); } #include "HexagonGenMCCodeEmitter.inc"