//===-- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is responsible for finalizing the functions frame layout, saving
// callee saved registers, and for emitting prolog & epilog code for the
// function.
//
// This pass must be run after register allocation. After this pass is
// executed, it is illegal to construct MO_FrameIndex operands.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <climits>
using namespace llvm;
#define DEBUG_TYPE "pei"
typedef SmallVector<MachineBasicBlock *, 4> MBBVector;
static void doSpillCalleeSavedRegs(MachineFunction &MF, RegScavenger *RS,
unsigned &MinCSFrameIndex,
unsigned &MaxCXFrameIndex,
const MBBVector &SaveBlocks,
const MBBVector &RestoreBlocks);
static void doScavengeFrameVirtualRegs(MachineFunction &MF, RegScavenger *RS);
namespace {
class PEI : public MachineFunctionPass {
public:
static char ID;
explicit PEI(const TargetMachine *TM = nullptr) : MachineFunctionPass(ID) {
initializePEIPass(*PassRegistry::getPassRegistry());
if (TM && (!TM->usesPhysRegsForPEI())) {
SpillCalleeSavedRegisters = [](MachineFunction &, RegScavenger *,
unsigned &, unsigned &, const MBBVector &,
const MBBVector &) {};
ScavengeFrameVirtualRegs = [](MachineFunction &, RegScavenger *) {};
} else {
SpillCalleeSavedRegisters = doSpillCalleeSavedRegs;
ScavengeFrameVirtualRegs = doScavengeFrameVirtualRegs;
UsesCalleeSaves = true;
}
}
void getAnalysisUsage(AnalysisUsage &AU) const override;
MachineFunctionProperties getRequiredProperties() const override {
MachineFunctionProperties MFP;
if (UsesCalleeSaves)
MFP.set(MachineFunctionProperties::Property::AllVRegsAllocated);
return MFP;
}
/// runOnMachineFunction - Insert prolog/epilog code and replace abstract
/// frame indexes with appropriate references.
///
bool runOnMachineFunction(MachineFunction &Fn) override;
private:
std::function<void(MachineFunction &MF, RegScavenger *RS,
unsigned &MinCSFrameIndex, unsigned &MaxCSFrameIndex,
const MBBVector &SaveBlocks,
const MBBVector &RestoreBlocks)>
SpillCalleeSavedRegisters;
std::function<void(MachineFunction &MF, RegScavenger *RS)>
ScavengeFrameVirtualRegs;
bool UsesCalleeSaves = false;
RegScavenger *RS;
// MinCSFrameIndex, MaxCSFrameIndex - Keeps the range of callee saved
// stack frame indexes.
unsigned MinCSFrameIndex = std::numeric_limits<unsigned>::max();
unsigned MaxCSFrameIndex = 0;
// Save and Restore blocks of the current function. Typically there is a
// single save block, unless Windows EH funclets are involved.
MBBVector SaveBlocks;
MBBVector RestoreBlocks;
// Flag to control whether to use the register scavenger to resolve
// frame index materialization registers. Set according to
// TRI->requiresFrameIndexScavenging() for the current function.
bool FrameIndexVirtualScavenging;
void calculateCallFrameInfo(MachineFunction &Fn);
void calculateSaveRestoreBlocks(MachineFunction &Fn);
void calculateFrameObjectOffsets(MachineFunction &Fn);
void replaceFrameIndices(MachineFunction &Fn);
void replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn,
int &SPAdj);
void insertPrologEpilogCode(MachineFunction &Fn);
};
} // namespace
char PEI::ID = 0;
char &llvm::PrologEpilogCodeInserterID = PEI::ID;
static cl::opt<unsigned>
WarnStackSize("warn-stack-size", cl::Hidden, cl::init((unsigned)-1),
cl::desc("Warn for stack size bigger than the given"
" number"));
INITIALIZE_TM_PASS_BEGIN(PEI, "prologepilog", "Prologue/Epilogue Insertion",
false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(StackProtector)
INITIALIZE_TM_PASS_END(PEI, "prologepilog",
"Prologue/Epilogue Insertion & Frame Finalization",
false, false)
MachineFunctionPass *
llvm::createPrologEpilogInserterPass(const TargetMachine *TM) {
return new PEI(TM);
}
STATISTIC(NumScavengedRegs, "Number of frame index regs scavenged");
STATISTIC(NumBytesStackSpace,
"Number of bytes used for stack in all functions");
void PEI::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addPreserved<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<StackProtector>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// StackObjSet - A set of stack object indexes
typedef SmallSetVector<int, 8> StackObjSet;
/// runOnMachineFunction - Insert prolog/epilog code and replace abstract
/// frame indexes with appropriate references.
///
bool PEI::runOnMachineFunction(MachineFunction &Fn) {
const Function* F = Fn.getFunction();
const TargetRegisterInfo *TRI = Fn.getSubtarget().getRegisterInfo();
const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering();
RS = TRI->requiresRegisterScavenging(Fn) ? new RegScavenger() : nullptr;
FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(Fn);
// Calculate the MaxCallFrameSize and AdjustsStack variables for the
// function's frame information. Also eliminates call frame pseudo
// instructions.
calculateCallFrameInfo(Fn);
// Determine placement of CSR spill/restore code and prolog/epilog code:
// place all spills in the entry block, all restores in return blocks.
calculateSaveRestoreBlocks(Fn);
// Handle CSR spilling and restoring, for targets that need it.
SpillCalleeSavedRegisters(Fn, RS, MinCSFrameIndex, MaxCSFrameIndex,
SaveBlocks, RestoreBlocks);
// Allow the target machine to make final modifications to the function
// before the frame layout is finalized.
TFI->processFunctionBeforeFrameFinalized(Fn, RS);
// Calculate actual frame offsets for all abstract stack objects...
calculateFrameObjectOffsets(Fn);
// Add prolog and epilog code to the function. This function is required
// to align the stack frame as necessary for any stack variables or
// called functions. Because of this, calculateCalleeSavedRegisters()
// must be called before this function in order to set the AdjustsStack
// and MaxCallFrameSize variables.
if (!F->hasFnAttribute(Attribute::Naked))
insertPrologEpilogCode(Fn);
// Replace all MO_FrameIndex operands with physical register references
// and actual offsets.
//
replaceFrameIndices(Fn);
// If register scavenging is needed, as we've enabled doing it as a
// post-pass, scavenge the virtual registers that frame index elimination
// inserted.
if (TRI->requiresRegisterScavenging(Fn) && FrameIndexVirtualScavenging) {
ScavengeFrameVirtualRegs(Fn, RS);
// Clear any vregs created by virtual scavenging.
Fn.getRegInfo().clearVirtRegs();
}
// Warn on stack size when we exceeds the given limit.
MachineFrameInfo *MFI = Fn.getFrameInfo();
uint64_t StackSize = MFI->getStackSize();
if (WarnStackSize.getNumOccurrences() > 0 && WarnStackSize < StackSize) {
DiagnosticInfoStackSize DiagStackSize(*F, StackSize);
F->getContext().diagnose(DiagStackSize);
}
delete RS;
SaveBlocks.clear();
RestoreBlocks.clear();
MFI->setSavePoint(nullptr);
MFI->setRestorePoint(nullptr);
return true;
}
/// Calculate the MaxCallFrameSize and AdjustsStack
/// variables for the function's frame information and eliminate call frame
/// pseudo instructions.
void PEI::calculateCallFrameInfo(MachineFunction &Fn) {
const TargetInstrInfo &TII = *Fn.getSubtarget().getInstrInfo();
const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering();
MachineFrameInfo *MFI = Fn.getFrameInfo();
unsigned MaxCallFrameSize = 0;
bool AdjustsStack = MFI->adjustsStack();
// Get the function call frame set-up and tear-down instruction opcode
unsigned FrameSetupOpcode = TII.getCallFrameSetupOpcode();
unsigned FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
// Early exit for targets which have no call frame setup/destroy pseudo
// instructions.
if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
return;
std::vector<MachineBasicBlock::iterator> FrameSDOps;
for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB)
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
if (I->getOpcode() == FrameSetupOpcode ||
I->getOpcode() == FrameDestroyOpcode) {
assert(I->getNumOperands() >= 1 && "Call Frame Setup/Destroy Pseudo"
" instructions should have a single immediate argument!");
unsigned Size = I->getOperand(0).getImm();
if (Size > MaxCallFrameSize) MaxCallFrameSize = Size;
AdjustsStack = true;
FrameSDOps.push_back(I);
} else if (I->isInlineAsm()) {
// Some inline asm's need a stack frame, as indicated by operand 1.
unsigned ExtraInfo = I->getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
AdjustsStack = true;
}
MFI->setAdjustsStack(AdjustsStack);
MFI->setMaxCallFrameSize(MaxCallFrameSize);
for (std::vector<MachineBasicBlock::iterator>::iterator
i = FrameSDOps.begin(), e = FrameSDOps.end(); i != e; ++i) {
MachineBasicBlock::iterator I = *i;
// If call frames are not being included as part of the stack frame, and
// the target doesn't indicate otherwise, remove the call frame pseudos
// here. The sub/add sp instruction pairs are still inserted, but we don't
// need to track the SP adjustment for frame index elimination.
if (TFI->canSimplifyCallFramePseudos(Fn))
TFI->eliminateCallFramePseudoInstr(Fn, *I->getParent(), I);
}
}
/// Compute the sets of entry and return blocks for saving and restoring
/// callee-saved registers, and placing prolog and epilog code.
void PEI::calculateSaveRestoreBlocks(MachineFunction &Fn) {
const MachineFrameInfo *MFI = Fn.getFrameInfo();
// Even when we do not change any CSR, we still want to insert the
// prologue and epilogue of the function.
// So set the save points for those.
// Use the points found by shrink-wrapping, if any.
if (MFI->getSavePoint()) {
SaveBlocks.push_back(MFI->getSavePoint());
assert(MFI->getRestorePoint() && "Both restore and save must be set");
MachineBasicBlock *RestoreBlock = MFI->getRestorePoint();
// If RestoreBlock does not have any successor and is not a return block
// then the end point is unreachable and we do not need to insert any
// epilogue.
if (!RestoreBlock->succ_empty() || RestoreBlock->isReturnBlock())
RestoreBlocks.push_back(RestoreBlock);
return;
}
// Save refs to entry and return blocks.
SaveBlocks.push_back(&Fn.front());
for (MachineBasicBlock &MBB : Fn) {
if (MBB.isEHFuncletEntry())
SaveBlocks.push_back(&MBB);
if (MBB.isReturnBlock())
RestoreBlocks.push_back(&MBB);
}
}
static void assignCalleeSavedSpillSlots(MachineFunction &F,
const BitVector &SavedRegs,
unsigned &MinCSFrameIndex,
unsigned &MaxCSFrameIndex) {
if (SavedRegs.empty())
return;
const TargetRegisterInfo *RegInfo = F.getSubtarget().getRegisterInfo();
const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&F);
std::vector<CalleeSavedInfo> CSI;
for (unsigned i = 0; CSRegs[i]; ++i) {
unsigned Reg = CSRegs[i];
if (SavedRegs.test(Reg))
CSI.push_back(CalleeSavedInfo(Reg));
}
const TargetFrameLowering *TFI = F.getSubtarget().getFrameLowering();
MachineFrameInfo *MFI = F.getFrameInfo();
if (!TFI->assignCalleeSavedSpillSlots(F, RegInfo, CSI)) {
// If target doesn't implement this, use generic code.
if (CSI.empty())
return; // Early exit if no callee saved registers are modified!
unsigned NumFixedSpillSlots;
const TargetFrameLowering::SpillSlot *FixedSpillSlots =
TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots);
// Now that we know which registers need to be saved and restored, allocate
// stack slots for them.
for (auto &CS : CSI) {
unsigned Reg = CS.getReg();
const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
int FrameIdx;
if (RegInfo->hasReservedSpillSlot(F, Reg, FrameIdx)) {
CS.setFrameIdx(FrameIdx);
continue;
}
// Check to see if this physreg must be spilled to a particular stack slot
// on this target.
const TargetFrameLowering::SpillSlot *FixedSlot = FixedSpillSlots;
while (FixedSlot != FixedSpillSlots + NumFixedSpillSlots &&
FixedSlot->Reg != Reg)
++FixedSlot;
if (FixedSlot == FixedSpillSlots + NumFixedSpillSlots) {
// Nope, just spill it anywhere convenient.
unsigned Align = RC->getAlignment();
unsigned StackAlign = TFI->getStackAlignment();
// We may not be able to satisfy the desired alignment specification of
// the TargetRegisterClass if the stack alignment is smaller. Use the
// min.
Align = std::min(Align, StackAlign);
FrameIdx = MFI->CreateStackObject(RC->getSize(), Align, true);
if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
} else {
// Spill it to the stack where we must.
FrameIdx =
MFI->CreateFixedSpillStackObject(RC->getSize(), FixedSlot->Offset);
}
CS.setFrameIdx(FrameIdx);
}
}
MFI->setCalleeSavedInfo(CSI);
}
/// Helper function to update the liveness information for the callee-saved
/// registers.
static void updateLiveness(MachineFunction &MF) {
MachineFrameInfo *MFI = MF.getFrameInfo();
// Visited will contain all the basic blocks that are in the region
// where the callee saved registers are alive:
// - Anything that is not Save or Restore -> LiveThrough.
// - Save -> LiveIn.
// - Restore -> LiveOut.
// The live-out is not attached to the block, so no need to keep
// Restore in this set.
SmallPtrSet<MachineBasicBlock *, 8> Visited;
SmallVector<MachineBasicBlock *, 8> WorkList;
MachineBasicBlock *Entry = &MF.front();
MachineBasicBlock *Save = MFI->getSavePoint();
if (!Save)
Save = Entry;
if (Entry != Save) {
WorkList.push_back(Entry);
Visited.insert(Entry);
}
Visited.insert(Save);
MachineBasicBlock *Restore = MFI->getRestorePoint();
if (Restore)
// By construction Restore cannot be visited, otherwise it
// means there exists a path to Restore that does not go
// through Save.
WorkList.push_back(Restore);
while (!WorkList.empty()) {
const MachineBasicBlock *CurBB = WorkList.pop_back_val();
// By construction, the region that is after the save point is
// dominated by the Save and post-dominated by the Restore.
if (CurBB == Save && Save != Restore)
continue;
// Enqueue all the successors not already visited.
// Those are by construction either before Save or after Restore.
for (MachineBasicBlock *SuccBB : CurBB->successors())
if (Visited.insert(SuccBB).second)
WorkList.push_back(SuccBB);
}
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
for (MachineBasicBlock *MBB : Visited) {
MCPhysReg Reg = CSI[i].getReg();
// Add the callee-saved register as live-in.
// It's killed at the spill.
if (!MBB->isLiveIn(Reg))
MBB->addLiveIn(Reg);
}
}
}
/// insertCSRSpillsAndRestores - Insert spill and restore code for
/// callee saved registers used in the function.
///
static void insertCSRSpillsAndRestores(MachineFunction &Fn,
const MBBVector &SaveBlocks,
const MBBVector &RestoreBlocks) {
// Get callee saved register information.
MachineFrameInfo *MFI = Fn.getFrameInfo();
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
MFI->setCalleeSavedInfoValid(true);
// Early exit if no callee saved registers are modified!
if (CSI.empty())
return;
const TargetInstrInfo &TII = *Fn.getSubtarget().getInstrInfo();
const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering();
const TargetRegisterInfo *TRI = Fn.getSubtarget().getRegisterInfo();
MachineBasicBlock::iterator I;
// Spill using target interface.
for (MachineBasicBlock *SaveBlock : SaveBlocks) {
I = SaveBlock->begin();
if (!TFI->spillCalleeSavedRegisters(*SaveBlock, I, CSI, TRI)) {
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
// Insert the spill to the stack frame.
unsigned Reg = CSI[i].getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.storeRegToStackSlot(*SaveBlock, I, Reg, true, CSI[i].getFrameIdx(),
RC, TRI);
}
}
// Update the live-in information of all the blocks up to the save point.
updateLiveness(Fn);
}
// Restore using target interface.
for (MachineBasicBlock *MBB : RestoreBlocks) {
I = MBB->end();
// Skip over all terminator instructions, which are part of the return
// sequence.
MachineBasicBlock::iterator I2 = I;
while (I2 != MBB->begin() && (--I2)->isTerminator())
I = I2;
bool AtStart = I == MBB->begin();
MachineBasicBlock::iterator BeforeI = I;
if (!AtStart)
--BeforeI;
// Restore all registers immediately before the return and any
// terminators that precede it.
if (!TFI->restoreCalleeSavedRegisters(*MBB, I, CSI, TRI)) {
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.loadRegFromStackSlot(*MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI);
assert(I != MBB->begin() &&
"loadRegFromStackSlot didn't insert any code!");
// Insert in reverse order. loadRegFromStackSlot can insert
// multiple instructions.
if (AtStart)
I = MBB->begin();
else {
I = BeforeI;
++I;
}
}
}
}
}
static void doSpillCalleeSavedRegs(MachineFunction &Fn, RegScavenger *RS,
unsigned &MinCSFrameIndex,
unsigned &MaxCSFrameIndex,
const MBBVector &SaveBlocks,
const MBBVector &RestoreBlocks) {
const Function *F = Fn.getFunction();
const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering();
MinCSFrameIndex = std::numeric_limits<unsigned>::max();
MaxCSFrameIndex = 0;
// Determine which of the registers in the callee save list should be saved.
BitVector SavedRegs;
TFI->determineCalleeSaves(Fn, SavedRegs, RS);
// Assign stack slots for any callee-saved registers that must be spilled.
assignCalleeSavedSpillSlots(Fn, SavedRegs, MinCSFrameIndex, MaxCSFrameIndex);
// Add the code to save and restore the callee saved registers.
if (!F->hasFnAttribute(Attribute::Naked))
insertCSRSpillsAndRestores(Fn, SaveBlocks, RestoreBlocks);
}
/// AdjustStackOffset - Helper function used to adjust the stack frame offset.
static inline void
AdjustStackOffset(MachineFrameInfo *MFI, int FrameIdx,
bool StackGrowsDown, int64_t &Offset,
unsigned &MaxAlign, unsigned Skew) {
// If the stack grows down, add the object size to find the lowest address.
if (StackGrowsDown)
Offset += MFI->getObjectSize(FrameIdx);
unsigned Align = MFI->getObjectAlignment(FrameIdx);
// If the alignment of this object is greater than that of the stack, then
// increase the stack alignment to match.
MaxAlign = std::max(MaxAlign, Align);
// Adjust to alignment boundary.
Offset = alignTo(Offset, Align, Skew);
if (StackGrowsDown) {
DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << -Offset << "]\n");
MFI->setObjectOffset(FrameIdx, -Offset); // Set the computed offset
} else {
DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << Offset << "]\n");
MFI->setObjectOffset(FrameIdx, Offset);
Offset += MFI->getObjectSize(FrameIdx);
}
}
/// Compute which bytes of fixed and callee-save stack area are unused and keep
/// track of them in StackBytesFree.
///
static inline void
computeFreeStackSlots(MachineFrameInfo *MFI, bool StackGrowsDown,
unsigned MinCSFrameIndex, unsigned MaxCSFrameIndex,
int64_t FixedCSEnd, BitVector &StackBytesFree) {
// Avoid undefined int64_t -> int conversion below in extreme case.
if (FixedCSEnd > std::numeric_limits<int>::max())
return;
StackBytesFree.resize(FixedCSEnd, true);
SmallVector<int, 16> AllocatedFrameSlots;
// Add fixed objects.
for (int i = MFI->getObjectIndexBegin(); i != 0; ++i)
AllocatedFrameSlots.push_back(i);
// Add callee-save objects.
for (int i = MinCSFrameIndex; i <= (int)MaxCSFrameIndex; ++i)
AllocatedFrameSlots.push_back(i);
for (int i : AllocatedFrameSlots) {
// These are converted from int64_t, but they should always fit in int
// because of the FixedCSEnd check above.
int ObjOffset = MFI->getObjectOffset(i);
int ObjSize = MFI->getObjectSize(i);
int ObjStart, ObjEnd;
if (StackGrowsDown) {
// ObjOffset is negative when StackGrowsDown is true.
ObjStart = -ObjOffset - ObjSize;
ObjEnd = -ObjOffset;
} else {
ObjStart = ObjOffset;
ObjEnd = ObjOffset + ObjSize;
}
// Ignore fixed holes that are in the previous stack frame.
if (ObjEnd > 0)
StackBytesFree.reset(ObjStart, ObjEnd);
}
}
/// Assign frame object to an unused portion of the stack in the fixed stack
/// object range. Return true if the allocation was successful.
///
static inline bool scavengeStackSlot(MachineFrameInfo *MFI, int FrameIdx,
bool StackGrowsDown, unsigned MaxAlign,
BitVector &StackBytesFree) {
if (MFI->isVariableSizedObjectIndex(FrameIdx))
return false;
if (StackBytesFree.none()) {
// clear it to speed up later scavengeStackSlot calls to
// StackBytesFree.none()
StackBytesFree.clear();
return false;
}
unsigned ObjAlign = MFI->getObjectAlignment(FrameIdx);
if (ObjAlign > MaxAlign)
return false;
int64_t ObjSize = MFI->getObjectSize(FrameIdx);
int FreeStart;
for (FreeStart = StackBytesFree.find_first(); FreeStart != -1;
FreeStart = StackBytesFree.find_next(FreeStart)) {
// Check that free space has suitable alignment.
unsigned ObjStart = StackGrowsDown ? FreeStart + ObjSize : FreeStart;
if (alignTo(ObjStart, ObjAlign) != ObjStart)
continue;
if (FreeStart + ObjSize > StackBytesFree.size())
return false;
bool AllBytesFree = true;
for (unsigned Byte = 0; Byte < ObjSize; ++Byte)
if (!StackBytesFree.test(FreeStart + Byte)) {
AllBytesFree = false;
break;
}
if (AllBytesFree)
break;
}
if (FreeStart == -1)
return false;
if (StackGrowsDown) {
int ObjStart = -(FreeStart + ObjSize);
DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP[" << ObjStart
<< "]\n");
MFI->setObjectOffset(FrameIdx, ObjStart);
} else {
DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP[" << FreeStart
<< "]\n");
MFI->setObjectOffset(FrameIdx, FreeStart);
}
StackBytesFree.reset(FreeStart, FreeStart + ObjSize);
return true;
}
/// AssignProtectedObjSet - Helper function to assign large stack objects (i.e.,
/// those required to be close to the Stack Protector) to stack offsets.
static void
AssignProtectedObjSet(const StackObjSet &UnassignedObjs,
SmallSet<int, 16> &ProtectedObjs,
MachineFrameInfo *MFI, bool StackGrowsDown,
int64_t &Offset, unsigned &MaxAlign, unsigned Skew) {
for (StackObjSet::const_iterator I = UnassignedObjs.begin(),
E = UnassignedObjs.end(); I != E; ++I) {
int i = *I;
AdjustStackOffset(MFI, i, StackGrowsDown, Offset, MaxAlign, Skew);
ProtectedObjs.insert(i);
}
}
/// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the
/// abstract stack objects.
///
void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
const TargetFrameLowering &TFI = *Fn.getSubtarget().getFrameLowering();
StackProtector *SP = &getAnalysis<StackProtector>();
bool StackGrowsDown =
TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
// Loop over all of the stack objects, assigning sequential addresses...
MachineFrameInfo *MFI = Fn.getFrameInfo();
// Start at the beginning of the local area.
// The Offset is the distance from the stack top in the direction
// of stack growth -- so it's always nonnegative.
int LocalAreaOffset = TFI.getOffsetOfLocalArea();
if (StackGrowsDown)
LocalAreaOffset = -LocalAreaOffset;
assert(LocalAreaOffset >= 0
&& "Local area offset should be in direction of stack growth");
int64_t Offset = LocalAreaOffset;
// Skew to be applied to alignment.
unsigned Skew = TFI.getStackAlignmentSkew(Fn);
// If there are fixed sized objects that are preallocated in the local area,
// non-fixed objects can't be allocated right at the start of local area.
// Adjust 'Offset' to point to the end of last fixed sized preallocated
// object.
for (int i = MFI->getObjectIndexBegin(); i != 0; ++i) {
int64_t FixedOff;
if (StackGrowsDown) {
// The maximum distance from the stack pointer is at lower address of
// the object -- which is given by offset. For down growing stack
// the offset is negative, so we negate the offset to get the distance.
FixedOff = -MFI->getObjectOffset(i);
} else {
// The maximum distance from the start pointer is at the upper
// address of the object.
FixedOff = MFI->getObjectOffset(i) + MFI->getObjectSize(i);
}
if (FixedOff > Offset) Offset = FixedOff;
}
// First assign frame offsets to stack objects that are used to spill
// callee saved registers.
if (StackGrowsDown) {
for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) {
// If the stack grows down, we need to add the size to find the lowest
// address of the object.
Offset += MFI->getObjectSize(i);
unsigned Align = MFI->getObjectAlignment(i);
// Adjust to alignment boundary
Offset = alignTo(Offset, Align, Skew);
DEBUG(dbgs() << "alloc FI(" << i << ") at SP[" << -Offset << "]\n");
MFI->setObjectOffset(i, -Offset); // Set the computed offset
}
} else if (MaxCSFrameIndex >= MinCSFrameIndex) {
// Be careful about underflow in comparisons agains MinCSFrameIndex.
for (unsigned i = MaxCSFrameIndex; i != MinCSFrameIndex - 1; --i) {
unsigned Align = MFI->getObjectAlignment(i);
// Adjust to alignment boundary
Offset = alignTo(Offset, Align, Skew);
DEBUG(dbgs() << "alloc FI(" << i << ") at SP[" << Offset << "]\n");
MFI->setObjectOffset(i, Offset);
Offset += MFI->getObjectSize(i);
}
}
// FixedCSEnd is the stack offset to the end of the fixed and callee-save
// stack area.
int64_t FixedCSEnd = Offset;
unsigned MaxAlign = MFI->getMaxAlignment();
// Make sure the special register scavenging spill slot is closest to the
// incoming stack pointer if a frame pointer is required and is closer
// to the incoming rather than the final stack pointer.
const TargetRegisterInfo *RegInfo = Fn.getSubtarget().getRegisterInfo();
bool EarlyScavengingSlots = (TFI.hasFP(Fn) &&
TFI.isFPCloseToIncomingSP() &&
RegInfo->useFPForScavengingIndex(Fn) &&
!RegInfo->needsStackRealignment(Fn));
if (RS && EarlyScavengingSlots) {
SmallVector<int, 2> SFIs;
RS->getScavengingFrameIndices(SFIs);
for (SmallVectorImpl<int>::iterator I = SFIs.begin(),
IE = SFIs.end(); I != IE; ++I)
AdjustStackOffset(MFI, *I, StackGrowsDown, Offset, MaxAlign, Skew);
}
// FIXME: Once this is working, then enable flag will change to a target
// check for whether the frame is large enough to want to use virtual
// frame index registers. Functions which don't want/need this optimization
// will continue to use the existing code path.
if (MFI->getUseLocalStackAllocationBlock()) {
unsigned Align = MFI->getLocalFrameMaxAlign();
// Adjust to alignment boundary.
Offset = alignTo(Offset, Align, Skew);
DEBUG(dbgs() << "Local frame base offset: " << Offset << "\n");
// Resolve offsets for objects in the local block.
for (unsigned i = 0, e = MFI->getLocalFrameObjectCount(); i != e; ++i) {
std::pair<int, int64_t> Entry = MFI->getLocalFrameObjectMap(i);
int64_t FIOffset = (StackGrowsDown ? -Offset : Offset) + Entry.second;
DEBUG(dbgs() << "alloc FI(" << Entry.first << ") at SP[" <<
FIOffset << "]\n");
MFI->setObjectOffset(Entry.first, FIOffset);
}
// Allocate the local block
Offset += MFI->getLocalFrameSize();
MaxAlign = std::max(Align, MaxAlign);
}
// Retrieve the Exception Handler registration node.
int EHRegNodeFrameIndex = INT_MAX;
if (const WinEHFuncInfo *FuncInfo = Fn.getWinEHFuncInfo())
EHRegNodeFrameIndex = FuncInfo->EHRegNodeFrameIndex;
// Make sure that the stack protector comes before the local variables on the
// stack.
SmallSet<int, 16> ProtectedObjs;
if (MFI->getStackProtectorIndex() >= 0) {
StackObjSet LargeArrayObjs;
StackObjSet SmallArrayObjs;
StackObjSet AddrOfObjs;
AdjustStackOffset(MFI, MFI->getStackProtectorIndex(), StackGrowsDown,
Offset, MaxAlign, Skew);
// Assign large stack objects first.
for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
if (MFI->isObjectPreAllocated(i) &&
MFI->getUseLocalStackAllocationBlock())
continue;
if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
continue;
if (RS && RS->isScavengingFrameIndex((int)i))
continue;
if (MFI->isDeadObjectIndex(i))
continue;
if (MFI->getStackProtectorIndex() == (int)i ||
EHRegNodeFrameIndex == (int)i)
continue;
switch (SP->getSSPLayout(MFI->getObjectAllocation(i))) {
case StackProtector::SSPLK_None:
continue;
case StackProtector::SSPLK_SmallArray:
SmallArrayObjs.insert(i);
continue;
case StackProtector::SSPLK_AddrOf:
AddrOfObjs.insert(i);
continue;
case StackProtector::SSPLK_LargeArray:
LargeArrayObjs.insert(i);
continue;
}
llvm_unreachable("Unexpected SSPLayoutKind.");
}
AssignProtectedObjSet(LargeArrayObjs, ProtectedObjs, MFI, StackGrowsDown,
Offset, MaxAlign, Skew);
AssignProtectedObjSet(SmallArrayObjs, ProtectedObjs, MFI, StackGrowsDown,
Offset, MaxAlign, Skew);
AssignProtectedObjSet(AddrOfObjs, ProtectedObjs, MFI, StackGrowsDown,
Offset, MaxAlign, Skew);
}
SmallVector<int, 8> ObjectsToAllocate;
// Then prepare to assign frame offsets to stack objects that are not used to
// spill callee saved registers.
for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
if (MFI->isObjectPreAllocated(i) &&
MFI->getUseLocalStackAllocationBlock())
continue;
if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
continue;
if (RS && RS->isScavengingFrameIndex((int)i))
continue;
if (MFI->isDeadObjectIndex(i))
continue;
if (MFI->getStackProtectorIndex() == (int)i ||
EHRegNodeFrameIndex == (int)i)
continue;
if (ProtectedObjs.count(i))
continue;
// Add the objects that we need to allocate to our working set.
ObjectsToAllocate.push_back(i);
}
// Allocate the EH registration node first if one is present.
if (EHRegNodeFrameIndex != INT_MAX)
AdjustStackOffset(MFI, EHRegNodeFrameIndex, StackGrowsDown, Offset,
MaxAlign, Skew);
// Give the targets a chance to order the objects the way they like it.
if (Fn.getTarget().getOptLevel() != CodeGenOpt::None &&
Fn.getTarget().Options.StackSymbolOrdering)
TFI.orderFrameObjects(Fn, ObjectsToAllocate);
// Keep track of which bytes in the fixed and callee-save range are used so we
// can use the holes when allocating later stack objects. Only do this if
// stack protector isn't being used and the target requests it and we're
// optimizing.
BitVector StackBytesFree;
if (!ObjectsToAllocate.empty() &&
Fn.getTarget().getOptLevel() != CodeGenOpt::None &&
MFI->getStackProtectorIndex() < 0 && TFI.enableStackSlotScavenging(Fn))
computeFreeStackSlots(MFI, StackGrowsDown, MinCSFrameIndex, MaxCSFrameIndex,
FixedCSEnd, StackBytesFree);
// Now walk the objects and actually assign base offsets to them.
for (auto &Object : ObjectsToAllocate)
if (!scavengeStackSlot(MFI, Object, StackGrowsDown, MaxAlign,
StackBytesFree))
AdjustStackOffset(MFI, Object, StackGrowsDown, Offset, MaxAlign, Skew);
// Make sure the special register scavenging spill slot is closest to the
// stack pointer.
if (RS && !EarlyScavengingSlots) {
SmallVector<int, 2> SFIs;
RS->getScavengingFrameIndices(SFIs);
for (SmallVectorImpl<int>::iterator I = SFIs.begin(),
IE = SFIs.end(); I != IE; ++I)
AdjustStackOffset(MFI, *I, StackGrowsDown, Offset, MaxAlign, Skew);
}
if (!TFI.targetHandlesStackFrameRounding()) {
// If we have reserved argument space for call sites in the function
// immediately on entry to the current function, count it as part of the
// overall stack size.
if (MFI->adjustsStack() && TFI.hasReservedCallFrame(Fn))
Offset += MFI->getMaxCallFrameSize();
// Round up the size to a multiple of the alignment. If the function has
// any calls or alloca's, align to the target's StackAlignment value to
// ensure that the callee's frame or the alloca data is suitably aligned;
// otherwise, for leaf functions, align to the TransientStackAlignment
// value.
unsigned StackAlign;
if (MFI->adjustsStack() || MFI->hasVarSizedObjects() ||
(RegInfo->needsStackRealignment(Fn) && MFI->getObjectIndexEnd() != 0))
StackAlign = TFI.getStackAlignment();
else
StackAlign = TFI.getTransientStackAlignment();
// If the frame pointer is eliminated, all frame offsets will be relative to
// SP not FP. Align to MaxAlign so this works.
StackAlign = std::max(StackAlign, MaxAlign);
Offset = alignTo(Offset, StackAlign, Skew);
}
// Update frame info to pretend that this is part of the stack...
int64_t StackSize = Offset - LocalAreaOffset;
MFI->setStackSize(StackSize);
NumBytesStackSpace += StackSize;
}
/// insertPrologEpilogCode - Scan the function for modified callee saved
/// registers, insert spill code for these callee saved registers, then add
/// prolog and epilog code to the function.
///
void PEI::insertPrologEpilogCode(MachineFunction &Fn) {
const TargetFrameLowering &TFI = *Fn.getSubtarget().getFrameLowering();
// Add prologue to the function...
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.emitPrologue(Fn, *SaveBlock);
// Add epilogue to restore the callee-save registers in each exiting block.
for (MachineBasicBlock *RestoreBlock : RestoreBlocks)
TFI.emitEpilogue(Fn, *RestoreBlock);
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.inlineStackProbe(Fn, *SaveBlock);
// Emit additional code that is required to support segmented stacks, if
// we've been asked for it. This, when linked with a runtime with support
// for segmented stacks (libgcc is one), will result in allocating stack
// space in small chunks instead of one large contiguous block.
if (Fn.shouldSplitStack()) {
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.adjustForSegmentedStacks(Fn, *SaveBlock);
}
// Emit additional code that is required to explicitly handle the stack in
// HiPE native code (if needed) when loaded in the Erlang/OTP runtime. The
// approach is rather similar to that of Segmented Stacks, but it uses a
// different conditional check and another BIF for allocating more stack
// space.
if (Fn.getFunction()->getCallingConv() == CallingConv::HiPE)
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.adjustForHiPEPrologue(Fn, *SaveBlock);
}
/// replaceFrameIndices - Replace all MO_FrameIndex operands with physical
/// register references and actual offsets.
///
void PEI::replaceFrameIndices(MachineFunction &Fn) {
const TargetFrameLowering &TFI = *Fn.getSubtarget().getFrameLowering();
if (!TFI.needsFrameIndexResolution(Fn)) return;
// Store SPAdj at exit of a basic block.
SmallVector<int, 8> SPState;
SPState.resize(Fn.getNumBlockIDs());
SmallPtrSet<MachineBasicBlock*, 8> Reachable;
// Iterate over the reachable blocks in DFS order.
for (auto DFI = df_ext_begin(&Fn, Reachable), DFE = df_ext_end(&Fn, Reachable);
DFI != DFE; ++DFI) {
int SPAdj = 0;
// Check the exit state of the DFS stack predecessor.
if (DFI.getPathLength() >= 2) {
MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
assert(Reachable.count(StackPred) &&
"DFS stack predecessor is already visited.\n");
SPAdj = SPState[StackPred->getNumber()];
}
MachineBasicBlock *BB = *DFI;
replaceFrameIndices(BB, Fn, SPAdj);
SPState[BB->getNumber()] = SPAdj;
}
// Handle the unreachable blocks.
for (auto &BB : Fn) {
if (Reachable.count(&BB))
// Already handled in DFS traversal.
continue;
int SPAdj = 0;
replaceFrameIndices(&BB, Fn, SPAdj);
}
}
void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn,
int &SPAdj) {
assert(Fn.getSubtarget().getRegisterInfo() &&
"getRegisterInfo() must be implemented!");
const TargetInstrInfo &TII = *Fn.getSubtarget().getInstrInfo();
const TargetRegisterInfo &TRI = *Fn.getSubtarget().getRegisterInfo();
const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering();
unsigned FrameSetupOpcode = TII.getCallFrameSetupOpcode();
unsigned FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
if (RS && !FrameIndexVirtualScavenging) RS->enterBasicBlock(*BB);
bool InsideCallSequence = false;
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
if (I->getOpcode() == FrameSetupOpcode ||
I->getOpcode() == FrameDestroyOpcode) {
InsideCallSequence = (I->getOpcode() == FrameSetupOpcode);
SPAdj += TII.getSPAdjust(*I);
I = TFI->eliminateCallFramePseudoInstr(Fn, *BB, I);
continue;
}
MachineInstr &MI = *I;
bool DoIncr = true;
bool DidFinishLoop = true;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
if (!MI.getOperand(i).isFI())
continue;
// Frame indices in debug values are encoded in a target independent
// way with simply the frame index and offset rather than any
// target-specific addressing mode.
if (MI.isDebugValue()) {
assert(i == 0 && "Frame indices can only appear as the first "
"operand of a DBG_VALUE machine instruction");
unsigned Reg;
MachineOperand &Offset = MI.getOperand(1);
Offset.setImm(
Offset.getImm() +
TFI->getFrameIndexReference(Fn, MI.getOperand(0).getIndex(), Reg));
MI.getOperand(0).ChangeToRegister(Reg, false /*isDef*/);
continue;
}
// TODO: This code should be commoned with the code for
// PATCHPOINT. There's no good reason for the difference in
// implementation other than historical accident. The only
// remaining difference is the unconditional use of the stack
// pointer as the base register.
if (MI.getOpcode() == TargetOpcode::STATEPOINT) {
assert((!MI.isDebugValue() || i == 0) &&
"Frame indicies can only appear as the first operand of a "
"DBG_VALUE machine instruction");
unsigned Reg;
MachineOperand &Offset = MI.getOperand(i + 1);
int refOffset = TFI->getFrameIndexReferencePreferSP(
Fn, MI.getOperand(i).getIndex(), Reg, /*IgnoreSPUpdates*/ false);
Offset.setImm(Offset.getImm() + refOffset);
MI.getOperand(i).ChangeToRegister(Reg, false /*isDef*/);
continue;
}
// Some instructions (e.g. inline asm instructions) can have
// multiple frame indices and/or cause eliminateFrameIndex
// to insert more than one instruction. We need the register
// scavenger to go through all of these instructions so that
// it can update its register information. We keep the
// iterator at the point before insertion so that we can
// revisit them in full.
bool AtBeginning = (I == BB->begin());
if (!AtBeginning) --I;
// If this instruction has a FrameIndex operand, we need to
// use that target machine register info object to eliminate
// it.
TRI.eliminateFrameIndex(MI, SPAdj, i,
FrameIndexVirtualScavenging ? nullptr : RS);
// Reset the iterator if we were at the beginning of the BB.
if (AtBeginning) {
I = BB->begin();
DoIncr = false;
}
DidFinishLoop = false;
break;
}
// If we are looking at a call sequence, we need to keep track of
// the SP adjustment made by each instruction in the sequence.
// This includes both the frame setup/destroy pseudos (handled above),
// as well as other instructions that have side effects w.r.t the SP.
// Note that this must come after eliminateFrameIndex, because
// if I itself referred to a frame index, we shouldn't count its own
// adjustment.
if (DidFinishLoop && InsideCallSequence)
SPAdj += TII.getSPAdjust(MI);
if (DoIncr && I != BB->end()) ++I;
// Update register states.
if (RS && !FrameIndexVirtualScavenging && DidFinishLoop)
RS->forward(MI);
}
}
/// doScavengeFrameVirtualRegs - Replace all frame index virtual registers
/// with physical registers. Use the register scavenger to find an
/// appropriate register to use.
///
/// FIXME: Iterating over the instruction stream is unnecessary. We can simply
/// iterate over the vreg use list, which at this point only contains machine
/// operands for which eliminateFrameIndex need a new scratch reg.
static void
doScavengeFrameVirtualRegs(MachineFunction &MF, RegScavenger *RS) {
// Run through the instructions and find any virtual registers.
MachineRegisterInfo &MRI = MF.getRegInfo();
for (MachineBasicBlock &MBB : MF) {
RS->enterBasicBlock(MBB);
int SPAdj = 0;
// The instruction stream may change in the loop, so check MBB.end()
// directly.
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ) {
// We might end up here again with a NULL iterator if we scavenged a
// register for which we inserted spill code for definition by what was
// originally the first instruction in MBB.
if (I == MachineBasicBlock::iterator(nullptr))
I = MBB.begin();
const MachineInstr &MI = *I;
MachineBasicBlock::iterator J = std::next(I);
MachineBasicBlock::iterator P =
I == MBB.begin() ? MachineBasicBlock::iterator(nullptr)
: std::prev(I);
// RS should process this instruction before we might scavenge at this
// location. This is because we might be replacing a virtual register
// defined by this instruction, and if so, registers killed by this
// instruction are available, and defined registers are not.
RS->forward(I);
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
// When we first encounter a new virtual register, it
// must be a definition.
assert(MO.isDef() && "frame index virtual missing def!");
// Scavenge a new scratch register
const TargetRegisterClass *RC = MRI.getRegClass(Reg);
unsigned ScratchReg = RS->scavengeRegister(RC, J, SPAdj);
++NumScavengedRegs;
// Replace this reference to the virtual register with the
// scratch register.
assert(ScratchReg && "Missing scratch register!");
MRI.replaceRegWith(Reg, ScratchReg);
// Because this instruction was processed by the RS before this
// register was allocated, make sure that the RS now records the
// register as being used.
RS->setRegUsed(ScratchReg);
}
// If the scavenger needed to use one of its spill slots, the
// spill code will have been inserted in between I and J. This is a
// problem because we need the spill code before I: Move I to just
// prior to J.
if (I != std::prev(J)) {
MBB.splice(J, &MBB, I);
// Before we move I, we need to prepare the RS to visit I again.
// Specifically, RS will assert if it sees uses of registers that
// it believes are undefined. Because we have already processed
// register kills in I, when it visits I again, it will believe that
// those registers are undefined. To avoid this situation, unprocess
// the instruction I.
assert(RS->getCurrentPosition() == I &&
"The register scavenger has an unexpected position");
I = P;
RS->unprocess(P);
} else
++I;
}
}
}