//===-- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass is responsible for finalizing the functions frame layout, saving // callee saved registers, and for emitting prolog & epilog code for the // function. // // This pass must be run after register allocation. After this pass is // executed, it is illegal to construct MO_FrameIndex operands. // //===----------------------------------------------------------------------===// #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/StackProtector.h" #include "llvm/CodeGen/WinEHFuncInfo.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetFrameLowering.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include <climits> using namespace llvm; #define DEBUG_TYPE "pei" typedef SmallVector<MachineBasicBlock *, 4> MBBVector; static void doSpillCalleeSavedRegs(MachineFunction &MF, RegScavenger *RS, unsigned &MinCSFrameIndex, unsigned &MaxCXFrameIndex, const MBBVector &SaveBlocks, const MBBVector &RestoreBlocks); static void doScavengeFrameVirtualRegs(MachineFunction &MF, RegScavenger *RS); namespace { class PEI : public MachineFunctionPass { public: static char ID; explicit PEI(const TargetMachine *TM = nullptr) : MachineFunctionPass(ID) { initializePEIPass(*PassRegistry::getPassRegistry()); if (TM && (!TM->usesPhysRegsForPEI())) { SpillCalleeSavedRegisters = [](MachineFunction &, RegScavenger *, unsigned &, unsigned &, const MBBVector &, const MBBVector &) {}; ScavengeFrameVirtualRegs = [](MachineFunction &, RegScavenger *) {}; } else { SpillCalleeSavedRegisters = doSpillCalleeSavedRegs; ScavengeFrameVirtualRegs = doScavengeFrameVirtualRegs; UsesCalleeSaves = true; } } void getAnalysisUsage(AnalysisUsage &AU) const override; MachineFunctionProperties getRequiredProperties() const override { MachineFunctionProperties MFP; if (UsesCalleeSaves) MFP.set(MachineFunctionProperties::Property::AllVRegsAllocated); return MFP; } /// runOnMachineFunction - Insert prolog/epilog code and replace abstract /// frame indexes with appropriate references. /// bool runOnMachineFunction(MachineFunction &Fn) override; private: std::function<void(MachineFunction &MF, RegScavenger *RS, unsigned &MinCSFrameIndex, unsigned &MaxCSFrameIndex, const MBBVector &SaveBlocks, const MBBVector &RestoreBlocks)> SpillCalleeSavedRegisters; std::function<void(MachineFunction &MF, RegScavenger *RS)> ScavengeFrameVirtualRegs; bool UsesCalleeSaves = false; RegScavenger *RS; // MinCSFrameIndex, MaxCSFrameIndex - Keeps the range of callee saved // stack frame indexes. unsigned MinCSFrameIndex = std::numeric_limits<unsigned>::max(); unsigned MaxCSFrameIndex = 0; // Save and Restore blocks of the current function. Typically there is a // single save block, unless Windows EH funclets are involved. MBBVector SaveBlocks; MBBVector RestoreBlocks; // Flag to control whether to use the register scavenger to resolve // frame index materialization registers. Set according to // TRI->requiresFrameIndexScavenging() for the current function. bool FrameIndexVirtualScavenging; void calculateCallFrameInfo(MachineFunction &Fn); void calculateSaveRestoreBlocks(MachineFunction &Fn); void calculateFrameObjectOffsets(MachineFunction &Fn); void replaceFrameIndices(MachineFunction &Fn); void replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn, int &SPAdj); void insertPrologEpilogCode(MachineFunction &Fn); }; } // namespace char PEI::ID = 0; char &llvm::PrologEpilogCodeInserterID = PEI::ID; static cl::opt<unsigned> WarnStackSize("warn-stack-size", cl::Hidden, cl::init((unsigned)-1), cl::desc("Warn for stack size bigger than the given" " number")); INITIALIZE_TM_PASS_BEGIN(PEI, "prologepilog", "Prologue/Epilogue Insertion", false, false) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(StackProtector) INITIALIZE_TM_PASS_END(PEI, "prologepilog", "Prologue/Epilogue Insertion & Frame Finalization", false, false) MachineFunctionPass * llvm::createPrologEpilogInserterPass(const TargetMachine *TM) { return new PEI(TM); } STATISTIC(NumScavengedRegs, "Number of frame index regs scavenged"); STATISTIC(NumBytesStackSpace, "Number of bytes used for stack in all functions"); void PEI::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addPreserved<MachineLoopInfo>(); AU.addPreserved<MachineDominatorTree>(); AU.addRequired<StackProtector>(); MachineFunctionPass::getAnalysisUsage(AU); } /// StackObjSet - A set of stack object indexes typedef SmallSetVector<int, 8> StackObjSet; /// runOnMachineFunction - Insert prolog/epilog code and replace abstract /// frame indexes with appropriate references. /// bool PEI::runOnMachineFunction(MachineFunction &Fn) { const Function* F = Fn.getFunction(); const TargetRegisterInfo *TRI = Fn.getSubtarget().getRegisterInfo(); const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering(); RS = TRI->requiresRegisterScavenging(Fn) ? new RegScavenger() : nullptr; FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(Fn); // Calculate the MaxCallFrameSize and AdjustsStack variables for the // function's frame information. Also eliminates call frame pseudo // instructions. calculateCallFrameInfo(Fn); // Determine placement of CSR spill/restore code and prolog/epilog code: // place all spills in the entry block, all restores in return blocks. calculateSaveRestoreBlocks(Fn); // Handle CSR spilling and restoring, for targets that need it. SpillCalleeSavedRegisters(Fn, RS, MinCSFrameIndex, MaxCSFrameIndex, SaveBlocks, RestoreBlocks); // Allow the target machine to make final modifications to the function // before the frame layout is finalized. TFI->processFunctionBeforeFrameFinalized(Fn, RS); // Calculate actual frame offsets for all abstract stack objects... calculateFrameObjectOffsets(Fn); // Add prolog and epilog code to the function. This function is required // to align the stack frame as necessary for any stack variables or // called functions. Because of this, calculateCalleeSavedRegisters() // must be called before this function in order to set the AdjustsStack // and MaxCallFrameSize variables. if (!F->hasFnAttribute(Attribute::Naked)) insertPrologEpilogCode(Fn); // Replace all MO_FrameIndex operands with physical register references // and actual offsets. // replaceFrameIndices(Fn); // If register scavenging is needed, as we've enabled doing it as a // post-pass, scavenge the virtual registers that frame index elimination // inserted. if (TRI->requiresRegisterScavenging(Fn) && FrameIndexVirtualScavenging) { ScavengeFrameVirtualRegs(Fn, RS); // Clear any vregs created by virtual scavenging. Fn.getRegInfo().clearVirtRegs(); } // Warn on stack size when we exceeds the given limit. MachineFrameInfo *MFI = Fn.getFrameInfo(); uint64_t StackSize = MFI->getStackSize(); if (WarnStackSize.getNumOccurrences() > 0 && WarnStackSize < StackSize) { DiagnosticInfoStackSize DiagStackSize(*F, StackSize); F->getContext().diagnose(DiagStackSize); } delete RS; SaveBlocks.clear(); RestoreBlocks.clear(); MFI->setSavePoint(nullptr); MFI->setRestorePoint(nullptr); return true; } /// Calculate the MaxCallFrameSize and AdjustsStack /// variables for the function's frame information and eliminate call frame /// pseudo instructions. void PEI::calculateCallFrameInfo(MachineFunction &Fn) { const TargetInstrInfo &TII = *Fn.getSubtarget().getInstrInfo(); const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering(); MachineFrameInfo *MFI = Fn.getFrameInfo(); unsigned MaxCallFrameSize = 0; bool AdjustsStack = MFI->adjustsStack(); // Get the function call frame set-up and tear-down instruction opcode unsigned FrameSetupOpcode = TII.getCallFrameSetupOpcode(); unsigned FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); // Early exit for targets which have no call frame setup/destroy pseudo // instructions. if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) return; std::vector<MachineBasicBlock::iterator> FrameSDOps; for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) if (I->getOpcode() == FrameSetupOpcode || I->getOpcode() == FrameDestroyOpcode) { assert(I->getNumOperands() >= 1 && "Call Frame Setup/Destroy Pseudo" " instructions should have a single immediate argument!"); unsigned Size = I->getOperand(0).getImm(); if (Size > MaxCallFrameSize) MaxCallFrameSize = Size; AdjustsStack = true; FrameSDOps.push_back(I); } else if (I->isInlineAsm()) { // Some inline asm's need a stack frame, as indicated by operand 1. unsigned ExtraInfo = I->getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_IsAlignStack) AdjustsStack = true; } MFI->setAdjustsStack(AdjustsStack); MFI->setMaxCallFrameSize(MaxCallFrameSize); for (std::vector<MachineBasicBlock::iterator>::iterator i = FrameSDOps.begin(), e = FrameSDOps.end(); i != e; ++i) { MachineBasicBlock::iterator I = *i; // If call frames are not being included as part of the stack frame, and // the target doesn't indicate otherwise, remove the call frame pseudos // here. The sub/add sp instruction pairs are still inserted, but we don't // need to track the SP adjustment for frame index elimination. if (TFI->canSimplifyCallFramePseudos(Fn)) TFI->eliminateCallFramePseudoInstr(Fn, *I->getParent(), I); } } /// Compute the sets of entry and return blocks for saving and restoring /// callee-saved registers, and placing prolog and epilog code. void PEI::calculateSaveRestoreBlocks(MachineFunction &Fn) { const MachineFrameInfo *MFI = Fn.getFrameInfo(); // Even when we do not change any CSR, we still want to insert the // prologue and epilogue of the function. // So set the save points for those. // Use the points found by shrink-wrapping, if any. if (MFI->getSavePoint()) { SaveBlocks.push_back(MFI->getSavePoint()); assert(MFI->getRestorePoint() && "Both restore and save must be set"); MachineBasicBlock *RestoreBlock = MFI->getRestorePoint(); // If RestoreBlock does not have any successor and is not a return block // then the end point is unreachable and we do not need to insert any // epilogue. if (!RestoreBlock->succ_empty() || RestoreBlock->isReturnBlock()) RestoreBlocks.push_back(RestoreBlock); return; } // Save refs to entry and return blocks. SaveBlocks.push_back(&Fn.front()); for (MachineBasicBlock &MBB : Fn) { if (MBB.isEHFuncletEntry()) SaveBlocks.push_back(&MBB); if (MBB.isReturnBlock()) RestoreBlocks.push_back(&MBB); } } static void assignCalleeSavedSpillSlots(MachineFunction &F, const BitVector &SavedRegs, unsigned &MinCSFrameIndex, unsigned &MaxCSFrameIndex) { if (SavedRegs.empty()) return; const TargetRegisterInfo *RegInfo = F.getSubtarget().getRegisterInfo(); const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&F); std::vector<CalleeSavedInfo> CSI; for (unsigned i = 0; CSRegs[i]; ++i) { unsigned Reg = CSRegs[i]; if (SavedRegs.test(Reg)) CSI.push_back(CalleeSavedInfo(Reg)); } const TargetFrameLowering *TFI = F.getSubtarget().getFrameLowering(); MachineFrameInfo *MFI = F.getFrameInfo(); if (!TFI->assignCalleeSavedSpillSlots(F, RegInfo, CSI)) { // If target doesn't implement this, use generic code. if (CSI.empty()) return; // Early exit if no callee saved registers are modified! unsigned NumFixedSpillSlots; const TargetFrameLowering::SpillSlot *FixedSpillSlots = TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots); // Now that we know which registers need to be saved and restored, allocate // stack slots for them. for (auto &CS : CSI) { unsigned Reg = CS.getReg(); const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg); int FrameIdx; if (RegInfo->hasReservedSpillSlot(F, Reg, FrameIdx)) { CS.setFrameIdx(FrameIdx); continue; } // Check to see if this physreg must be spilled to a particular stack slot // on this target. const TargetFrameLowering::SpillSlot *FixedSlot = FixedSpillSlots; while (FixedSlot != FixedSpillSlots + NumFixedSpillSlots && FixedSlot->Reg != Reg) ++FixedSlot; if (FixedSlot == FixedSpillSlots + NumFixedSpillSlots) { // Nope, just spill it anywhere convenient. unsigned Align = RC->getAlignment(); unsigned StackAlign = TFI->getStackAlignment(); // We may not be able to satisfy the desired alignment specification of // the TargetRegisterClass if the stack alignment is smaller. Use the // min. Align = std::min(Align, StackAlign); FrameIdx = MFI->CreateStackObject(RC->getSize(), Align, true); if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx; if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx; } else { // Spill it to the stack where we must. FrameIdx = MFI->CreateFixedSpillStackObject(RC->getSize(), FixedSlot->Offset); } CS.setFrameIdx(FrameIdx); } } MFI->setCalleeSavedInfo(CSI); } /// Helper function to update the liveness information for the callee-saved /// registers. static void updateLiveness(MachineFunction &MF) { MachineFrameInfo *MFI = MF.getFrameInfo(); // Visited will contain all the basic blocks that are in the region // where the callee saved registers are alive: // - Anything that is not Save or Restore -> LiveThrough. // - Save -> LiveIn. // - Restore -> LiveOut. // The live-out is not attached to the block, so no need to keep // Restore in this set. SmallPtrSet<MachineBasicBlock *, 8> Visited; SmallVector<MachineBasicBlock *, 8> WorkList; MachineBasicBlock *Entry = &MF.front(); MachineBasicBlock *Save = MFI->getSavePoint(); if (!Save) Save = Entry; if (Entry != Save) { WorkList.push_back(Entry); Visited.insert(Entry); } Visited.insert(Save); MachineBasicBlock *Restore = MFI->getRestorePoint(); if (Restore) // By construction Restore cannot be visited, otherwise it // means there exists a path to Restore that does not go // through Save. WorkList.push_back(Restore); while (!WorkList.empty()) { const MachineBasicBlock *CurBB = WorkList.pop_back_val(); // By construction, the region that is after the save point is // dominated by the Save and post-dominated by the Restore. if (CurBB == Save && Save != Restore) continue; // Enqueue all the successors not already visited. // Those are by construction either before Save or after Restore. for (MachineBasicBlock *SuccBB : CurBB->successors()) if (Visited.insert(SuccBB).second) WorkList.push_back(SuccBB); } const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); for (unsigned i = 0, e = CSI.size(); i != e; ++i) { for (MachineBasicBlock *MBB : Visited) { MCPhysReg Reg = CSI[i].getReg(); // Add the callee-saved register as live-in. // It's killed at the spill. if (!MBB->isLiveIn(Reg)) MBB->addLiveIn(Reg); } } } /// insertCSRSpillsAndRestores - Insert spill and restore code for /// callee saved registers used in the function. /// static void insertCSRSpillsAndRestores(MachineFunction &Fn, const MBBVector &SaveBlocks, const MBBVector &RestoreBlocks) { // Get callee saved register information. MachineFrameInfo *MFI = Fn.getFrameInfo(); const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); MFI->setCalleeSavedInfoValid(true); // Early exit if no callee saved registers are modified! if (CSI.empty()) return; const TargetInstrInfo &TII = *Fn.getSubtarget().getInstrInfo(); const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering(); const TargetRegisterInfo *TRI = Fn.getSubtarget().getRegisterInfo(); MachineBasicBlock::iterator I; // Spill using target interface. for (MachineBasicBlock *SaveBlock : SaveBlocks) { I = SaveBlock->begin(); if (!TFI->spillCalleeSavedRegisters(*SaveBlock, I, CSI, TRI)) { for (unsigned i = 0, e = CSI.size(); i != e; ++i) { // Insert the spill to the stack frame. unsigned Reg = CSI[i].getReg(); const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.storeRegToStackSlot(*SaveBlock, I, Reg, true, CSI[i].getFrameIdx(), RC, TRI); } } // Update the live-in information of all the blocks up to the save point. updateLiveness(Fn); } // Restore using target interface. for (MachineBasicBlock *MBB : RestoreBlocks) { I = MBB->end(); // Skip over all terminator instructions, which are part of the return // sequence. MachineBasicBlock::iterator I2 = I; while (I2 != MBB->begin() && (--I2)->isTerminator()) I = I2; bool AtStart = I == MBB->begin(); MachineBasicBlock::iterator BeforeI = I; if (!AtStart) --BeforeI; // Restore all registers immediately before the return and any // terminators that precede it. if (!TFI->restoreCalleeSavedRegisters(*MBB, I, CSI, TRI)) { for (unsigned i = 0, e = CSI.size(); i != e; ++i) { unsigned Reg = CSI[i].getReg(); const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.loadRegFromStackSlot(*MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI); assert(I != MBB->begin() && "loadRegFromStackSlot didn't insert any code!"); // Insert in reverse order. loadRegFromStackSlot can insert // multiple instructions. if (AtStart) I = MBB->begin(); else { I = BeforeI; ++I; } } } } } static void doSpillCalleeSavedRegs(MachineFunction &Fn, RegScavenger *RS, unsigned &MinCSFrameIndex, unsigned &MaxCSFrameIndex, const MBBVector &SaveBlocks, const MBBVector &RestoreBlocks) { const Function *F = Fn.getFunction(); const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering(); MinCSFrameIndex = std::numeric_limits<unsigned>::max(); MaxCSFrameIndex = 0; // Determine which of the registers in the callee save list should be saved. BitVector SavedRegs; TFI->determineCalleeSaves(Fn, SavedRegs, RS); // Assign stack slots for any callee-saved registers that must be spilled. assignCalleeSavedSpillSlots(Fn, SavedRegs, MinCSFrameIndex, MaxCSFrameIndex); // Add the code to save and restore the callee saved registers. if (!F->hasFnAttribute(Attribute::Naked)) insertCSRSpillsAndRestores(Fn, SaveBlocks, RestoreBlocks); } /// AdjustStackOffset - Helper function used to adjust the stack frame offset. static inline void AdjustStackOffset(MachineFrameInfo *MFI, int FrameIdx, bool StackGrowsDown, int64_t &Offset, unsigned &MaxAlign, unsigned Skew) { // If the stack grows down, add the object size to find the lowest address. if (StackGrowsDown) Offset += MFI->getObjectSize(FrameIdx); unsigned Align = MFI->getObjectAlignment(FrameIdx); // If the alignment of this object is greater than that of the stack, then // increase the stack alignment to match. MaxAlign = std::max(MaxAlign, Align); // Adjust to alignment boundary. Offset = alignTo(Offset, Align, Skew); if (StackGrowsDown) { DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << -Offset << "]\n"); MFI->setObjectOffset(FrameIdx, -Offset); // Set the computed offset } else { DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << Offset << "]\n"); MFI->setObjectOffset(FrameIdx, Offset); Offset += MFI->getObjectSize(FrameIdx); } } /// Compute which bytes of fixed and callee-save stack area are unused and keep /// track of them in StackBytesFree. /// static inline void computeFreeStackSlots(MachineFrameInfo *MFI, bool StackGrowsDown, unsigned MinCSFrameIndex, unsigned MaxCSFrameIndex, int64_t FixedCSEnd, BitVector &StackBytesFree) { // Avoid undefined int64_t -> int conversion below in extreme case. if (FixedCSEnd > std::numeric_limits<int>::max()) return; StackBytesFree.resize(FixedCSEnd, true); SmallVector<int, 16> AllocatedFrameSlots; // Add fixed objects. for (int i = MFI->getObjectIndexBegin(); i != 0; ++i) AllocatedFrameSlots.push_back(i); // Add callee-save objects. for (int i = MinCSFrameIndex; i <= (int)MaxCSFrameIndex; ++i) AllocatedFrameSlots.push_back(i); for (int i : AllocatedFrameSlots) { // These are converted from int64_t, but they should always fit in int // because of the FixedCSEnd check above. int ObjOffset = MFI->getObjectOffset(i); int ObjSize = MFI->getObjectSize(i); int ObjStart, ObjEnd; if (StackGrowsDown) { // ObjOffset is negative when StackGrowsDown is true. ObjStart = -ObjOffset - ObjSize; ObjEnd = -ObjOffset; } else { ObjStart = ObjOffset; ObjEnd = ObjOffset + ObjSize; } // Ignore fixed holes that are in the previous stack frame. if (ObjEnd > 0) StackBytesFree.reset(ObjStart, ObjEnd); } } /// Assign frame object to an unused portion of the stack in the fixed stack /// object range. Return true if the allocation was successful. /// static inline bool scavengeStackSlot(MachineFrameInfo *MFI, int FrameIdx, bool StackGrowsDown, unsigned MaxAlign, BitVector &StackBytesFree) { if (MFI->isVariableSizedObjectIndex(FrameIdx)) return false; if (StackBytesFree.none()) { // clear it to speed up later scavengeStackSlot calls to // StackBytesFree.none() StackBytesFree.clear(); return false; } unsigned ObjAlign = MFI->getObjectAlignment(FrameIdx); if (ObjAlign > MaxAlign) return false; int64_t ObjSize = MFI->getObjectSize(FrameIdx); int FreeStart; for (FreeStart = StackBytesFree.find_first(); FreeStart != -1; FreeStart = StackBytesFree.find_next(FreeStart)) { // Check that free space has suitable alignment. unsigned ObjStart = StackGrowsDown ? FreeStart + ObjSize : FreeStart; if (alignTo(ObjStart, ObjAlign) != ObjStart) continue; if (FreeStart + ObjSize > StackBytesFree.size()) return false; bool AllBytesFree = true; for (unsigned Byte = 0; Byte < ObjSize; ++Byte) if (!StackBytesFree.test(FreeStart + Byte)) { AllBytesFree = false; break; } if (AllBytesFree) break; } if (FreeStart == -1) return false; if (StackGrowsDown) { int ObjStart = -(FreeStart + ObjSize); DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP[" << ObjStart << "]\n"); MFI->setObjectOffset(FrameIdx, ObjStart); } else { DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP[" << FreeStart << "]\n"); MFI->setObjectOffset(FrameIdx, FreeStart); } StackBytesFree.reset(FreeStart, FreeStart + ObjSize); return true; } /// AssignProtectedObjSet - Helper function to assign large stack objects (i.e., /// those required to be close to the Stack Protector) to stack offsets. static void AssignProtectedObjSet(const StackObjSet &UnassignedObjs, SmallSet<int, 16> &ProtectedObjs, MachineFrameInfo *MFI, bool StackGrowsDown, int64_t &Offset, unsigned &MaxAlign, unsigned Skew) { for (StackObjSet::const_iterator I = UnassignedObjs.begin(), E = UnassignedObjs.end(); I != E; ++I) { int i = *I; AdjustStackOffset(MFI, i, StackGrowsDown, Offset, MaxAlign, Skew); ProtectedObjs.insert(i); } } /// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the /// abstract stack objects. /// void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) { const TargetFrameLowering &TFI = *Fn.getSubtarget().getFrameLowering(); StackProtector *SP = &getAnalysis<StackProtector>(); bool StackGrowsDown = TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; // Loop over all of the stack objects, assigning sequential addresses... MachineFrameInfo *MFI = Fn.getFrameInfo(); // Start at the beginning of the local area. // The Offset is the distance from the stack top in the direction // of stack growth -- so it's always nonnegative. int LocalAreaOffset = TFI.getOffsetOfLocalArea(); if (StackGrowsDown) LocalAreaOffset = -LocalAreaOffset; assert(LocalAreaOffset >= 0 && "Local area offset should be in direction of stack growth"); int64_t Offset = LocalAreaOffset; // Skew to be applied to alignment. unsigned Skew = TFI.getStackAlignmentSkew(Fn); // If there are fixed sized objects that are preallocated in the local area, // non-fixed objects can't be allocated right at the start of local area. // Adjust 'Offset' to point to the end of last fixed sized preallocated // object. for (int i = MFI->getObjectIndexBegin(); i != 0; ++i) { int64_t FixedOff; if (StackGrowsDown) { // The maximum distance from the stack pointer is at lower address of // the object -- which is given by offset. For down growing stack // the offset is negative, so we negate the offset to get the distance. FixedOff = -MFI->getObjectOffset(i); } else { // The maximum distance from the start pointer is at the upper // address of the object. FixedOff = MFI->getObjectOffset(i) + MFI->getObjectSize(i); } if (FixedOff > Offset) Offset = FixedOff; } // First assign frame offsets to stack objects that are used to spill // callee saved registers. if (StackGrowsDown) { for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) { // If the stack grows down, we need to add the size to find the lowest // address of the object. Offset += MFI->getObjectSize(i); unsigned Align = MFI->getObjectAlignment(i); // Adjust to alignment boundary Offset = alignTo(Offset, Align, Skew); DEBUG(dbgs() << "alloc FI(" << i << ") at SP[" << -Offset << "]\n"); MFI->setObjectOffset(i, -Offset); // Set the computed offset } } else if (MaxCSFrameIndex >= MinCSFrameIndex) { // Be careful about underflow in comparisons agains MinCSFrameIndex. for (unsigned i = MaxCSFrameIndex; i != MinCSFrameIndex - 1; --i) { unsigned Align = MFI->getObjectAlignment(i); // Adjust to alignment boundary Offset = alignTo(Offset, Align, Skew); DEBUG(dbgs() << "alloc FI(" << i << ") at SP[" << Offset << "]\n"); MFI->setObjectOffset(i, Offset); Offset += MFI->getObjectSize(i); } } // FixedCSEnd is the stack offset to the end of the fixed and callee-save // stack area. int64_t FixedCSEnd = Offset; unsigned MaxAlign = MFI->getMaxAlignment(); // Make sure the special register scavenging spill slot is closest to the // incoming stack pointer if a frame pointer is required and is closer // to the incoming rather than the final stack pointer. const TargetRegisterInfo *RegInfo = Fn.getSubtarget().getRegisterInfo(); bool EarlyScavengingSlots = (TFI.hasFP(Fn) && TFI.isFPCloseToIncomingSP() && RegInfo->useFPForScavengingIndex(Fn) && !RegInfo->needsStackRealignment(Fn)); if (RS && EarlyScavengingSlots) { SmallVector<int, 2> SFIs; RS->getScavengingFrameIndices(SFIs); for (SmallVectorImpl<int>::iterator I = SFIs.begin(), IE = SFIs.end(); I != IE; ++I) AdjustStackOffset(MFI, *I, StackGrowsDown, Offset, MaxAlign, Skew); } // FIXME: Once this is working, then enable flag will change to a target // check for whether the frame is large enough to want to use virtual // frame index registers. Functions which don't want/need this optimization // will continue to use the existing code path. if (MFI->getUseLocalStackAllocationBlock()) { unsigned Align = MFI->getLocalFrameMaxAlign(); // Adjust to alignment boundary. Offset = alignTo(Offset, Align, Skew); DEBUG(dbgs() << "Local frame base offset: " << Offset << "\n"); // Resolve offsets for objects in the local block. for (unsigned i = 0, e = MFI->getLocalFrameObjectCount(); i != e; ++i) { std::pair<int, int64_t> Entry = MFI->getLocalFrameObjectMap(i); int64_t FIOffset = (StackGrowsDown ? -Offset : Offset) + Entry.second; DEBUG(dbgs() << "alloc FI(" << Entry.first << ") at SP[" << FIOffset << "]\n"); MFI->setObjectOffset(Entry.first, FIOffset); } // Allocate the local block Offset += MFI->getLocalFrameSize(); MaxAlign = std::max(Align, MaxAlign); } // Retrieve the Exception Handler registration node. int EHRegNodeFrameIndex = INT_MAX; if (const WinEHFuncInfo *FuncInfo = Fn.getWinEHFuncInfo()) EHRegNodeFrameIndex = FuncInfo->EHRegNodeFrameIndex; // Make sure that the stack protector comes before the local variables on the // stack. SmallSet<int, 16> ProtectedObjs; if (MFI->getStackProtectorIndex() >= 0) { StackObjSet LargeArrayObjs; StackObjSet SmallArrayObjs; StackObjSet AddrOfObjs; AdjustStackOffset(MFI, MFI->getStackProtectorIndex(), StackGrowsDown, Offset, MaxAlign, Skew); // Assign large stack objects first. for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) { if (MFI->isObjectPreAllocated(i) && MFI->getUseLocalStackAllocationBlock()) continue; if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex) continue; if (RS && RS->isScavengingFrameIndex((int)i)) continue; if (MFI->isDeadObjectIndex(i)) continue; if (MFI->getStackProtectorIndex() == (int)i || EHRegNodeFrameIndex == (int)i) continue; switch (SP->getSSPLayout(MFI->getObjectAllocation(i))) { case StackProtector::SSPLK_None: continue; case StackProtector::SSPLK_SmallArray: SmallArrayObjs.insert(i); continue; case StackProtector::SSPLK_AddrOf: AddrOfObjs.insert(i); continue; case StackProtector::SSPLK_LargeArray: LargeArrayObjs.insert(i); continue; } llvm_unreachable("Unexpected SSPLayoutKind."); } AssignProtectedObjSet(LargeArrayObjs, ProtectedObjs, MFI, StackGrowsDown, Offset, MaxAlign, Skew); AssignProtectedObjSet(SmallArrayObjs, ProtectedObjs, MFI, StackGrowsDown, Offset, MaxAlign, Skew); AssignProtectedObjSet(AddrOfObjs, ProtectedObjs, MFI, StackGrowsDown, Offset, MaxAlign, Skew); } SmallVector<int, 8> ObjectsToAllocate; // Then prepare to assign frame offsets to stack objects that are not used to // spill callee saved registers. for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) { if (MFI->isObjectPreAllocated(i) && MFI->getUseLocalStackAllocationBlock()) continue; if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex) continue; if (RS && RS->isScavengingFrameIndex((int)i)) continue; if (MFI->isDeadObjectIndex(i)) continue; if (MFI->getStackProtectorIndex() == (int)i || EHRegNodeFrameIndex == (int)i) continue; if (ProtectedObjs.count(i)) continue; // Add the objects that we need to allocate to our working set. ObjectsToAllocate.push_back(i); } // Allocate the EH registration node first if one is present. if (EHRegNodeFrameIndex != INT_MAX) AdjustStackOffset(MFI, EHRegNodeFrameIndex, StackGrowsDown, Offset, MaxAlign, Skew); // Give the targets a chance to order the objects the way they like it. if (Fn.getTarget().getOptLevel() != CodeGenOpt::None && Fn.getTarget().Options.StackSymbolOrdering) TFI.orderFrameObjects(Fn, ObjectsToAllocate); // Keep track of which bytes in the fixed and callee-save range are used so we // can use the holes when allocating later stack objects. Only do this if // stack protector isn't being used and the target requests it and we're // optimizing. BitVector StackBytesFree; if (!ObjectsToAllocate.empty() && Fn.getTarget().getOptLevel() != CodeGenOpt::None && MFI->getStackProtectorIndex() < 0 && TFI.enableStackSlotScavenging(Fn)) computeFreeStackSlots(MFI, StackGrowsDown, MinCSFrameIndex, MaxCSFrameIndex, FixedCSEnd, StackBytesFree); // Now walk the objects and actually assign base offsets to them. for (auto &Object : ObjectsToAllocate) if (!scavengeStackSlot(MFI, Object, StackGrowsDown, MaxAlign, StackBytesFree)) AdjustStackOffset(MFI, Object, StackGrowsDown, Offset, MaxAlign, Skew); // Make sure the special register scavenging spill slot is closest to the // stack pointer. if (RS && !EarlyScavengingSlots) { SmallVector<int, 2> SFIs; RS->getScavengingFrameIndices(SFIs); for (SmallVectorImpl<int>::iterator I = SFIs.begin(), IE = SFIs.end(); I != IE; ++I) AdjustStackOffset(MFI, *I, StackGrowsDown, Offset, MaxAlign, Skew); } if (!TFI.targetHandlesStackFrameRounding()) { // If we have reserved argument space for call sites in the function // immediately on entry to the current function, count it as part of the // overall stack size. if (MFI->adjustsStack() && TFI.hasReservedCallFrame(Fn)) Offset += MFI->getMaxCallFrameSize(); // Round up the size to a multiple of the alignment. If the function has // any calls or alloca's, align to the target's StackAlignment value to // ensure that the callee's frame or the alloca data is suitably aligned; // otherwise, for leaf functions, align to the TransientStackAlignment // value. unsigned StackAlign; if (MFI->adjustsStack() || MFI->hasVarSizedObjects() || (RegInfo->needsStackRealignment(Fn) && MFI->getObjectIndexEnd() != 0)) StackAlign = TFI.getStackAlignment(); else StackAlign = TFI.getTransientStackAlignment(); // If the frame pointer is eliminated, all frame offsets will be relative to // SP not FP. Align to MaxAlign so this works. StackAlign = std::max(StackAlign, MaxAlign); Offset = alignTo(Offset, StackAlign, Skew); } // Update frame info to pretend that this is part of the stack... int64_t StackSize = Offset - LocalAreaOffset; MFI->setStackSize(StackSize); NumBytesStackSpace += StackSize; } /// insertPrologEpilogCode - Scan the function for modified callee saved /// registers, insert spill code for these callee saved registers, then add /// prolog and epilog code to the function. /// void PEI::insertPrologEpilogCode(MachineFunction &Fn) { const TargetFrameLowering &TFI = *Fn.getSubtarget().getFrameLowering(); // Add prologue to the function... for (MachineBasicBlock *SaveBlock : SaveBlocks) TFI.emitPrologue(Fn, *SaveBlock); // Add epilogue to restore the callee-save registers in each exiting block. for (MachineBasicBlock *RestoreBlock : RestoreBlocks) TFI.emitEpilogue(Fn, *RestoreBlock); for (MachineBasicBlock *SaveBlock : SaveBlocks) TFI.inlineStackProbe(Fn, *SaveBlock); // Emit additional code that is required to support segmented stacks, if // we've been asked for it. This, when linked with a runtime with support // for segmented stacks (libgcc is one), will result in allocating stack // space in small chunks instead of one large contiguous block. if (Fn.shouldSplitStack()) { for (MachineBasicBlock *SaveBlock : SaveBlocks) TFI.adjustForSegmentedStacks(Fn, *SaveBlock); } // Emit additional code that is required to explicitly handle the stack in // HiPE native code (if needed) when loaded in the Erlang/OTP runtime. The // approach is rather similar to that of Segmented Stacks, but it uses a // different conditional check and another BIF for allocating more stack // space. if (Fn.getFunction()->getCallingConv() == CallingConv::HiPE) for (MachineBasicBlock *SaveBlock : SaveBlocks) TFI.adjustForHiPEPrologue(Fn, *SaveBlock); } /// replaceFrameIndices - Replace all MO_FrameIndex operands with physical /// register references and actual offsets. /// void PEI::replaceFrameIndices(MachineFunction &Fn) { const TargetFrameLowering &TFI = *Fn.getSubtarget().getFrameLowering(); if (!TFI.needsFrameIndexResolution(Fn)) return; // Store SPAdj at exit of a basic block. SmallVector<int, 8> SPState; SPState.resize(Fn.getNumBlockIDs()); SmallPtrSet<MachineBasicBlock*, 8> Reachable; // Iterate over the reachable blocks in DFS order. for (auto DFI = df_ext_begin(&Fn, Reachable), DFE = df_ext_end(&Fn, Reachable); DFI != DFE; ++DFI) { int SPAdj = 0; // Check the exit state of the DFS stack predecessor. if (DFI.getPathLength() >= 2) { MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); assert(Reachable.count(StackPred) && "DFS stack predecessor is already visited.\n"); SPAdj = SPState[StackPred->getNumber()]; } MachineBasicBlock *BB = *DFI; replaceFrameIndices(BB, Fn, SPAdj); SPState[BB->getNumber()] = SPAdj; } // Handle the unreachable blocks. for (auto &BB : Fn) { if (Reachable.count(&BB)) // Already handled in DFS traversal. continue; int SPAdj = 0; replaceFrameIndices(&BB, Fn, SPAdj); } } void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn, int &SPAdj) { assert(Fn.getSubtarget().getRegisterInfo() && "getRegisterInfo() must be implemented!"); const TargetInstrInfo &TII = *Fn.getSubtarget().getInstrInfo(); const TargetRegisterInfo &TRI = *Fn.getSubtarget().getRegisterInfo(); const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering(); unsigned FrameSetupOpcode = TII.getCallFrameSetupOpcode(); unsigned FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); if (RS && !FrameIndexVirtualScavenging) RS->enterBasicBlock(*BB); bool InsideCallSequence = false; for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) { if (I->getOpcode() == FrameSetupOpcode || I->getOpcode() == FrameDestroyOpcode) { InsideCallSequence = (I->getOpcode() == FrameSetupOpcode); SPAdj += TII.getSPAdjust(*I); I = TFI->eliminateCallFramePseudoInstr(Fn, *BB, I); continue; } MachineInstr &MI = *I; bool DoIncr = true; bool DidFinishLoop = true; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { if (!MI.getOperand(i).isFI()) continue; // Frame indices in debug values are encoded in a target independent // way with simply the frame index and offset rather than any // target-specific addressing mode. if (MI.isDebugValue()) { assert(i == 0 && "Frame indices can only appear as the first " "operand of a DBG_VALUE machine instruction"); unsigned Reg; MachineOperand &Offset = MI.getOperand(1); Offset.setImm( Offset.getImm() + TFI->getFrameIndexReference(Fn, MI.getOperand(0).getIndex(), Reg)); MI.getOperand(0).ChangeToRegister(Reg, false /*isDef*/); continue; } // TODO: This code should be commoned with the code for // PATCHPOINT. There's no good reason for the difference in // implementation other than historical accident. The only // remaining difference is the unconditional use of the stack // pointer as the base register. if (MI.getOpcode() == TargetOpcode::STATEPOINT) { assert((!MI.isDebugValue() || i == 0) && "Frame indicies can only appear as the first operand of a " "DBG_VALUE machine instruction"); unsigned Reg; MachineOperand &Offset = MI.getOperand(i + 1); int refOffset = TFI->getFrameIndexReferencePreferSP( Fn, MI.getOperand(i).getIndex(), Reg, /*IgnoreSPUpdates*/ false); Offset.setImm(Offset.getImm() + refOffset); MI.getOperand(i).ChangeToRegister(Reg, false /*isDef*/); continue; } // Some instructions (e.g. inline asm instructions) can have // multiple frame indices and/or cause eliminateFrameIndex // to insert more than one instruction. We need the register // scavenger to go through all of these instructions so that // it can update its register information. We keep the // iterator at the point before insertion so that we can // revisit them in full. bool AtBeginning = (I == BB->begin()); if (!AtBeginning) --I; // If this instruction has a FrameIndex operand, we need to // use that target machine register info object to eliminate // it. TRI.eliminateFrameIndex(MI, SPAdj, i, FrameIndexVirtualScavenging ? nullptr : RS); // Reset the iterator if we were at the beginning of the BB. if (AtBeginning) { I = BB->begin(); DoIncr = false; } DidFinishLoop = false; break; } // If we are looking at a call sequence, we need to keep track of // the SP adjustment made by each instruction in the sequence. // This includes both the frame setup/destroy pseudos (handled above), // as well as other instructions that have side effects w.r.t the SP. // Note that this must come after eliminateFrameIndex, because // if I itself referred to a frame index, we shouldn't count its own // adjustment. if (DidFinishLoop && InsideCallSequence) SPAdj += TII.getSPAdjust(MI); if (DoIncr && I != BB->end()) ++I; // Update register states. if (RS && !FrameIndexVirtualScavenging && DidFinishLoop) RS->forward(MI); } } /// doScavengeFrameVirtualRegs - Replace all frame index virtual registers /// with physical registers. Use the register scavenger to find an /// appropriate register to use. /// /// FIXME: Iterating over the instruction stream is unnecessary. We can simply /// iterate over the vreg use list, which at this point only contains machine /// operands for which eliminateFrameIndex need a new scratch reg. static void doScavengeFrameVirtualRegs(MachineFunction &MF, RegScavenger *RS) { // Run through the instructions and find any virtual registers. MachineRegisterInfo &MRI = MF.getRegInfo(); for (MachineBasicBlock &MBB : MF) { RS->enterBasicBlock(MBB); int SPAdj = 0; // The instruction stream may change in the loop, so check MBB.end() // directly. for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ) { // We might end up here again with a NULL iterator if we scavenged a // register for which we inserted spill code for definition by what was // originally the first instruction in MBB. if (I == MachineBasicBlock::iterator(nullptr)) I = MBB.begin(); const MachineInstr &MI = *I; MachineBasicBlock::iterator J = std::next(I); MachineBasicBlock::iterator P = I == MBB.begin() ? MachineBasicBlock::iterator(nullptr) : std::prev(I); // RS should process this instruction before we might scavenge at this // location. This is because we might be replacing a virtual register // defined by this instruction, and if so, registers killed by this // instruction are available, and defined registers are not. RS->forward(I); for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; // When we first encounter a new virtual register, it // must be a definition. assert(MO.isDef() && "frame index virtual missing def!"); // Scavenge a new scratch register const TargetRegisterClass *RC = MRI.getRegClass(Reg); unsigned ScratchReg = RS->scavengeRegister(RC, J, SPAdj); ++NumScavengedRegs; // Replace this reference to the virtual register with the // scratch register. assert(ScratchReg && "Missing scratch register!"); MRI.replaceRegWith(Reg, ScratchReg); // Because this instruction was processed by the RS before this // register was allocated, make sure that the RS now records the // register as being used. RS->setRegUsed(ScratchReg); } // If the scavenger needed to use one of its spill slots, the // spill code will have been inserted in between I and J. This is a // problem because we need the spill code before I: Move I to just // prior to J. if (I != std::prev(J)) { MBB.splice(J, &MBB, I); // Before we move I, we need to prepare the RS to visit I again. // Specifically, RS will assert if it sees uses of registers that // it believes are undefined. Because we have already processed // register kills in I, when it visits I again, it will believe that // those registers are undefined. To avoid this situation, unprocess // the instruction I. assert(RS->getCurrentPosition() == I && "The register scavenger has an unexpected position"); I = P; RS->unprocess(P); } else ++I; } } }