// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "mojo/core/embedder/embedder.h"
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <utility>
#include "base/base_paths.h"
#include "base/bind.h"
#include "base/command_line.h"
#include "base/files/file.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "base/memory/read_only_shared_memory_region.h"
#include "base/memory/unsafe_shared_memory_region.h"
#include "base/memory/writable_shared_memory_region.h"
#include "base/message_loop/message_loop.h"
#include "base/path_service.h"
#include "base/rand_util.h"
#include "base/run_loop.h"
#include "base/stl_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/synchronization/waitable_event.h"
#include "base/test/test_timeouts.h"
#include "build/build_config.h"
#include "mojo/core/core.h"
#include "mojo/core/shared_buffer_dispatcher.h"
#include "mojo/core/test/mojo_test_base.h"
#include "mojo/core/test_utils.h"
#include "mojo/public/c/system/core.h"
#include "mojo/public/cpp/system/handle.h"
#include "mojo/public/cpp/system/message_pipe.h"
#include "mojo/public/cpp/system/platform_handle.h"
#include "mojo/public/cpp/system/wait.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace mojo {
namespace core {
namespace {
template <typename T>
MojoResult CreateSharedBufferFromRegion(T&& region, MojoHandle* handle) {
scoped_refptr<SharedBufferDispatcher> buffer;
MojoResult result =
SharedBufferDispatcher::CreateFromPlatformSharedMemoryRegion(
T::TakeHandleForSerialization(std::move(region)), &buffer);
if (result != MOJO_RESULT_OK)
return result;
*handle = Core::Get()->AddDispatcher(std::move(buffer));
return MOJO_RESULT_OK;
}
template <typename T>
MojoResult ExtractRegionFromSharedBuffer(MojoHandle handle, T* region) {
scoped_refptr<Dispatcher> dispatcher =
Core::Get()->GetAndRemoveDispatcher(handle);
if (!dispatcher || dispatcher->GetType() != Dispatcher::Type::SHARED_BUFFER)
return MOJO_RESULT_INVALID_ARGUMENT;
auto* buffer = static_cast<SharedBufferDispatcher*>(dispatcher.get());
*region = T::Deserialize(buffer->PassPlatformSharedMemoryRegion());
return MOJO_RESULT_OK;
}
// The multiprocess tests that use these don't compile on iOS.
#if !defined(OS_IOS)
const char kHelloWorld[] = "hello world";
const char kByeWorld[] = "bye world";
#endif
using EmbedderTest = test::MojoTestBase;
TEST_F(EmbedderTest, ChannelBasic) {
MojoHandle server_mp, client_mp;
CreateMessagePipe(&server_mp, &client_mp);
const std::string kHello = "hello";
// We can write to a message pipe handle immediately.
WriteMessage(server_mp, kHello);
EXPECT_EQ(kHello, ReadMessage(client_mp));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp));
}
// Verifies that a MP with pending messages to be written can be sent and the
// pending messages aren't dropped.
TEST_F(EmbedderTest, SendMessagePipeWithWriteQueue) {
MojoHandle server_mp, client_mp;
CreateMessagePipe(&server_mp, &client_mp);
MojoHandle server_mp2, client_mp2;
CreateMessagePipe(&server_mp2, &client_mp2);
static const size_t kNumMessages = 1001;
for (size_t i = 1; i <= kNumMessages; i++)
WriteMessage(client_mp2, std::string(i, 'A' + (i % 26)));
// Now send client2.
WriteMessageWithHandles(server_mp, "hey", &client_mp2, 1);
client_mp2 = MOJO_HANDLE_INVALID;
// Read client2 just so we can close it later.
EXPECT_EQ("hey", ReadMessageWithHandles(client_mp, &client_mp2, 1));
EXPECT_NE(MOJO_HANDLE_INVALID, client_mp2);
// Now verify that all the messages that were written were sent correctly.
for (size_t i = 1; i <= kNumMessages; i++)
ASSERT_EQ(std::string(i, 'A' + (i % 26)), ReadMessage(server_mp2));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp2));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp2));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp));
}
TEST_F(EmbedderTest, ChannelsHandlePassing) {
MojoHandle server_mp, client_mp;
CreateMessagePipe(&server_mp, &client_mp);
EXPECT_NE(server_mp, MOJO_HANDLE_INVALID);
EXPECT_NE(client_mp, MOJO_HANDLE_INVALID);
MojoHandle h0, h1;
CreateMessagePipe(&h0, &h1);
// Write a message to |h0| (attaching nothing).
const std::string kHello = "hello";
WriteMessage(h0, kHello);
// Write one message to |server_mp|, attaching |h1|.
const std::string kWorld = "world!!!";
WriteMessageWithHandles(server_mp, kWorld, &h1, 1);
h1 = MOJO_HANDLE_INVALID;
// Write another message to |h0|.
const std::string kFoo = "foo";
WriteMessage(h0, kFoo);
// Wait for |client_mp| to become readable and read a message from it.
EXPECT_EQ(kWorld, ReadMessageWithHandles(client_mp, &h1, 1));
EXPECT_NE(h1, MOJO_HANDLE_INVALID);
// Wait for |h1| to become readable and read a message from it.
EXPECT_EQ(kHello, ReadMessage(h1));
// Wait for |h1| to become readable (again) and read its second message.
EXPECT_EQ(kFoo, ReadMessage(h1));
// Write a message to |h1|.
const std::string kBarBaz = "barbaz";
WriteMessage(h1, kBarBaz);
// Wait for |h0| to become readable and read a message from it.
EXPECT_EQ(kBarBaz, ReadMessage(h0));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(h0));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(h1));
}
// The sequence of messages sent is:
// server_mp client_mp mp0 mp1 mp2 mp3
// 1. "hello"
// 2. "world!"
// 3. "FOO"
// 4. "Bar"+mp1
// 5. (close)
// 6. (close)
// 7. "baz"
// 8. (closed)
// 9. "quux"+mp2
// 10. (close)
// 11. (wait/cl.)
// 12. (wait/cl.)
#if !defined(OS_IOS)
TEST_F(EmbedderTest, MultiprocessChannels) {
RunTestClient("MultiprocessChannelsClient", [&](MojoHandle server_mp) {
// 1. Write a message to |server_mp| (attaching nothing).
WriteMessage(server_mp, "hello");
// 2. Read a message from |server_mp|.
EXPECT_EQ("world!", ReadMessage(server_mp));
// 3. Create a new message pipe (endpoints |mp0| and |mp1|).
MojoHandle mp0, mp1;
CreateMessagePipe(&mp0, &mp1);
// 4. Write something to |mp0|.
WriteMessage(mp0, "FOO");
// 5. Write a message to |server_mp|, attaching |mp1|.
WriteMessageWithHandles(server_mp, "Bar", &mp1, 1);
mp1 = MOJO_HANDLE_INVALID;
// 6. Read a message from |mp0|, which should have |mp2| attached.
MojoHandle mp2 = MOJO_HANDLE_INVALID;
EXPECT_EQ("quux", ReadMessageWithHandles(mp0, &mp2, 1));
// 7. Read a message from |mp2|.
EXPECT_EQ("baz", ReadMessage(mp2));
// 8. Close |mp0|.
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp0));
// 9. Tell the client to quit.
WriteMessage(server_mp, "quit");
// 10. Wait on |mp2| (which should eventually fail) and then close it.
MojoHandleSignalsState state;
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
WaitForSignals(mp2, MOJO_HANDLE_SIGNAL_READABLE, &state));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, state.satisfied_signals);
ASSERT_FALSE(state.satisfiable_signals & MOJO_HANDLE_SIGNAL_READABLE);
ASSERT_FALSE(state.satisfiable_signals & MOJO_HANDLE_SIGNAL_WRITABLE);
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp2));
});
}
DEFINE_TEST_CLIENT_TEST_WITH_PIPE(MultiprocessChannelsClient,
EmbedderTest,
client_mp) {
// 1. Read the first message from |client_mp|.
EXPECT_EQ("hello", ReadMessage(client_mp));
// 2. Write a message to |client_mp| (attaching nothing).
WriteMessage(client_mp, "world!");
// 4. Read a message from |client_mp|, which should have |mp1| attached.
MojoHandle mp1;
EXPECT_EQ("Bar", ReadMessageWithHandles(client_mp, &mp1, 1));
// 5. Create a new message pipe (endpoints |mp2| and |mp3|).
MojoHandle mp2, mp3;
CreateMessagePipe(&mp2, &mp3);
// 6. Write a message to |mp3|.
WriteMessage(mp3, "baz");
// 7. Close |mp3|.
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp3));
// 8. Write a message to |mp1|, attaching |mp2|.
WriteMessageWithHandles(mp1, "quux", &mp2, 1);
mp2 = MOJO_HANDLE_INVALID;
// 9. Read a message from |mp1|.
EXPECT_EQ("FOO", ReadMessage(mp1));
EXPECT_EQ("quit", ReadMessage(client_mp));
// 10. Wait on |mp1| (which should eventually fail) and then close it.
MojoHandleSignalsState state;
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
WaitForSignals(mp1, MOJO_HANDLE_SIGNAL_READABLE, &state));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, state.satisfied_signals);
ASSERT_FALSE(state.satisfiable_signals & MOJO_HANDLE_SIGNAL_READABLE);
ASSERT_FALSE(state.satisfiable_signals & MOJO_HANDLE_SIGNAL_WRITABLE);
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp1));
}
TEST_F(EmbedderTest, MultiprocessBaseSharedMemory) {
RunTestClient("MultiprocessSharedMemoryClient", [&](MojoHandle server_mp) {
// 1. Create a shared memory region and wrap it as a Mojo object.
auto shared_memory = base::UnsafeSharedMemoryRegion::Create(123);
ASSERT_TRUE(shared_memory.IsValid());
MojoHandle sb1;
ASSERT_EQ(MOJO_RESULT_OK,
CreateSharedBufferFromRegion(shared_memory.Duplicate(), &sb1));
// 2. Map |sb1| and write something into it.
char* buffer = nullptr;
ASSERT_EQ(MOJO_RESULT_OK, MojoMapBuffer(sb1, 0, 123, nullptr,
reinterpret_cast<void**>(&buffer)));
ASSERT_TRUE(buffer);
memcpy(buffer, kHelloWorld, sizeof(kHelloWorld));
// 3. Duplicate |sb1| into |sb2| and pass to |server_mp|.
MojoHandle sb2 = MOJO_HANDLE_INVALID;
EXPECT_EQ(MOJO_RESULT_OK, MojoDuplicateBufferHandle(sb1, nullptr, &sb2));
EXPECT_NE(MOJO_HANDLE_INVALID, sb2);
WriteMessageWithHandles(server_mp, "hello", &sb2, 1);
// 4. Read a message from |server_mp|.
EXPECT_EQ("bye", ReadMessage(server_mp));
// 5. Expect that the contents of the shared buffer have changed.
EXPECT_EQ(kByeWorld, std::string(buffer));
// 6. Map the original base::SharedMemory and expect it contains the
// expected value.
auto mapping = shared_memory.Map();
ASSERT_TRUE(mapping.IsValid());
EXPECT_EQ(kByeWorld, std::string(static_cast<char*>(mapping.memory())));
ASSERT_EQ(MOJO_RESULT_OK, MojoClose(sb1));
});
}
DEFINE_TEST_CLIENT_TEST_WITH_PIPE(MultiprocessSharedMemoryClient,
EmbedderTest,
client_mp) {
// 1. Read the first message from |client_mp|, which should have |sb1| which
// should be a shared buffer handle.
MojoHandle sb1;
EXPECT_EQ("hello", ReadMessageWithHandles(client_mp, &sb1, 1));
// 2. Map |sb1|.
char* buffer = nullptr;
ASSERT_EQ(MOJO_RESULT_OK, MojoMapBuffer(sb1, 0, 123, nullptr,
reinterpret_cast<void**>(&buffer)));
ASSERT_TRUE(buffer);
// 3. Ensure |buffer| contains the values we expect.
EXPECT_EQ(kHelloWorld, std::string(buffer));
// 4. Write into |buffer| and send a message back.
memcpy(buffer, kByeWorld, sizeof(kByeWorld));
WriteMessage(client_mp, "bye");
// 5. Extract the shared memory handle and ensure we can map it and read the
// contents.
base::UnsafeSharedMemoryRegion shared_memory;
ASSERT_EQ(MOJO_RESULT_OK, ExtractRegionFromSharedBuffer(sb1, &shared_memory));
auto mapping = shared_memory.Map();
ASSERT_TRUE(mapping.IsValid());
EXPECT_NE(buffer, mapping.memory());
EXPECT_EQ(kByeWorld, std::string(static_cast<char*>(mapping.memory())));
// 6. Close |sb1|. Should fail because |ExtractRegionFromSharedBuffer()|
// should have closed the handle.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(sb1));
}
#if defined(OS_MACOSX)
enum class HandleType {
POSIX,
MACH,
};
const HandleType kTestHandleTypes[] = {
HandleType::MACH, HandleType::POSIX, HandleType::POSIX, HandleType::MACH,
};
// Test that we can mix file descriptors and mach port handles.
TEST_F(EmbedderTest, MultiprocessMixMachAndFds) {
const size_t kShmSize = 1234;
RunTestClient("MultiprocessMixMachAndFdsClient", [&](MojoHandle server_mp) {
// 1. Create fds or Mach objects and mojo handles from them.
MojoHandle platform_handles[base::size(kTestHandleTypes)];
for (size_t i = 0; i < base::size(kTestHandleTypes); i++) {
const auto type = kTestHandleTypes[i];
PlatformHandle scoped_handle;
if (type == HandleType::POSIX) {
// The easiest source of fds is opening /dev/null.
base::File file(base::FilePath("/dev/null"),
base::File::FLAG_OPEN | base::File::FLAG_WRITE);
ASSERT_TRUE(file.IsValid());
scoped_handle = PlatformHandle(base::ScopedFD(file.TakePlatformFile()));
ASSERT_TRUE(scoped_handle.is_valid_fd());
} else {
auto shared_memory = base::UnsafeSharedMemoryRegion::Create(kShmSize);
ASSERT_TRUE(shared_memory.IsValid());
auto shm_handle =
base::UnsafeSharedMemoryRegion::TakeHandleForSerialization(
std::move(shared_memory))
.PassPlatformHandle();
scoped_handle = PlatformHandle(std::move(shm_handle));
ASSERT_TRUE(scoped_handle.is_valid_mach_port());
}
platform_handles[i] =
WrapPlatformHandle(std::move(scoped_handle)).release().value();
}
// 2. Send all the handles to the child.
WriteMessageWithHandles(server_mp, "hello", platform_handles,
base::size(kTestHandleTypes));
// 3. Read a message from |server_mp|.
EXPECT_EQ("bye", ReadMessage(server_mp));
});
}
DEFINE_TEST_CLIENT_TEST_WITH_PIPE(MultiprocessMixMachAndFdsClient,
EmbedderTest,
client_mp) {
const int kNumHandles = base::size(kTestHandleTypes);
MojoHandle platform_handles[kNumHandles];
// 1. Read from |client_mp|, which should have a message containing
// |kNumHandles| handles.
EXPECT_EQ("hello",
ReadMessageWithHandles(client_mp, platform_handles, kNumHandles));
// 2. Extract each handle, and verify the type.
for (int i = 0; i < kNumHandles; i++) {
const auto type = kTestHandleTypes[i];
PlatformHandle scoped_handle =
UnwrapPlatformHandle(ScopedHandle(Handle(platform_handles[i])));
if (type == HandleType::POSIX) {
EXPECT_TRUE(scoped_handle.is_valid_fd());
} else {
EXPECT_TRUE(scoped_handle.is_valid_mach_port());
}
}
// 3. Say bye!
WriteMessage(client_mp, "bye");
}
#endif // defined(OS_MACOSX)
#endif // !defined(OS_IOS)
} // namespace
} // namespace core
} // namespace mojo