// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "mojo/core/embedder/embedder.h" #include <stddef.h> #include <stdint.h> #include <string.h> #include <utility> #include "base/base_paths.h" #include "base/bind.h" #include "base/command_line.h" #include "base/files/file.h" #include "base/logging.h" #include "base/macros.h" #include "base/memory/ptr_util.h" #include "base/memory/read_only_shared_memory_region.h" #include "base/memory/unsafe_shared_memory_region.h" #include "base/memory/writable_shared_memory_region.h" #include "base/message_loop/message_loop.h" #include "base/path_service.h" #include "base/rand_util.h" #include "base/run_loop.h" #include "base/stl_util.h" #include "base/strings/string_number_conversions.h" #include "base/synchronization/waitable_event.h" #include "base/test/test_timeouts.h" #include "build/build_config.h" #include "mojo/core/core.h" #include "mojo/core/shared_buffer_dispatcher.h" #include "mojo/core/test/mojo_test_base.h" #include "mojo/core/test_utils.h" #include "mojo/public/c/system/core.h" #include "mojo/public/cpp/system/handle.h" #include "mojo/public/cpp/system/message_pipe.h" #include "mojo/public/cpp/system/platform_handle.h" #include "mojo/public/cpp/system/wait.h" #include "testing/gtest/include/gtest/gtest.h" namespace mojo { namespace core { namespace { template <typename T> MojoResult CreateSharedBufferFromRegion(T&& region, MojoHandle* handle) { scoped_refptr<SharedBufferDispatcher> buffer; MojoResult result = SharedBufferDispatcher::CreateFromPlatformSharedMemoryRegion( T::TakeHandleForSerialization(std::move(region)), &buffer); if (result != MOJO_RESULT_OK) return result; *handle = Core::Get()->AddDispatcher(std::move(buffer)); return MOJO_RESULT_OK; } template <typename T> MojoResult ExtractRegionFromSharedBuffer(MojoHandle handle, T* region) { scoped_refptr<Dispatcher> dispatcher = Core::Get()->GetAndRemoveDispatcher(handle); if (!dispatcher || dispatcher->GetType() != Dispatcher::Type::SHARED_BUFFER) return MOJO_RESULT_INVALID_ARGUMENT; auto* buffer = static_cast<SharedBufferDispatcher*>(dispatcher.get()); *region = T::Deserialize(buffer->PassPlatformSharedMemoryRegion()); return MOJO_RESULT_OK; } // The multiprocess tests that use these don't compile on iOS. #if !defined(OS_IOS) const char kHelloWorld[] = "hello world"; const char kByeWorld[] = "bye world"; #endif using EmbedderTest = test::MojoTestBase; TEST_F(EmbedderTest, ChannelBasic) { MojoHandle server_mp, client_mp; CreateMessagePipe(&server_mp, &client_mp); const std::string kHello = "hello"; // We can write to a message pipe handle immediately. WriteMessage(server_mp, kHello); EXPECT_EQ(kHello, ReadMessage(client_mp)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp)); } // Verifies that a MP with pending messages to be written can be sent and the // pending messages aren't dropped. TEST_F(EmbedderTest, SendMessagePipeWithWriteQueue) { MojoHandle server_mp, client_mp; CreateMessagePipe(&server_mp, &client_mp); MojoHandle server_mp2, client_mp2; CreateMessagePipe(&server_mp2, &client_mp2); static const size_t kNumMessages = 1001; for (size_t i = 1; i <= kNumMessages; i++) WriteMessage(client_mp2, std::string(i, 'A' + (i % 26))); // Now send client2. WriteMessageWithHandles(server_mp, "hey", &client_mp2, 1); client_mp2 = MOJO_HANDLE_INVALID; // Read client2 just so we can close it later. EXPECT_EQ("hey", ReadMessageWithHandles(client_mp, &client_mp2, 1)); EXPECT_NE(MOJO_HANDLE_INVALID, client_mp2); // Now verify that all the messages that were written were sent correctly. for (size_t i = 1; i <= kNumMessages; i++) ASSERT_EQ(std::string(i, 'A' + (i % 26)), ReadMessage(server_mp2)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp2)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp2)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp)); } TEST_F(EmbedderTest, ChannelsHandlePassing) { MojoHandle server_mp, client_mp; CreateMessagePipe(&server_mp, &client_mp); EXPECT_NE(server_mp, MOJO_HANDLE_INVALID); EXPECT_NE(client_mp, MOJO_HANDLE_INVALID); MojoHandle h0, h1; CreateMessagePipe(&h0, &h1); // Write a message to |h0| (attaching nothing). const std::string kHello = "hello"; WriteMessage(h0, kHello); // Write one message to |server_mp|, attaching |h1|. const std::string kWorld = "world!!!"; WriteMessageWithHandles(server_mp, kWorld, &h1, 1); h1 = MOJO_HANDLE_INVALID; // Write another message to |h0|. const std::string kFoo = "foo"; WriteMessage(h0, kFoo); // Wait for |client_mp| to become readable and read a message from it. EXPECT_EQ(kWorld, ReadMessageWithHandles(client_mp, &h1, 1)); EXPECT_NE(h1, MOJO_HANDLE_INVALID); // Wait for |h1| to become readable and read a message from it. EXPECT_EQ(kHello, ReadMessage(h1)); // Wait for |h1| to become readable (again) and read its second message. EXPECT_EQ(kFoo, ReadMessage(h1)); // Write a message to |h1|. const std::string kBarBaz = "barbaz"; WriteMessage(h1, kBarBaz); // Wait for |h0| to become readable and read a message from it. EXPECT_EQ(kBarBaz, ReadMessage(h0)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(server_mp)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(client_mp)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(h0)); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(h1)); } // The sequence of messages sent is: // server_mp client_mp mp0 mp1 mp2 mp3 // 1. "hello" // 2. "world!" // 3. "FOO" // 4. "Bar"+mp1 // 5. (close) // 6. (close) // 7. "baz" // 8. (closed) // 9. "quux"+mp2 // 10. (close) // 11. (wait/cl.) // 12. (wait/cl.) #if !defined(OS_IOS) TEST_F(EmbedderTest, MultiprocessChannels) { RunTestClient("MultiprocessChannelsClient", [&](MojoHandle server_mp) { // 1. Write a message to |server_mp| (attaching nothing). WriteMessage(server_mp, "hello"); // 2. Read a message from |server_mp|. EXPECT_EQ("world!", ReadMessage(server_mp)); // 3. Create a new message pipe (endpoints |mp0| and |mp1|). MojoHandle mp0, mp1; CreateMessagePipe(&mp0, &mp1); // 4. Write something to |mp0|. WriteMessage(mp0, "FOO"); // 5. Write a message to |server_mp|, attaching |mp1|. WriteMessageWithHandles(server_mp, "Bar", &mp1, 1); mp1 = MOJO_HANDLE_INVALID; // 6. Read a message from |mp0|, which should have |mp2| attached. MojoHandle mp2 = MOJO_HANDLE_INVALID; EXPECT_EQ("quux", ReadMessageWithHandles(mp0, &mp2, 1)); // 7. Read a message from |mp2|. EXPECT_EQ("baz", ReadMessage(mp2)); // 8. Close |mp0|. ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp0)); // 9. Tell the client to quit. WriteMessage(server_mp, "quit"); // 10. Wait on |mp2| (which should eventually fail) and then close it. MojoHandleSignalsState state; ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, WaitForSignals(mp2, MOJO_HANDLE_SIGNAL_READABLE, &state)); ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, state.satisfied_signals); ASSERT_FALSE(state.satisfiable_signals & MOJO_HANDLE_SIGNAL_READABLE); ASSERT_FALSE(state.satisfiable_signals & MOJO_HANDLE_SIGNAL_WRITABLE); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp2)); }); } DEFINE_TEST_CLIENT_TEST_WITH_PIPE(MultiprocessChannelsClient, EmbedderTest, client_mp) { // 1. Read the first message from |client_mp|. EXPECT_EQ("hello", ReadMessage(client_mp)); // 2. Write a message to |client_mp| (attaching nothing). WriteMessage(client_mp, "world!"); // 4. Read a message from |client_mp|, which should have |mp1| attached. MojoHandle mp1; EXPECT_EQ("Bar", ReadMessageWithHandles(client_mp, &mp1, 1)); // 5. Create a new message pipe (endpoints |mp2| and |mp3|). MojoHandle mp2, mp3; CreateMessagePipe(&mp2, &mp3); // 6. Write a message to |mp3|. WriteMessage(mp3, "baz"); // 7. Close |mp3|. ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp3)); // 8. Write a message to |mp1|, attaching |mp2|. WriteMessageWithHandles(mp1, "quux", &mp2, 1); mp2 = MOJO_HANDLE_INVALID; // 9. Read a message from |mp1|. EXPECT_EQ("FOO", ReadMessage(mp1)); EXPECT_EQ("quit", ReadMessage(client_mp)); // 10. Wait on |mp1| (which should eventually fail) and then close it. MojoHandleSignalsState state; ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION, WaitForSignals(mp1, MOJO_HANDLE_SIGNAL_READABLE, &state)); ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, state.satisfied_signals); ASSERT_FALSE(state.satisfiable_signals & MOJO_HANDLE_SIGNAL_READABLE); ASSERT_FALSE(state.satisfiable_signals & MOJO_HANDLE_SIGNAL_WRITABLE); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(mp1)); } TEST_F(EmbedderTest, MultiprocessBaseSharedMemory) { RunTestClient("MultiprocessSharedMemoryClient", [&](MojoHandle server_mp) { // 1. Create a shared memory region and wrap it as a Mojo object. auto shared_memory = base::UnsafeSharedMemoryRegion::Create(123); ASSERT_TRUE(shared_memory.IsValid()); MojoHandle sb1; ASSERT_EQ(MOJO_RESULT_OK, CreateSharedBufferFromRegion(shared_memory.Duplicate(), &sb1)); // 2. Map |sb1| and write something into it. char* buffer = nullptr; ASSERT_EQ(MOJO_RESULT_OK, MojoMapBuffer(sb1, 0, 123, nullptr, reinterpret_cast<void**>(&buffer))); ASSERT_TRUE(buffer); memcpy(buffer, kHelloWorld, sizeof(kHelloWorld)); // 3. Duplicate |sb1| into |sb2| and pass to |server_mp|. MojoHandle sb2 = MOJO_HANDLE_INVALID; EXPECT_EQ(MOJO_RESULT_OK, MojoDuplicateBufferHandle(sb1, nullptr, &sb2)); EXPECT_NE(MOJO_HANDLE_INVALID, sb2); WriteMessageWithHandles(server_mp, "hello", &sb2, 1); // 4. Read a message from |server_mp|. EXPECT_EQ("bye", ReadMessage(server_mp)); // 5. Expect that the contents of the shared buffer have changed. EXPECT_EQ(kByeWorld, std::string(buffer)); // 6. Map the original base::SharedMemory and expect it contains the // expected value. auto mapping = shared_memory.Map(); ASSERT_TRUE(mapping.IsValid()); EXPECT_EQ(kByeWorld, std::string(static_cast<char*>(mapping.memory()))); ASSERT_EQ(MOJO_RESULT_OK, MojoClose(sb1)); }); } DEFINE_TEST_CLIENT_TEST_WITH_PIPE(MultiprocessSharedMemoryClient, EmbedderTest, client_mp) { // 1. Read the first message from |client_mp|, which should have |sb1| which // should be a shared buffer handle. MojoHandle sb1; EXPECT_EQ("hello", ReadMessageWithHandles(client_mp, &sb1, 1)); // 2. Map |sb1|. char* buffer = nullptr; ASSERT_EQ(MOJO_RESULT_OK, MojoMapBuffer(sb1, 0, 123, nullptr, reinterpret_cast<void**>(&buffer))); ASSERT_TRUE(buffer); // 3. Ensure |buffer| contains the values we expect. EXPECT_EQ(kHelloWorld, std::string(buffer)); // 4. Write into |buffer| and send a message back. memcpy(buffer, kByeWorld, sizeof(kByeWorld)); WriteMessage(client_mp, "bye"); // 5. Extract the shared memory handle and ensure we can map it and read the // contents. base::UnsafeSharedMemoryRegion shared_memory; ASSERT_EQ(MOJO_RESULT_OK, ExtractRegionFromSharedBuffer(sb1, &shared_memory)); auto mapping = shared_memory.Map(); ASSERT_TRUE(mapping.IsValid()); EXPECT_NE(buffer, mapping.memory()); EXPECT_EQ(kByeWorld, std::string(static_cast<char*>(mapping.memory()))); // 6. Close |sb1|. Should fail because |ExtractRegionFromSharedBuffer()| // should have closed the handle. EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(sb1)); } #if defined(OS_MACOSX) enum class HandleType { POSIX, MACH, }; const HandleType kTestHandleTypes[] = { HandleType::MACH, HandleType::POSIX, HandleType::POSIX, HandleType::MACH, }; // Test that we can mix file descriptors and mach port handles. TEST_F(EmbedderTest, MultiprocessMixMachAndFds) { const size_t kShmSize = 1234; RunTestClient("MultiprocessMixMachAndFdsClient", [&](MojoHandle server_mp) { // 1. Create fds or Mach objects and mojo handles from them. MojoHandle platform_handles[base::size(kTestHandleTypes)]; for (size_t i = 0; i < base::size(kTestHandleTypes); i++) { const auto type = kTestHandleTypes[i]; PlatformHandle scoped_handle; if (type == HandleType::POSIX) { // The easiest source of fds is opening /dev/null. base::File file(base::FilePath("/dev/null"), base::File::FLAG_OPEN | base::File::FLAG_WRITE); ASSERT_TRUE(file.IsValid()); scoped_handle = PlatformHandle(base::ScopedFD(file.TakePlatformFile())); ASSERT_TRUE(scoped_handle.is_valid_fd()); } else { auto shared_memory = base::UnsafeSharedMemoryRegion::Create(kShmSize); ASSERT_TRUE(shared_memory.IsValid()); auto shm_handle = base::UnsafeSharedMemoryRegion::TakeHandleForSerialization( std::move(shared_memory)) .PassPlatformHandle(); scoped_handle = PlatformHandle(std::move(shm_handle)); ASSERT_TRUE(scoped_handle.is_valid_mach_port()); } platform_handles[i] = WrapPlatformHandle(std::move(scoped_handle)).release().value(); } // 2. Send all the handles to the child. WriteMessageWithHandles(server_mp, "hello", platform_handles, base::size(kTestHandleTypes)); // 3. Read a message from |server_mp|. EXPECT_EQ("bye", ReadMessage(server_mp)); }); } DEFINE_TEST_CLIENT_TEST_WITH_PIPE(MultiprocessMixMachAndFdsClient, EmbedderTest, client_mp) { const int kNumHandles = base::size(kTestHandleTypes); MojoHandle platform_handles[kNumHandles]; // 1. Read from |client_mp|, which should have a message containing // |kNumHandles| handles. EXPECT_EQ("hello", ReadMessageWithHandles(client_mp, platform_handles, kNumHandles)); // 2. Extract each handle, and verify the type. for (int i = 0; i < kNumHandles; i++) { const auto type = kTestHandleTypes[i]; PlatformHandle scoped_handle = UnwrapPlatformHandle(ScopedHandle(Handle(platform_handles[i]))); if (type == HandleType::POSIX) { EXPECT_TRUE(scoped_handle.is_valid_fd()); } else { EXPECT_TRUE(scoped_handle.is_valid_mach_port()); } } // 3. Say bye! WriteMessage(client_mp, "bye"); } #endif // defined(OS_MACOSX) #endif // !defined(OS_IOS) } // namespace } // namespace core } // namespace mojo