// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_loop/incoming_task_queue.h"
#include <limits>
#include <utility>
#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/location.h"
#include "base/metrics/histogram_macros.h"
#include "base/synchronization/waitable_event.h"
#include "base/time/time.h"
#include "build/build_config.h"
namespace base {
namespace internal {
namespace {
#if DCHECK_IS_ON()
// Delays larger than this are often bogus, and a warning should be emitted in
// debug builds to warn developers. http://crbug.com/450045
constexpr TimeDelta kTaskDelayWarningThreshold = TimeDelta::FromDays(14);
#endif
TimeTicks CalculateDelayedRuntime(TimeDelta delay) {
TimeTicks delayed_run_time;
if (delay > TimeDelta())
delayed_run_time = TimeTicks::Now() + delay;
else
DCHECK_EQ(delay.InMilliseconds(), 0) << "delay should not be negative";
return delayed_run_time;
}
} // namespace
IncomingTaskQueue::IncomingTaskQueue(
std::unique_ptr<Observer> task_queue_observer)
: task_queue_observer_(std::move(task_queue_observer)),
triage_tasks_(this) {
// The constructing sequence is not necessarily the running sequence, e.g. in
// the case of a MessageLoop created unbound.
DETACH_FROM_SEQUENCE(sequence_checker_);
}
IncomingTaskQueue::~IncomingTaskQueue() = default;
bool IncomingTaskQueue::AddToIncomingQueue(const Location& from_here,
OnceClosure task,
TimeDelta delay,
Nestable nestable) {
// Use CHECK instead of DCHECK to crash earlier. See http://crbug.com/711167
// for details.
CHECK(task);
DLOG_IF(WARNING, delay > kTaskDelayWarningThreshold)
<< "Requesting super-long task delay period of " << delay.InSeconds()
<< " seconds from here: " << from_here.ToString();
PendingTask pending_task(from_here, std::move(task),
CalculateDelayedRuntime(delay), nestable);
#if defined(OS_WIN)
// We consider the task needs a high resolution timer if the delay is
// more than 0 and less than 32ms. This caps the relative error to
// less than 50% : a 33ms wait can wake at 48ms since the default
// resolution on Windows is between 10 and 15ms.
if (delay > TimeDelta() &&
delay.InMilliseconds() < (2 * Time::kMinLowResolutionThresholdMs)) {
pending_task.is_high_res = true;
}
#endif
if (!delay.is_zero())
UMA_HISTOGRAM_LONG_TIMES("MessageLoop.DelayedTaskQueue.PostedDelay", delay);
return PostPendingTask(&pending_task);
}
void IncomingTaskQueue::Shutdown() {
AutoLock auto_lock(incoming_queue_lock_);
accept_new_tasks_ = false;
}
void IncomingTaskQueue::ReportMetricsOnIdle() const {
UMA_HISTOGRAM_COUNTS_1M(
"MessageLoop.DelayedTaskQueue.PendingTasksCountOnIdle",
delayed_tasks_.Size());
}
IncomingTaskQueue::TriageQueue::TriageQueue(IncomingTaskQueue* outer)
: outer_(outer) {}
IncomingTaskQueue::TriageQueue::~TriageQueue() = default;
const PendingTask& IncomingTaskQueue::TriageQueue::Peek() {
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
ReloadFromIncomingQueueIfEmpty();
DCHECK(!queue_.empty());
return queue_.front();
}
PendingTask IncomingTaskQueue::TriageQueue::Pop() {
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
ReloadFromIncomingQueueIfEmpty();
DCHECK(!queue_.empty());
PendingTask pending_task = std::move(queue_.front());
queue_.pop();
return pending_task;
}
bool IncomingTaskQueue::TriageQueue::HasTasks() {
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
ReloadFromIncomingQueueIfEmpty();
return !queue_.empty();
}
void IncomingTaskQueue::TriageQueue::Clear() {
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
// Clear() should be invoked before WillDestroyCurrentMessageLoop().
DCHECK(outer_->accept_new_tasks_);
// Delete all currently pending tasks but not tasks potentially posted from
// their destructors. See ~MessageLoop() for the full logic mitigating against
// infite loops when clearing pending tasks. The ScopedClosureRunner below
// will be bound to a task posted at the end of the queue. After it is posted,
// tasks will be deleted one by one, when the bound ScopedClosureRunner is
// deleted and sets |deleted_all_originally_pending|, we know we've deleted
// all originally pending tasks.
bool deleted_all_originally_pending = false;
ScopedClosureRunner capture_deleted_all_originally_pending(BindOnce(
[](bool* deleted_all_originally_pending) {
*deleted_all_originally_pending = true;
},
Unretained(&deleted_all_originally_pending)));
outer_->AddToIncomingQueue(
FROM_HERE,
BindOnce([](ScopedClosureRunner) {},
std::move(capture_deleted_all_originally_pending)),
TimeDelta(), Nestable::kNestable);
while (!deleted_all_originally_pending) {
PendingTask pending_task = Pop();
if (!pending_task.delayed_run_time.is_null()) {
outer_->delayed_tasks().Push(std::move(pending_task));
}
}
}
void IncomingTaskQueue::TriageQueue::ReloadFromIncomingQueueIfEmpty() {
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
if (queue_.empty()) {
outer_->ReloadWorkQueue(&queue_);
}
}
IncomingTaskQueue::DelayedQueue::DelayedQueue() {
DETACH_FROM_SEQUENCE(sequence_checker_);
}
IncomingTaskQueue::DelayedQueue::~DelayedQueue() = default;
void IncomingTaskQueue::DelayedQueue::Push(PendingTask pending_task) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (pending_task.is_high_res)
++pending_high_res_tasks_;
queue_.push(std::move(pending_task));
}
const PendingTask& IncomingTaskQueue::DelayedQueue::Peek() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(!queue_.empty());
return queue_.top();
}
PendingTask IncomingTaskQueue::DelayedQueue::Pop() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(!queue_.empty());
PendingTask delayed_task = std::move(const_cast<PendingTask&>(queue_.top()));
queue_.pop();
if (delayed_task.is_high_res)
--pending_high_res_tasks_;
DCHECK_GE(pending_high_res_tasks_, 0);
return delayed_task;
}
bool IncomingTaskQueue::DelayedQueue::HasTasks() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// TODO(robliao): The other queues don't check for IsCancelled(). Should they?
while (!queue_.empty() && Peek().task.IsCancelled())
Pop();
return !queue_.empty();
}
void IncomingTaskQueue::DelayedQueue::Clear() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
while (!queue_.empty())
Pop();
}
size_t IncomingTaskQueue::DelayedQueue::Size() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return queue_.size();
}
IncomingTaskQueue::DeferredQueue::DeferredQueue() {
DETACH_FROM_SEQUENCE(sequence_checker_);
}
IncomingTaskQueue::DeferredQueue::~DeferredQueue() = default;
void IncomingTaskQueue::DeferredQueue::Push(PendingTask pending_task) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
queue_.push(std::move(pending_task));
}
const PendingTask& IncomingTaskQueue::DeferredQueue::Peek() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(!queue_.empty());
return queue_.front();
}
PendingTask IncomingTaskQueue::DeferredQueue::Pop() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(!queue_.empty());
PendingTask deferred_task = std::move(queue_.front());
queue_.pop();
return deferred_task;
}
bool IncomingTaskQueue::DeferredQueue::HasTasks() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return !queue_.empty();
}
void IncomingTaskQueue::DeferredQueue::Clear() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
while (!queue_.empty())
Pop();
}
bool IncomingTaskQueue::PostPendingTask(PendingTask* pending_task) {
// Warning: Don't try to short-circuit, and handle this thread's tasks more
// directly, as it could starve handling of foreign threads. Put every task
// into this queue.
bool accept_new_tasks;
bool was_empty = false;
{
AutoLock auto_lock(incoming_queue_lock_);
accept_new_tasks = accept_new_tasks_;
if (accept_new_tasks) {
was_empty =
PostPendingTaskLockRequired(pending_task) && triage_queue_empty_;
}
}
if (!accept_new_tasks) {
// Clear the pending task outside of |incoming_queue_lock_| to prevent any
// chance of self-deadlock if destroying a task also posts a task to this
// queue.
pending_task->task.Reset();
return false;
}
// Let |task_queue_observer_| know of the queued task. This is done outside
// |incoming_queue_lock_| to avoid conflating locks (DidQueueTask() can also
// use a lock).
task_queue_observer_->DidQueueTask(was_empty);
return true;
}
bool IncomingTaskQueue::PostPendingTaskLockRequired(PendingTask* pending_task) {
incoming_queue_lock_.AssertAcquired();
// Initialize the sequence number. The sequence number is used for delayed
// tasks (to facilitate FIFO sorting when two tasks have the same
// delayed_run_time value) and for identifying the task in about:tracing.
pending_task->sequence_num = next_sequence_num_++;
task_queue_observer_->WillQueueTask(pending_task);
bool was_empty = incoming_queue_.empty();
incoming_queue_.push(std::move(*pending_task));
return was_empty;
}
void IncomingTaskQueue::ReloadWorkQueue(TaskQueue* work_queue) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Make sure no tasks are lost.
DCHECK(work_queue->empty());
// Acquire all we can from the inter-thread queue with one lock acquisition.
AutoLock lock(incoming_queue_lock_);
incoming_queue_.swap(*work_queue);
triage_queue_empty_ = work_queue->empty();
}
} // namespace internal
} // namespace base