// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/message_loop/incoming_task_queue.h"

#include <limits>
#include <utility>

#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/location.h"
#include "base/metrics/histogram_macros.h"
#include "base/synchronization/waitable_event.h"
#include "base/time/time.h"
#include "build/build_config.h"

namespace base {
namespace internal {

namespace {

#if DCHECK_IS_ON()
// Delays larger than this are often bogus, and a warning should be emitted in
// debug builds to warn developers.  http://crbug.com/450045
constexpr TimeDelta kTaskDelayWarningThreshold = TimeDelta::FromDays(14);
#endif

TimeTicks CalculateDelayedRuntime(TimeDelta delay) {
  TimeTicks delayed_run_time;
  if (delay > TimeDelta())
    delayed_run_time = TimeTicks::Now() + delay;
  else
    DCHECK_EQ(delay.InMilliseconds(), 0) << "delay should not be negative";
  return delayed_run_time;
}

}  // namespace

IncomingTaskQueue::IncomingTaskQueue(
    std::unique_ptr<Observer> task_queue_observer)
    : task_queue_observer_(std::move(task_queue_observer)),
      triage_tasks_(this) {
  // The constructing sequence is not necessarily the running sequence, e.g. in
  // the case of a MessageLoop created unbound.
  DETACH_FROM_SEQUENCE(sequence_checker_);
}

IncomingTaskQueue::~IncomingTaskQueue() = default;

bool IncomingTaskQueue::AddToIncomingQueue(const Location& from_here,
                                           OnceClosure task,
                                           TimeDelta delay,
                                           Nestable nestable) {
  // Use CHECK instead of DCHECK to crash earlier. See http://crbug.com/711167
  // for details.
  CHECK(task);
  DLOG_IF(WARNING, delay > kTaskDelayWarningThreshold)
      << "Requesting super-long task delay period of " << delay.InSeconds()
      << " seconds from here: " << from_here.ToString();

  PendingTask pending_task(from_here, std::move(task),
                           CalculateDelayedRuntime(delay), nestable);
#if defined(OS_WIN)
  // We consider the task needs a high resolution timer if the delay is
  // more than 0 and less than 32ms. This caps the relative error to
  // less than 50% : a 33ms wait can wake at 48ms since the default
  // resolution on Windows is between 10 and 15ms.
  if (delay > TimeDelta() &&
      delay.InMilliseconds() < (2 * Time::kMinLowResolutionThresholdMs)) {
    pending_task.is_high_res = true;
  }
#endif

  if (!delay.is_zero())
    UMA_HISTOGRAM_LONG_TIMES("MessageLoop.DelayedTaskQueue.PostedDelay", delay);

  return PostPendingTask(&pending_task);
}

void IncomingTaskQueue::Shutdown() {
  AutoLock auto_lock(incoming_queue_lock_);
  accept_new_tasks_ = false;
}

void IncomingTaskQueue::ReportMetricsOnIdle() const {
  UMA_HISTOGRAM_COUNTS_1M(
      "MessageLoop.DelayedTaskQueue.PendingTasksCountOnIdle",
      delayed_tasks_.Size());
}

IncomingTaskQueue::TriageQueue::TriageQueue(IncomingTaskQueue* outer)
    : outer_(outer) {}

IncomingTaskQueue::TriageQueue::~TriageQueue() = default;

const PendingTask& IncomingTaskQueue::TriageQueue::Peek() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
  ReloadFromIncomingQueueIfEmpty();
  DCHECK(!queue_.empty());
  return queue_.front();
}

PendingTask IncomingTaskQueue::TriageQueue::Pop() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
  ReloadFromIncomingQueueIfEmpty();
  DCHECK(!queue_.empty());
  PendingTask pending_task = std::move(queue_.front());
  queue_.pop();
  return pending_task;
}

bool IncomingTaskQueue::TriageQueue::HasTasks() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
  ReloadFromIncomingQueueIfEmpty();
  return !queue_.empty();
}

void IncomingTaskQueue::TriageQueue::Clear() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);

  // Clear() should be invoked before WillDestroyCurrentMessageLoop().
  DCHECK(outer_->accept_new_tasks_);

  // Delete all currently pending tasks but not tasks potentially posted from
  // their destructors. See ~MessageLoop() for the full logic mitigating against
  // infite loops when clearing pending tasks. The ScopedClosureRunner below
  // will be bound to a task posted at the end of the queue. After it is posted,
  // tasks will be deleted one by one, when the bound ScopedClosureRunner is
  // deleted and sets |deleted_all_originally_pending|, we know we've deleted
  // all originally pending tasks.
  bool deleted_all_originally_pending = false;
  ScopedClosureRunner capture_deleted_all_originally_pending(BindOnce(
      [](bool* deleted_all_originally_pending) {
        *deleted_all_originally_pending = true;
      },
      Unretained(&deleted_all_originally_pending)));
  outer_->AddToIncomingQueue(
      FROM_HERE,
      BindOnce([](ScopedClosureRunner) {},
               std::move(capture_deleted_all_originally_pending)),
      TimeDelta(), Nestable::kNestable);

  while (!deleted_all_originally_pending) {
    PendingTask pending_task = Pop();

    if (!pending_task.delayed_run_time.is_null()) {
      outer_->delayed_tasks().Push(std::move(pending_task));
    }
  }
}

void IncomingTaskQueue::TriageQueue::ReloadFromIncomingQueueIfEmpty() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
  if (queue_.empty()) {
    outer_->ReloadWorkQueue(&queue_);
  }
}

IncomingTaskQueue::DelayedQueue::DelayedQueue() {
  DETACH_FROM_SEQUENCE(sequence_checker_);
}

IncomingTaskQueue::DelayedQueue::~DelayedQueue() = default;

void IncomingTaskQueue::DelayedQueue::Push(PendingTask pending_task) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);

  if (pending_task.is_high_res)
    ++pending_high_res_tasks_;

  queue_.push(std::move(pending_task));
}

const PendingTask& IncomingTaskQueue::DelayedQueue::Peek() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  DCHECK(!queue_.empty());
  return queue_.top();
}

PendingTask IncomingTaskQueue::DelayedQueue::Pop() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  DCHECK(!queue_.empty());
  PendingTask delayed_task = std::move(const_cast<PendingTask&>(queue_.top()));
  queue_.pop();

  if (delayed_task.is_high_res)
    --pending_high_res_tasks_;
  DCHECK_GE(pending_high_res_tasks_, 0);

  return delayed_task;
}

bool IncomingTaskQueue::DelayedQueue::HasTasks() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  // TODO(robliao): The other queues don't check for IsCancelled(). Should they?
  while (!queue_.empty() && Peek().task.IsCancelled())
    Pop();

  return !queue_.empty();
}

void IncomingTaskQueue::DelayedQueue::Clear() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  while (!queue_.empty())
    Pop();
}

size_t IncomingTaskQueue::DelayedQueue::Size() const {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  return queue_.size();
}

IncomingTaskQueue::DeferredQueue::DeferredQueue() {
  DETACH_FROM_SEQUENCE(sequence_checker_);
}

IncomingTaskQueue::DeferredQueue::~DeferredQueue() = default;

void IncomingTaskQueue::DeferredQueue::Push(PendingTask pending_task) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  queue_.push(std::move(pending_task));
}

const PendingTask& IncomingTaskQueue::DeferredQueue::Peek() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  DCHECK(!queue_.empty());
  return queue_.front();
}

PendingTask IncomingTaskQueue::DeferredQueue::Pop() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  DCHECK(!queue_.empty());
  PendingTask deferred_task = std::move(queue_.front());
  queue_.pop();
  return deferred_task;
}

bool IncomingTaskQueue::DeferredQueue::HasTasks() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  return !queue_.empty();
}

void IncomingTaskQueue::DeferredQueue::Clear() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  while (!queue_.empty())
    Pop();
}

bool IncomingTaskQueue::PostPendingTask(PendingTask* pending_task) {
  // Warning: Don't try to short-circuit, and handle this thread's tasks more
  // directly, as it could starve handling of foreign threads.  Put every task
  // into this queue.
  bool accept_new_tasks;
  bool was_empty = false;
  {
    AutoLock auto_lock(incoming_queue_lock_);
    accept_new_tasks = accept_new_tasks_;
    if (accept_new_tasks) {
      was_empty =
          PostPendingTaskLockRequired(pending_task) && triage_queue_empty_;
    }
  }

  if (!accept_new_tasks) {
    // Clear the pending task outside of |incoming_queue_lock_| to prevent any
    // chance of self-deadlock if destroying a task also posts a task to this
    // queue.
    pending_task->task.Reset();
    return false;
  }

  // Let |task_queue_observer_| know of the queued task. This is done outside
  // |incoming_queue_lock_| to avoid conflating locks (DidQueueTask() can also
  // use a lock).
  task_queue_observer_->DidQueueTask(was_empty);

  return true;
}

bool IncomingTaskQueue::PostPendingTaskLockRequired(PendingTask* pending_task) {
  incoming_queue_lock_.AssertAcquired();

  // Initialize the sequence number. The sequence number is used for delayed
  // tasks (to facilitate FIFO sorting when two tasks have the same
  // delayed_run_time value) and for identifying the task in about:tracing.
  pending_task->sequence_num = next_sequence_num_++;

  task_queue_observer_->WillQueueTask(pending_task);

  bool was_empty = incoming_queue_.empty();
  incoming_queue_.push(std::move(*pending_task));
  return was_empty;
}

void IncomingTaskQueue::ReloadWorkQueue(TaskQueue* work_queue) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);

  // Make sure no tasks are lost.
  DCHECK(work_queue->empty());

  // Acquire all we can from the inter-thread queue with one lock acquisition.
  AutoLock lock(incoming_queue_lock_);
  incoming_queue_.swap(*work_queue);
  triage_queue_empty_ = work_queue->empty();
}

}  // namespace internal
}  // namespace base