// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
* Copyright (C) 2012-2015, International Business Machines
* Corporation and others. All Rights Reserved.
*******************************************************************************
* collationdatabuilder.cpp
*
* (replaced the former ucol_elm.cpp)
*
* created on: 2012apr01
* created by: Markus W. Scherer
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_COLLATION
#include "unicode/localpointer.h"
#include "unicode/uchar.h"
#include "unicode/ucharstrie.h"
#include "unicode/ucharstriebuilder.h"
#include "unicode/uniset.h"
#include "unicode/unistr.h"
#include "unicode/usetiter.h"
#include "unicode/utf16.h"
#include "cmemory.h"
#include "collation.h"
#include "collationdata.h"
#include "collationdatabuilder.h"
#include "collationfastlatinbuilder.h"
#include "collationiterator.h"
#include "normalizer2impl.h"
#include "utrie2.h"
#include "uvectr32.h"
#include "uvectr64.h"
#include "uvector.h"
U_NAMESPACE_BEGIN
CollationDataBuilder::CEModifier::~CEModifier() {}
/**
* Build-time context and CE32 for a code point.
* If a code point has contextual mappings, then the default (no-context) mapping
* and all conditional mappings are stored in a singly-linked list
* of ConditionalCE32, sorted by context strings.
*
* Context strings sort by prefix length, then by prefix, then by contraction suffix.
* Context strings must be unique and in ascending order.
*/
struct ConditionalCE32 : public UMemory {
ConditionalCE32()
: context(),
ce32(0), defaultCE32(Collation::NO_CE32), builtCE32(Collation::NO_CE32),
next(-1) {}
ConditionalCE32(const UnicodeString &ct, uint32_t ce)
: context(ct),
ce32(ce), defaultCE32(Collation::NO_CE32), builtCE32(Collation::NO_CE32),
next(-1) {}
inline UBool hasContext() const { return context.length() > 1; }
inline int32_t prefixLength() const { return context.charAt(0); }
/**
* "\0" for the first entry for any code point, with its default CE32.
*
* Otherwise one unit with the length of the prefix string,
* then the prefix string, then the contraction suffix.
*/
UnicodeString context;
/**
* CE32 for the code point and its context.
* Can be special (e.g., for an expansion) but not contextual (prefix or contraction tag).
*/
uint32_t ce32;
/**
* Default CE32 for all contexts with this same prefix.
* Initially NO_CE32. Set only while building runtime data structures,
* and only on one of the nodes of a sub-list with the same prefix.
*/
uint32_t defaultCE32;
/**
* CE32 for the built contexts.
* When fetching CEs from the builder, the contexts are built into their runtime form
* so that the normal collation implementation can process them.
* The result is cached in the list head. It is reset when the contexts are modified.
*/
uint32_t builtCE32;
/**
* Index of the next ConditionalCE32.
* Negative for the end of the list.
*/
int32_t next;
};
U_CDECL_BEGIN
U_CAPI void U_CALLCONV
uprv_deleteConditionalCE32(void *obj) {
delete static_cast<ConditionalCE32 *>(obj);
}
U_CDECL_END
/**
* Build-time collation element and character iterator.
* Uses the runtime CollationIterator for fetching CEs for a string
* but reads from the builder's unfinished data structures.
* In particular, this class reads from the unfinished trie
* and has to avoid CollationIterator::nextCE() and redirect other
* calls to data->getCE32() and data->getCE32FromSupplementary().
*
* We do this so that we need not implement the collation algorithm
* again for the builder and make it behave exactly like the runtime code.
* That would be more difficult to test and maintain than this indirection.
*
* Some CE32 tags (for example, the DIGIT_TAG) do not occur in the builder data,
* so the data accesses from those code paths need not be modified.
*
* This class iterates directly over whole code points
* so that the CollationIterator does not need the finished trie
* for handling the LEAD_SURROGATE_TAG.
*/
class DataBuilderCollationIterator : public CollationIterator {
public:
DataBuilderCollationIterator(CollationDataBuilder &b);
virtual ~DataBuilderCollationIterator();
int32_t fetchCEs(const UnicodeString &str, int32_t start, int64_t ces[], int32_t cesLength);
virtual void resetToOffset(int32_t newOffset);
virtual int32_t getOffset() const;
virtual UChar32 nextCodePoint(UErrorCode &errorCode);
virtual UChar32 previousCodePoint(UErrorCode &errorCode);
protected:
virtual void forwardNumCodePoints(int32_t num, UErrorCode &errorCode);
virtual void backwardNumCodePoints(int32_t num, UErrorCode &errorCode);
virtual uint32_t getDataCE32(UChar32 c) const;
virtual uint32_t getCE32FromBuilderData(uint32_t ce32, UErrorCode &errorCode);
CollationDataBuilder &builder;
CollationData builderData;
uint32_t jamoCE32s[CollationData::JAMO_CE32S_LENGTH];
const UnicodeString *s;
int32_t pos;
};
DataBuilderCollationIterator::DataBuilderCollationIterator(CollationDataBuilder &b)
: CollationIterator(&builderData, /*numeric=*/ FALSE),
builder(b), builderData(b.nfcImpl),
s(NULL), pos(0) {
builderData.base = builder.base;
// Set all of the jamoCE32s[] to indirection CE32s.
for(int32_t j = 0; j < CollationData::JAMO_CE32S_LENGTH; ++j) { // Count across Jamo types.
UChar32 jamo = CollationDataBuilder::jamoCpFromIndex(j);
jamoCE32s[j] = Collation::makeCE32FromTagAndIndex(Collation::BUILDER_DATA_TAG, jamo) |
CollationDataBuilder::IS_BUILDER_JAMO_CE32;
}
builderData.jamoCE32s = jamoCE32s;
}
DataBuilderCollationIterator::~DataBuilderCollationIterator() {}
int32_t
DataBuilderCollationIterator::fetchCEs(const UnicodeString &str, int32_t start,
int64_t ces[], int32_t cesLength) {
// Set the pointers each time, in case they changed due to reallocation.
builderData.ce32s = reinterpret_cast<const uint32_t *>(builder.ce32s.getBuffer());
builderData.ces = builder.ce64s.getBuffer();
builderData.contexts = builder.contexts.getBuffer();
// Modified copy of CollationIterator::nextCE() and CollationIterator::nextCEFromCE32().
reset();
s = &str;
pos = start;
UErrorCode errorCode = U_ZERO_ERROR;
while(U_SUCCESS(errorCode) && pos < s->length()) {
// No need to keep all CEs in the iterator buffer.
clearCEs();
UChar32 c = s->char32At(pos);
pos += U16_LENGTH(c);
uint32_t ce32 = utrie2_get32(builder.trie, c);
const CollationData *d;
if(ce32 == Collation::FALLBACK_CE32) {
d = builder.base;
ce32 = builder.base->getCE32(c);
} else {
d = &builderData;
}
appendCEsFromCE32(d, c, ce32, /*forward=*/ TRUE, errorCode);
U_ASSERT(U_SUCCESS(errorCode));
for(int32_t i = 0; i < getCEsLength(); ++i) {
int64_t ce = getCE(i);
if(ce != 0) {
if(cesLength < Collation::MAX_EXPANSION_LENGTH) {
ces[cesLength] = ce;
}
++cesLength;
}
}
}
return cesLength;
}
void
DataBuilderCollationIterator::resetToOffset(int32_t newOffset) {
reset();
pos = newOffset;
}
int32_t
DataBuilderCollationIterator::getOffset() const {
return pos;
}
UChar32
DataBuilderCollationIterator::nextCodePoint(UErrorCode & /*errorCode*/) {
if(pos == s->length()) {
return U_SENTINEL;
}
UChar32 c = s->char32At(pos);
pos += U16_LENGTH(c);
return c;
}
UChar32
DataBuilderCollationIterator::previousCodePoint(UErrorCode & /*errorCode*/) {
if(pos == 0) {
return U_SENTINEL;
}
UChar32 c = s->char32At(pos - 1);
pos -= U16_LENGTH(c);
return c;
}
void
DataBuilderCollationIterator::forwardNumCodePoints(int32_t num, UErrorCode & /*errorCode*/) {
pos = s->moveIndex32(pos, num);
}
void
DataBuilderCollationIterator::backwardNumCodePoints(int32_t num, UErrorCode & /*errorCode*/) {
pos = s->moveIndex32(pos, -num);
}
uint32_t
DataBuilderCollationIterator::getDataCE32(UChar32 c) const {
return utrie2_get32(builder.trie, c);
}
uint32_t
DataBuilderCollationIterator::getCE32FromBuilderData(uint32_t ce32, UErrorCode &errorCode) {
U_ASSERT(Collation::hasCE32Tag(ce32, Collation::BUILDER_DATA_TAG));
if((ce32 & CollationDataBuilder::IS_BUILDER_JAMO_CE32) != 0) {
UChar32 jamo = Collation::indexFromCE32(ce32);
return utrie2_get32(builder.trie, jamo);
} else {
ConditionalCE32 *cond = builder.getConditionalCE32ForCE32(ce32);
if(cond->builtCE32 == Collation::NO_CE32) {
// Build the context-sensitive mappings into their runtime form and cache the result.
cond->builtCE32 = builder.buildContext(cond, errorCode);
if(errorCode == U_BUFFER_OVERFLOW_ERROR) {
errorCode = U_ZERO_ERROR;
builder.clearContexts();
cond->builtCE32 = builder.buildContext(cond, errorCode);
}
builderData.contexts = builder.contexts.getBuffer();
}
return cond->builtCE32;
}
}
// ------------------------------------------------------------------------- ***
CollationDataBuilder::CollationDataBuilder(UErrorCode &errorCode)
: nfcImpl(*Normalizer2Factory::getNFCImpl(errorCode)),
base(NULL), baseSettings(NULL),
trie(NULL),
ce32s(errorCode), ce64s(errorCode), conditionalCE32s(errorCode),
modified(FALSE),
fastLatinEnabled(FALSE), fastLatinBuilder(NULL),
collIter(NULL) {
// Reserve the first CE32 for U+0000.
ce32s.addElement(0, errorCode);
conditionalCE32s.setDeleter(uprv_deleteConditionalCE32);
}
CollationDataBuilder::~CollationDataBuilder() {
utrie2_close(trie);
delete fastLatinBuilder;
delete collIter;
}
void
CollationDataBuilder::initForTailoring(const CollationData *b, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
if(trie != NULL) {
errorCode = U_INVALID_STATE_ERROR;
return;
}
if(b == NULL) {
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
base = b;
// For a tailoring, the default is to fall back to the base.
trie = utrie2_open(Collation::FALLBACK_CE32, Collation::FFFD_CE32, &errorCode);
// Set the Latin-1 letters block so that it is allocated first in the data array,
// to try to improve locality of reference when sorting Latin-1 text.
// Do not use utrie2_setRange32() since that will not actually allocate blocks
// that are filled with the default value.
// ASCII (0..7F) is already preallocated anyway.
for(UChar32 c = 0xc0; c <= 0xff; ++c) {
utrie2_set32(trie, c, Collation::FALLBACK_CE32, &errorCode);
}
// Hangul syllables are not tailorable (except via tailoring Jamos).
// Always set the Hangul tag to help performance.
// Do this here, rather than in buildMappings(),
// so that we see the HANGUL_TAG in various assertions.
uint32_t hangulCE32 = Collation::makeCE32FromTagAndIndex(Collation::HANGUL_TAG, 0);
utrie2_setRange32(trie, Hangul::HANGUL_BASE, Hangul::HANGUL_END, hangulCE32, TRUE, &errorCode);
// Copy the set contents but don't copy/clone the set as a whole because
// that would copy the isFrozen state too.
unsafeBackwardSet.addAll(*b->unsafeBackwardSet);
if(U_FAILURE(errorCode)) { return; }
}
UBool
CollationDataBuilder::maybeSetPrimaryRange(UChar32 start, UChar32 end,
uint32_t primary, int32_t step,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return FALSE; }
U_ASSERT(start <= end);
// TODO: Do we need to check what values are currently set for start..end?
// An offset range is worth it only if we can achieve an overlap between
// adjacent UTrie2 blocks of 32 code points each.
// An offset CE is also a little more expensive to look up and compute
// than a simple CE.
// If the range spans at least three UTrie2 block boundaries (> 64 code points),
// then we take it.
// If the range spans one or two block boundaries and there are
// at least 4 code points on either side, then we take it.
// (We could additionally require a minimum range length of, say, 16.)
int32_t blockDelta = (end >> 5) - (start >> 5);
if(2 <= step && step <= 0x7f &&
(blockDelta >= 3 ||
(blockDelta > 0 && (start & 0x1f) <= 0x1c && (end & 0x1f) >= 3))) {
int64_t dataCE = ((int64_t)primary << 32) | (start << 8) | step;
if(isCompressiblePrimary(primary)) { dataCE |= 0x80; }
int32_t index = addCE(dataCE, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
if(index > Collation::MAX_INDEX) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
return 0;
}
uint32_t offsetCE32 = Collation::makeCE32FromTagAndIndex(Collation::OFFSET_TAG, index);
utrie2_setRange32(trie, start, end, offsetCE32, TRUE, &errorCode);
modified = TRUE;
return TRUE;
} else {
return FALSE;
}
}
uint32_t
CollationDataBuilder::setPrimaryRangeAndReturnNext(UChar32 start, UChar32 end,
uint32_t primary, int32_t step,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
UBool isCompressible = isCompressiblePrimary(primary);
if(maybeSetPrimaryRange(start, end, primary, step, errorCode)) {
return Collation::incThreeBytePrimaryByOffset(primary, isCompressible,
(end - start + 1) * step);
} else {
// Short range: Set individual CE32s.
for(;;) {
utrie2_set32(trie, start, Collation::makeLongPrimaryCE32(primary), &errorCode);
++start;
primary = Collation::incThreeBytePrimaryByOffset(primary, isCompressible, step);
if(start > end) { return primary; }
}
modified = TRUE;
}
}
uint32_t
CollationDataBuilder::getCE32FromOffsetCE32(UBool fromBase, UChar32 c, uint32_t ce32) const {
int32_t i = Collation::indexFromCE32(ce32);
int64_t dataCE = fromBase ? base->ces[i] : ce64s.elementAti(i);
uint32_t p = Collation::getThreeBytePrimaryForOffsetData(c, dataCE);
return Collation::makeLongPrimaryCE32(p);
}
UBool
CollationDataBuilder::isCompressibleLeadByte(uint32_t b) const {
return base->isCompressibleLeadByte(b);
}
UBool
CollationDataBuilder::isAssigned(UChar32 c) const {
return Collation::isAssignedCE32(utrie2_get32(trie, c));
}
uint32_t
CollationDataBuilder::getLongPrimaryIfSingleCE(UChar32 c) const {
uint32_t ce32 = utrie2_get32(trie, c);
if(Collation::isLongPrimaryCE32(ce32)) {
return Collation::primaryFromLongPrimaryCE32(ce32);
} else {
return 0;
}
}
int64_t
CollationDataBuilder::getSingleCE(UChar32 c, UErrorCode &errorCode) const {
if(U_FAILURE(errorCode)) { return 0; }
// Keep parallel with CollationData::getSingleCE().
UBool fromBase = FALSE;
uint32_t ce32 = utrie2_get32(trie, c);
if(ce32 == Collation::FALLBACK_CE32) {
fromBase = TRUE;
ce32 = base->getCE32(c);
}
while(Collation::isSpecialCE32(ce32)) {
switch(Collation::tagFromCE32(ce32)) {
case Collation::LATIN_EXPANSION_TAG:
case Collation::BUILDER_DATA_TAG:
case Collation::PREFIX_TAG:
case Collation::CONTRACTION_TAG:
case Collation::HANGUL_TAG:
case Collation::LEAD_SURROGATE_TAG:
errorCode = U_UNSUPPORTED_ERROR;
return 0;
case Collation::FALLBACK_TAG:
case Collation::RESERVED_TAG_3:
errorCode = U_INTERNAL_PROGRAM_ERROR;
return 0;
case Collation::LONG_PRIMARY_TAG:
return Collation::ceFromLongPrimaryCE32(ce32);
case Collation::LONG_SECONDARY_TAG:
return Collation::ceFromLongSecondaryCE32(ce32);
case Collation::EXPANSION32_TAG:
if(Collation::lengthFromCE32(ce32) == 1) {
int32_t i = Collation::indexFromCE32(ce32);
ce32 = fromBase ? base->ce32s[i] : ce32s.elementAti(i);
break;
} else {
errorCode = U_UNSUPPORTED_ERROR;
return 0;
}
case Collation::EXPANSION_TAG: {
if(Collation::lengthFromCE32(ce32) == 1) {
int32_t i = Collation::indexFromCE32(ce32);
return fromBase ? base->ces[i] : ce64s.elementAti(i);
} else {
errorCode = U_UNSUPPORTED_ERROR;
return 0;
}
}
case Collation::DIGIT_TAG:
// Fetch the non-numeric-collation CE32 and continue.
ce32 = ce32s.elementAti(Collation::indexFromCE32(ce32));
break;
case Collation::U0000_TAG:
U_ASSERT(c == 0);
// Fetch the normal ce32 for U+0000 and continue.
ce32 = fromBase ? base->ce32s[0] : ce32s.elementAti(0);
break;
case Collation::OFFSET_TAG:
ce32 = getCE32FromOffsetCE32(fromBase, c, ce32);
break;
case Collation::IMPLICIT_TAG:
return Collation::unassignedCEFromCodePoint(c);
}
}
return Collation::ceFromSimpleCE32(ce32);
}
int32_t
CollationDataBuilder::addCE(int64_t ce, UErrorCode &errorCode) {
int32_t length = ce64s.size();
for(int32_t i = 0; i < length; ++i) {
if(ce == ce64s.elementAti(i)) { return i; }
}
ce64s.addElement(ce, errorCode);
return length;
}
int32_t
CollationDataBuilder::addCE32(uint32_t ce32, UErrorCode &errorCode) {
int32_t length = ce32s.size();
for(int32_t i = 0; i < length; ++i) {
if(ce32 == (uint32_t)ce32s.elementAti(i)) { return i; }
}
ce32s.addElement((int32_t)ce32, errorCode);
return length;
}
int32_t
CollationDataBuilder::addConditionalCE32(const UnicodeString &context, uint32_t ce32,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return -1; }
U_ASSERT(!context.isEmpty());
int32_t index = conditionalCE32s.size();
if(index > Collation::MAX_INDEX) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
return -1;
}
ConditionalCE32 *cond = new ConditionalCE32(context, ce32);
if(cond == NULL) {
errorCode = U_MEMORY_ALLOCATION_ERROR;
return -1;
}
conditionalCE32s.addElement(cond, errorCode);
return index;
}
void
CollationDataBuilder::add(const UnicodeString &prefix, const UnicodeString &s,
const int64_t ces[], int32_t cesLength,
UErrorCode &errorCode) {
uint32_t ce32 = encodeCEs(ces, cesLength, errorCode);
addCE32(prefix, s, ce32, errorCode);
}
void
CollationDataBuilder::addCE32(const UnicodeString &prefix, const UnicodeString &s,
uint32_t ce32, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
if(s.isEmpty()) {
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if(trie == NULL || utrie2_isFrozen(trie)) {
errorCode = U_INVALID_STATE_ERROR;
return;
}
UChar32 c = s.char32At(0);
int32_t cLength = U16_LENGTH(c);
uint32_t oldCE32 = utrie2_get32(trie, c);
UBool hasContext = !prefix.isEmpty() || s.length() > cLength;
if(oldCE32 == Collation::FALLBACK_CE32) {
// First tailoring for c.
// If c has contextual base mappings or if we add a contextual mapping,
// then copy the base mappings.
// Otherwise we just override the base mapping.
uint32_t baseCE32 = base->getFinalCE32(base->getCE32(c));
if(hasContext || Collation::ce32HasContext(baseCE32)) {
oldCE32 = copyFromBaseCE32(c, baseCE32, TRUE, errorCode);
utrie2_set32(trie, c, oldCE32, &errorCode);
if(U_FAILURE(errorCode)) { return; }
}
}
if(!hasContext) {
// No prefix, no contraction.
if(!isBuilderContextCE32(oldCE32)) {
utrie2_set32(trie, c, ce32, &errorCode);
} else {
ConditionalCE32 *cond = getConditionalCE32ForCE32(oldCE32);
cond->builtCE32 = Collation::NO_CE32;
cond->ce32 = ce32;
}
} else {
ConditionalCE32 *cond;
if(!isBuilderContextCE32(oldCE32)) {
// Replace the simple oldCE32 with a builder context CE32
// pointing to a new ConditionalCE32 list head.
int32_t index = addConditionalCE32(UnicodeString((UChar)0), oldCE32, errorCode);
if(U_FAILURE(errorCode)) { return; }
uint32_t contextCE32 = makeBuilderContextCE32(index);
utrie2_set32(trie, c, contextCE32, &errorCode);
contextChars.add(c);
cond = getConditionalCE32(index);
} else {
cond = getConditionalCE32ForCE32(oldCE32);
cond->builtCE32 = Collation::NO_CE32;
}
UnicodeString suffix(s, cLength);
UnicodeString context((UChar)prefix.length());
context.append(prefix).append(suffix);
unsafeBackwardSet.addAll(suffix);
for(;;) {
// invariant: context > cond->context
int32_t next = cond->next;
if(next < 0) {
// Append a new ConditionalCE32 after cond.
int32_t index = addConditionalCE32(context, ce32, errorCode);
if(U_FAILURE(errorCode)) { return; }
cond->next = index;
break;
}
ConditionalCE32 *nextCond = getConditionalCE32(next);
int8_t cmp = context.compare(nextCond->context);
if(cmp < 0) {
// Insert a new ConditionalCE32 between cond and nextCond.
int32_t index = addConditionalCE32(context, ce32, errorCode);
if(U_FAILURE(errorCode)) { return; }
cond->next = index;
getConditionalCE32(index)->next = next;
break;
} else if(cmp == 0) {
// Same context as before, overwrite its ce32.
nextCond->ce32 = ce32;
break;
}
cond = nextCond;
}
}
modified = TRUE;
}
uint32_t
CollationDataBuilder::encodeOneCEAsCE32(int64_t ce) {
uint32_t p = (uint32_t)(ce >> 32);
uint32_t lower32 = (uint32_t)ce;
uint32_t t = (uint32_t)(ce & 0xffff);
U_ASSERT((t & 0xc000) != 0xc000); // Impossible case bits 11 mark special CE32s.
if((ce & INT64_C(0xffff00ff00ff)) == 0) {
// normal form ppppsstt
return p | (lower32 >> 16) | (t >> 8);
} else if((ce & INT64_C(0xffffffffff)) == Collation::COMMON_SEC_AND_TER_CE) {
// long-primary form ppppppC1
return Collation::makeLongPrimaryCE32(p);
} else if(p == 0 && (t & 0xff) == 0) {
// long-secondary form ssssttC2
return Collation::makeLongSecondaryCE32(lower32);
}
return Collation::NO_CE32;
}
uint32_t
CollationDataBuilder::encodeOneCE(int64_t ce, UErrorCode &errorCode) {
// Try to encode one CE as one CE32.
uint32_t ce32 = encodeOneCEAsCE32(ce);
if(ce32 != Collation::NO_CE32) { return ce32; }
int32_t index = addCE(ce, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
if(index > Collation::MAX_INDEX) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
return 0;
}
return Collation::makeCE32FromTagIndexAndLength(Collation::EXPANSION_TAG, index, 1);
}
uint32_t
CollationDataBuilder::encodeCEs(const int64_t ces[], int32_t cesLength,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
if(cesLength < 0 || cesLength > Collation::MAX_EXPANSION_LENGTH) {
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
if(trie == NULL || utrie2_isFrozen(trie)) {
errorCode = U_INVALID_STATE_ERROR;
return 0;
}
if(cesLength == 0) {
// Convenience: We cannot map to nothing, but we can map to a completely ignorable CE.
// Do this here so that callers need not do it.
return encodeOneCEAsCE32(0);
} else if(cesLength == 1) {
return encodeOneCE(ces[0], errorCode);
} else if(cesLength == 2) {
// Try to encode two CEs as one CE32.
int64_t ce0 = ces[0];
int64_t ce1 = ces[1];
uint32_t p0 = (uint32_t)(ce0 >> 32);
if((ce0 & INT64_C(0xffffffffff00ff)) == Collation::COMMON_SECONDARY_CE &&
(ce1 & INT64_C(0xffffffff00ffffff)) == Collation::COMMON_TERTIARY_CE &&
p0 != 0) {
// Latin mini expansion
return
p0 |
(((uint32_t)ce0 & 0xff00u) << 8) |
(uint32_t)(ce1 >> 16) |
Collation::SPECIAL_CE32_LOW_BYTE |
Collation::LATIN_EXPANSION_TAG;
}
}
// Try to encode two or more CEs as CE32s.
int32_t newCE32s[Collation::MAX_EXPANSION_LENGTH];
for(int32_t i = 0;; ++i) {
if(i == cesLength) {
return encodeExpansion32(newCE32s, cesLength, errorCode);
}
uint32_t ce32 = encodeOneCEAsCE32(ces[i]);
if(ce32 == Collation::NO_CE32) { break; }
newCE32s[i] = (int32_t)ce32;
}
return encodeExpansion(ces, cesLength, errorCode);
}
uint32_t
CollationDataBuilder::encodeExpansion(const int64_t ces[], int32_t length, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
// See if this sequence of CEs has already been stored.
int64_t first = ces[0];
int32_t ce64sMax = ce64s.size() - length;
for(int32_t i = 0; i <= ce64sMax; ++i) {
if(first == ce64s.elementAti(i)) {
if(i > Collation::MAX_INDEX) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
return 0;
}
for(int32_t j = 1;; ++j) {
if(j == length) {
return Collation::makeCE32FromTagIndexAndLength(
Collation::EXPANSION_TAG, i, length);
}
if(ce64s.elementAti(i + j) != ces[j]) { break; }
}
}
}
// Store the new sequence.
int32_t i = ce64s.size();
if(i > Collation::MAX_INDEX) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
return 0;
}
for(int32_t j = 0; j < length; ++j) {
ce64s.addElement(ces[j], errorCode);
}
return Collation::makeCE32FromTagIndexAndLength(Collation::EXPANSION_TAG, i, length);
}
uint32_t
CollationDataBuilder::encodeExpansion32(const int32_t newCE32s[], int32_t length,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
// See if this sequence of CE32s has already been stored.
int32_t first = newCE32s[0];
int32_t ce32sMax = ce32s.size() - length;
for(int32_t i = 0; i <= ce32sMax; ++i) {
if(first == ce32s.elementAti(i)) {
if(i > Collation::MAX_INDEX) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
return 0;
}
for(int32_t j = 1;; ++j) {
if(j == length) {
return Collation::makeCE32FromTagIndexAndLength(
Collation::EXPANSION32_TAG, i, length);
}
if(ce32s.elementAti(i + j) != newCE32s[j]) { break; }
}
}
}
// Store the new sequence.
int32_t i = ce32s.size();
if(i > Collation::MAX_INDEX) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
return 0;
}
for(int32_t j = 0; j < length; ++j) {
ce32s.addElement(newCE32s[j], errorCode);
}
return Collation::makeCE32FromTagIndexAndLength(Collation::EXPANSION32_TAG, i, length);
}
uint32_t
CollationDataBuilder::copyFromBaseCE32(UChar32 c, uint32_t ce32, UBool withContext,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
if(!Collation::isSpecialCE32(ce32)) { return ce32; }
switch(Collation::tagFromCE32(ce32)) {
case Collation::LONG_PRIMARY_TAG:
case Collation::LONG_SECONDARY_TAG:
case Collation::LATIN_EXPANSION_TAG:
// copy as is
break;
case Collation::EXPANSION32_TAG: {
const uint32_t *baseCE32s = base->ce32s + Collation::indexFromCE32(ce32);
int32_t length = Collation::lengthFromCE32(ce32);
ce32 = encodeExpansion32(
reinterpret_cast<const int32_t *>(baseCE32s), length, errorCode);
break;
}
case Collation::EXPANSION_TAG: {
const int64_t *baseCEs = base->ces + Collation::indexFromCE32(ce32);
int32_t length = Collation::lengthFromCE32(ce32);
ce32 = encodeExpansion(baseCEs, length, errorCode);
break;
}
case Collation::PREFIX_TAG: {
// Flatten prefixes and nested suffixes (contractions)
// into a linear list of ConditionalCE32.
const UChar *p = base->contexts + Collation::indexFromCE32(ce32);
ce32 = CollationData::readCE32(p); // Default if no prefix match.
if(!withContext) {
return copyFromBaseCE32(c, ce32, FALSE, errorCode);
}
ConditionalCE32 head;
UnicodeString context((UChar)0);
int32_t index;
if(Collation::isContractionCE32(ce32)) {
index = copyContractionsFromBaseCE32(context, c, ce32, &head, errorCode);
} else {
ce32 = copyFromBaseCE32(c, ce32, TRUE, errorCode);
head.next = index = addConditionalCE32(context, ce32, errorCode);
}
if(U_FAILURE(errorCode)) { return 0; }
ConditionalCE32 *cond = getConditionalCE32(index); // the last ConditionalCE32 so far
UCharsTrie::Iterator prefixes(p + 2, 0, errorCode);
while(prefixes.next(errorCode)) {
context = prefixes.getString();
context.reverse();
context.insert(0, (UChar)context.length());
ce32 = (uint32_t)prefixes.getValue();
if(Collation::isContractionCE32(ce32)) {
index = copyContractionsFromBaseCE32(context, c, ce32, cond, errorCode);
} else {
ce32 = copyFromBaseCE32(c, ce32, TRUE, errorCode);
cond->next = index = addConditionalCE32(context, ce32, errorCode);
}
if(U_FAILURE(errorCode)) { return 0; }
cond = getConditionalCE32(index);
}
ce32 = makeBuilderContextCE32(head.next);
contextChars.add(c);
break;
}
case Collation::CONTRACTION_TAG: {
if(!withContext) {
const UChar *p = base->contexts + Collation::indexFromCE32(ce32);
ce32 = CollationData::readCE32(p); // Default if no suffix match.
return copyFromBaseCE32(c, ce32, FALSE, errorCode);
}
ConditionalCE32 head;
UnicodeString context((UChar)0);
copyContractionsFromBaseCE32(context, c, ce32, &head, errorCode);
ce32 = makeBuilderContextCE32(head.next);
contextChars.add(c);
break;
}
case Collation::HANGUL_TAG:
errorCode = U_UNSUPPORTED_ERROR; // We forbid tailoring of Hangul syllables.
break;
case Collation::OFFSET_TAG:
ce32 = getCE32FromOffsetCE32(TRUE, c, ce32);
break;
case Collation::IMPLICIT_TAG:
ce32 = encodeOneCE(Collation::unassignedCEFromCodePoint(c), errorCode);
break;
default:
U_ASSERT(FALSE); // require ce32 == base->getFinalCE32(ce32)
break;
}
return ce32;
}
int32_t
CollationDataBuilder::copyContractionsFromBaseCE32(UnicodeString &context, UChar32 c, uint32_t ce32,
ConditionalCE32 *cond, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
const UChar *p = base->contexts + Collation::indexFromCE32(ce32);
int32_t index;
if((ce32 & Collation::CONTRACT_SINGLE_CP_NO_MATCH) != 0) {
// No match on the single code point.
// We are underneath a prefix, and the default mapping is just
// a fallback to the mappings for a shorter prefix.
U_ASSERT(context.length() > 1);
index = -1;
} else {
ce32 = CollationData::readCE32(p); // Default if no suffix match.
U_ASSERT(!Collation::isContractionCE32(ce32));
ce32 = copyFromBaseCE32(c, ce32, TRUE, errorCode);
cond->next = index = addConditionalCE32(context, ce32, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
cond = getConditionalCE32(index);
}
int32_t suffixStart = context.length();
UCharsTrie::Iterator suffixes(p + 2, 0, errorCode);
while(suffixes.next(errorCode)) {
context.append(suffixes.getString());
ce32 = copyFromBaseCE32(c, (uint32_t)suffixes.getValue(), TRUE, errorCode);
cond->next = index = addConditionalCE32(context, ce32, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
// No need to update the unsafeBackwardSet because the tailoring set
// is already a copy of the base set.
cond = getConditionalCE32(index);
context.truncate(suffixStart);
}
U_ASSERT(index >= 0);
return index;
}
class CopyHelper {
public:
CopyHelper(const CollationDataBuilder &s, CollationDataBuilder &d,
const CollationDataBuilder::CEModifier &m, UErrorCode &initialErrorCode)
: src(s), dest(d), modifier(m),
errorCode(initialErrorCode) {}
UBool copyRangeCE32(UChar32 start, UChar32 end, uint32_t ce32) {
ce32 = copyCE32(ce32);
utrie2_setRange32(dest.trie, start, end, ce32, TRUE, &errorCode);
if(CollationDataBuilder::isBuilderContextCE32(ce32)) {
dest.contextChars.add(start, end);
}
return U_SUCCESS(errorCode);
}
uint32_t copyCE32(uint32_t ce32) {
if(!Collation::isSpecialCE32(ce32)) {
int64_t ce = modifier.modifyCE32(ce32);
if(ce != Collation::NO_CE) {
ce32 = dest.encodeOneCE(ce, errorCode);
}
} else {
int32_t tag = Collation::tagFromCE32(ce32);
if(tag == Collation::EXPANSION32_TAG) {
const uint32_t *srcCE32s = reinterpret_cast<uint32_t *>(src.ce32s.getBuffer());
srcCE32s += Collation::indexFromCE32(ce32);
int32_t length = Collation::lengthFromCE32(ce32);
// Inspect the source CE32s. Just copy them if none are modified.
// Otherwise copy to modifiedCEs, with modifications.
UBool isModified = FALSE;
for(int32_t i = 0; i < length; ++i) {
ce32 = srcCE32s[i];
int64_t ce;
if(Collation::isSpecialCE32(ce32) ||
(ce = modifier.modifyCE32(ce32)) == Collation::NO_CE) {
if(isModified) {
modifiedCEs[i] = Collation::ceFromCE32(ce32);
}
} else {
if(!isModified) {
for(int32_t j = 0; j < i; ++j) {
modifiedCEs[j] = Collation::ceFromCE32(srcCE32s[j]);
}
isModified = TRUE;
}
modifiedCEs[i] = ce;
}
}
if(isModified) {
ce32 = dest.encodeCEs(modifiedCEs, length, errorCode);
} else {
ce32 = dest.encodeExpansion32(
reinterpret_cast<const int32_t *>(srcCE32s), length, errorCode);
}
} else if(tag == Collation::EXPANSION_TAG) {
const int64_t *srcCEs = src.ce64s.getBuffer();
srcCEs += Collation::indexFromCE32(ce32);
int32_t length = Collation::lengthFromCE32(ce32);
// Inspect the source CEs. Just copy them if none are modified.
// Otherwise copy to modifiedCEs, with modifications.
UBool isModified = FALSE;
for(int32_t i = 0; i < length; ++i) {
int64_t srcCE = srcCEs[i];
int64_t ce = modifier.modifyCE(srcCE);
if(ce == Collation::NO_CE) {
if(isModified) {
modifiedCEs[i] = srcCE;
}
} else {
if(!isModified) {
for(int32_t j = 0; j < i; ++j) {
modifiedCEs[j] = srcCEs[j];
}
isModified = TRUE;
}
modifiedCEs[i] = ce;
}
}
if(isModified) {
ce32 = dest.encodeCEs(modifiedCEs, length, errorCode);
} else {
ce32 = dest.encodeExpansion(srcCEs, length, errorCode);
}
} else if(tag == Collation::BUILDER_DATA_TAG) {
// Copy the list of ConditionalCE32.
ConditionalCE32 *cond = src.getConditionalCE32ForCE32(ce32);
U_ASSERT(!cond->hasContext());
int32_t destIndex = dest.addConditionalCE32(
cond->context, copyCE32(cond->ce32), errorCode);
ce32 = CollationDataBuilder::makeBuilderContextCE32(destIndex);
while(cond->next >= 0) {
cond = src.getConditionalCE32(cond->next);
ConditionalCE32 *prevDestCond = dest.getConditionalCE32(destIndex);
destIndex = dest.addConditionalCE32(
cond->context, copyCE32(cond->ce32), errorCode);
int32_t suffixStart = cond->prefixLength() + 1;
dest.unsafeBackwardSet.addAll(cond->context.tempSubString(suffixStart));
prevDestCond->next = destIndex;
}
} else {
// Just copy long CEs and Latin mini expansions (and other expected values) as is,
// assuming that the modifier would not modify them.
U_ASSERT(tag == Collation::LONG_PRIMARY_TAG ||
tag == Collation::LONG_SECONDARY_TAG ||
tag == Collation::LATIN_EXPANSION_TAG ||
tag == Collation::HANGUL_TAG);
}
}
return ce32;
}
const CollationDataBuilder &src;
CollationDataBuilder &dest;
const CollationDataBuilder::CEModifier &modifier;
int64_t modifiedCEs[Collation::MAX_EXPANSION_LENGTH];
UErrorCode errorCode;
};
U_CDECL_BEGIN
static UBool U_CALLCONV
enumRangeForCopy(const void *context, UChar32 start, UChar32 end, uint32_t value) {
return
value == Collation::UNASSIGNED_CE32 || value == Collation::FALLBACK_CE32 ||
((CopyHelper *)context)->copyRangeCE32(start, end, value);
}
U_CDECL_END
void
CollationDataBuilder::copyFrom(const CollationDataBuilder &src, const CEModifier &modifier,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
if(trie == NULL || utrie2_isFrozen(trie)) {
errorCode = U_INVALID_STATE_ERROR;
return;
}
CopyHelper helper(src, *this, modifier, errorCode);
utrie2_enum(src.trie, NULL, enumRangeForCopy, &helper);
errorCode = helper.errorCode;
// Update the contextChars and the unsafeBackwardSet while copying,
// in case a character had conditional mappings in the source builder
// and they were removed later.
modified |= src.modified;
}
void
CollationDataBuilder::optimize(const UnicodeSet &set, UErrorCode &errorCode) {
if(U_FAILURE(errorCode) || set.isEmpty()) { return; }
UnicodeSetIterator iter(set);
while(iter.next() && !iter.isString()) {
UChar32 c = iter.getCodepoint();
uint32_t ce32 = utrie2_get32(trie, c);
if(ce32 == Collation::FALLBACK_CE32) {
ce32 = base->getFinalCE32(base->getCE32(c));
ce32 = copyFromBaseCE32(c, ce32, TRUE, errorCode);
utrie2_set32(trie, c, ce32, &errorCode);
}
}
modified = TRUE;
}
void
CollationDataBuilder::suppressContractions(const UnicodeSet &set, UErrorCode &errorCode) {
if(U_FAILURE(errorCode) || set.isEmpty()) { return; }
UnicodeSetIterator iter(set);
while(iter.next() && !iter.isString()) {
UChar32 c = iter.getCodepoint();
uint32_t ce32 = utrie2_get32(trie, c);
if(ce32 == Collation::FALLBACK_CE32) {
ce32 = base->getFinalCE32(base->getCE32(c));
if(Collation::ce32HasContext(ce32)) {
ce32 = copyFromBaseCE32(c, ce32, FALSE /* without context */, errorCode);
utrie2_set32(trie, c, ce32, &errorCode);
}
} else if(isBuilderContextCE32(ce32)) {
ce32 = getConditionalCE32ForCE32(ce32)->ce32;
// Simply abandon the list of ConditionalCE32.
// The caller will copy this builder in the end,
// eliminating unreachable data.
utrie2_set32(trie, c, ce32, &errorCode);
contextChars.remove(c);
}
}
modified = TRUE;
}
UBool
CollationDataBuilder::getJamoCE32s(uint32_t jamoCE32s[], UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return FALSE; }
UBool anyJamoAssigned = base == NULL; // always set jamoCE32s in the base data
UBool needToCopyFromBase = FALSE;
for(int32_t j = 0; j < CollationData::JAMO_CE32S_LENGTH; ++j) { // Count across Jamo types.
UChar32 jamo = jamoCpFromIndex(j);
UBool fromBase = FALSE;
uint32_t ce32 = utrie2_get32(trie, jamo);
anyJamoAssigned |= Collation::isAssignedCE32(ce32);
// TODO: Try to prevent [optimize [Jamo]] from counting as anyJamoAssigned.
// (As of CLDR 24 [2013] the Korean tailoring does not optimize conjoining Jamo.)
if(ce32 == Collation::FALLBACK_CE32) {
fromBase = TRUE;
ce32 = base->getCE32(jamo);
}
if(Collation::isSpecialCE32(ce32)) {
switch(Collation::tagFromCE32(ce32)) {
case Collation::LONG_PRIMARY_TAG:
case Collation::LONG_SECONDARY_TAG:
case Collation::LATIN_EXPANSION_TAG:
// Copy the ce32 as-is.
break;
case Collation::EXPANSION32_TAG:
case Collation::EXPANSION_TAG:
case Collation::PREFIX_TAG:
case Collation::CONTRACTION_TAG:
if(fromBase) {
// Defer copying until we know if anyJamoAssigned.
ce32 = Collation::FALLBACK_CE32;
needToCopyFromBase = TRUE;
}
break;
case Collation::IMPLICIT_TAG:
// An unassigned Jamo should only occur in tests with incomplete bases.
U_ASSERT(fromBase);
ce32 = Collation::FALLBACK_CE32;
needToCopyFromBase = TRUE;
break;
case Collation::OFFSET_TAG:
ce32 = getCE32FromOffsetCE32(fromBase, jamo, ce32);
break;
case Collation::FALLBACK_TAG:
case Collation::RESERVED_TAG_3:
case Collation::BUILDER_DATA_TAG:
case Collation::DIGIT_TAG:
case Collation::U0000_TAG:
case Collation::HANGUL_TAG:
case Collation::LEAD_SURROGATE_TAG:
errorCode = U_INTERNAL_PROGRAM_ERROR;
return FALSE;
}
}
jamoCE32s[j] = ce32;
}
if(anyJamoAssigned && needToCopyFromBase) {
for(int32_t j = 0; j < CollationData::JAMO_CE32S_LENGTH; ++j) {
if(jamoCE32s[j] == Collation::FALLBACK_CE32) {
UChar32 jamo = jamoCpFromIndex(j);
jamoCE32s[j] = copyFromBaseCE32(jamo, base->getCE32(jamo),
/*withContext=*/ TRUE, errorCode);
}
}
}
return anyJamoAssigned && U_SUCCESS(errorCode);
}
void
CollationDataBuilder::setDigitTags(UErrorCode &errorCode) {
UnicodeSet digits(UNICODE_STRING_SIMPLE("[:Nd:]"), errorCode);
if(U_FAILURE(errorCode)) { return; }
UnicodeSetIterator iter(digits);
while(iter.next()) {
U_ASSERT(!iter.isString());
UChar32 c = iter.getCodepoint();
uint32_t ce32 = utrie2_get32(trie, c);
if(ce32 != Collation::FALLBACK_CE32 && ce32 != Collation::UNASSIGNED_CE32) {
int32_t index = addCE32(ce32, errorCode);
if(U_FAILURE(errorCode)) { return; }
if(index > Collation::MAX_INDEX) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
return;
}
ce32 = Collation::makeCE32FromTagIndexAndLength(
Collation::DIGIT_TAG, index, u_charDigitValue(c));
utrie2_set32(trie, c, ce32, &errorCode);
}
}
}
U_CDECL_BEGIN
static UBool U_CALLCONV
enumRangeLeadValue(const void *context, UChar32 /*start*/, UChar32 /*end*/, uint32_t value) {
int32_t *pValue = (int32_t *)context;
if(value == Collation::UNASSIGNED_CE32) {
value = Collation::LEAD_ALL_UNASSIGNED;
} else if(value == Collation::FALLBACK_CE32) {
value = Collation::LEAD_ALL_FALLBACK;
} else {
*pValue = Collation::LEAD_MIXED;
return FALSE;
}
if(*pValue < 0) {
*pValue = (int32_t)value;
} else if(*pValue != (int32_t)value) {
*pValue = Collation::LEAD_MIXED;
return FALSE;
}
return TRUE;
}
U_CDECL_END
void
CollationDataBuilder::setLeadSurrogates(UErrorCode &errorCode) {
for(UChar lead = 0xd800; lead < 0xdc00; ++lead) {
int32_t value = -1;
utrie2_enumForLeadSurrogate(trie, lead, NULL, enumRangeLeadValue, &value);
utrie2_set32ForLeadSurrogateCodeUnit(
trie, lead,
Collation::makeCE32FromTagAndIndex(Collation::LEAD_SURROGATE_TAG, 0) | (uint32_t)value,
&errorCode);
}
}
void
CollationDataBuilder::build(CollationData &data, UErrorCode &errorCode) {
buildMappings(data, errorCode);
if(base != NULL) {
data.numericPrimary = base->numericPrimary;
data.compressibleBytes = base->compressibleBytes;
data.numScripts = base->numScripts;
data.scriptsIndex = base->scriptsIndex;
data.scriptStarts = base->scriptStarts;
data.scriptStartsLength = base->scriptStartsLength;
}
buildFastLatinTable(data, errorCode);
}
void
CollationDataBuilder::buildMappings(CollationData &data, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
if(trie == NULL || utrie2_isFrozen(trie)) {
errorCode = U_INVALID_STATE_ERROR;
return;
}
buildContexts(errorCode);
uint32_t jamoCE32s[CollationData::JAMO_CE32S_LENGTH];
int32_t jamoIndex = -1;
if(getJamoCE32s(jamoCE32s, errorCode)) {
jamoIndex = ce32s.size();
for(int32_t i = 0; i < CollationData::JAMO_CE32S_LENGTH; ++i) {
ce32s.addElement((int32_t)jamoCE32s[i], errorCode);
}
// Small optimization: Use a bit in the Hangul ce32
// to indicate that none of the Jamo CE32s are isSpecialCE32()
// (as it should be in the root collator).
// It allows CollationIterator to avoid recursive function calls and per-Jamo tests.
// In order to still have good trie compression and keep this code simple,
// we only set this flag if a whole block of 588 Hangul syllables starting with
// a common leading consonant (Jamo L) has this property.
UBool isAnyJamoVTSpecial = FALSE;
for(int32_t i = Hangul::JAMO_L_COUNT; i < CollationData::JAMO_CE32S_LENGTH; ++i) {
if(Collation::isSpecialCE32(jamoCE32s[i])) {
isAnyJamoVTSpecial = TRUE;
break;
}
}
uint32_t hangulCE32 = Collation::makeCE32FromTagAndIndex(Collation::HANGUL_TAG, 0);
UChar32 c = Hangul::HANGUL_BASE;
for(int32_t i = 0; i < Hangul::JAMO_L_COUNT; ++i) { // iterate over the Jamo L
uint32_t ce32 = hangulCE32;
if(!isAnyJamoVTSpecial && !Collation::isSpecialCE32(jamoCE32s[i])) {
ce32 |= Collation::HANGUL_NO_SPECIAL_JAMO;
}
UChar32 limit = c + Hangul::JAMO_VT_COUNT;
utrie2_setRange32(trie, c, limit - 1, ce32, TRUE, &errorCode);
c = limit;
}
} else {
// Copy the Hangul CE32s from the base in blocks per Jamo L,
// assuming that HANGUL_NO_SPECIAL_JAMO is set or not set for whole blocks.
for(UChar32 c = Hangul::HANGUL_BASE; c < Hangul::HANGUL_LIMIT;) {
uint32_t ce32 = base->getCE32(c);
U_ASSERT(Collation::hasCE32Tag(ce32, Collation::HANGUL_TAG));
UChar32 limit = c + Hangul::JAMO_VT_COUNT;
utrie2_setRange32(trie, c, limit - 1, ce32, TRUE, &errorCode);
c = limit;
}
}
setDigitTags(errorCode);
setLeadSurrogates(errorCode);
// For U+0000, move its normal ce32 into CE32s[0] and set U0000_TAG.
ce32s.setElementAt((int32_t)utrie2_get32(trie, 0), 0);
utrie2_set32(trie, 0, Collation::makeCE32FromTagAndIndex(Collation::U0000_TAG, 0), &errorCode);
utrie2_freeze(trie, UTRIE2_32_VALUE_BITS, &errorCode);
if(U_FAILURE(errorCode)) { return; }
// Mark each lead surrogate as "unsafe"
// if any of its 1024 associated supplementary code points is "unsafe".
UChar32 c = 0x10000;
for(UChar lead = 0xd800; lead < 0xdc00; ++lead, c += 0x400) {
if(unsafeBackwardSet.containsSome(c, c + 0x3ff)) {
unsafeBackwardSet.add(lead);
}
}
unsafeBackwardSet.freeze();
data.trie = trie;
data.ce32s = reinterpret_cast<const uint32_t *>(ce32s.getBuffer());
data.ces = ce64s.getBuffer();
data.contexts = contexts.getBuffer();
data.ce32sLength = ce32s.size();
data.cesLength = ce64s.size();
data.contextsLength = contexts.length();
data.base = base;
if(jamoIndex >= 0) {
data.jamoCE32s = data.ce32s + jamoIndex;
} else {
data.jamoCE32s = base->jamoCE32s;
}
data.unsafeBackwardSet = &unsafeBackwardSet;
}
void
CollationDataBuilder::clearContexts() {
contexts.remove();
UnicodeSetIterator iter(contextChars);
while(iter.next()) {
U_ASSERT(!iter.isString());
uint32_t ce32 = utrie2_get32(trie, iter.getCodepoint());
U_ASSERT(isBuilderContextCE32(ce32));
getConditionalCE32ForCE32(ce32)->builtCE32 = Collation::NO_CE32;
}
}
void
CollationDataBuilder::buildContexts(UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
// Ignore abandoned lists and the cached builtCE32,
// and build all contexts from scratch.
contexts.remove();
UnicodeSetIterator iter(contextChars);
while(U_SUCCESS(errorCode) && iter.next()) {
U_ASSERT(!iter.isString());
UChar32 c = iter.getCodepoint();
uint32_t ce32 = utrie2_get32(trie, c);
if(!isBuilderContextCE32(ce32)) {
// Impossible: No context data for c in contextChars.
errorCode = U_INTERNAL_PROGRAM_ERROR;
return;
}
ConditionalCE32 *cond = getConditionalCE32ForCE32(ce32);
ce32 = buildContext(cond, errorCode);
utrie2_set32(trie, c, ce32, &errorCode);
}
}
uint32_t
CollationDataBuilder::buildContext(ConditionalCE32 *head, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
// The list head must have no context.
U_ASSERT(!head->hasContext());
// The list head must be followed by one or more nodes that all do have context.
U_ASSERT(head->next >= 0);
UCharsTrieBuilder prefixBuilder(errorCode);
UCharsTrieBuilder contractionBuilder(errorCode);
for(ConditionalCE32 *cond = head;; cond = getConditionalCE32(cond->next)) {
// After the list head, the prefix or suffix can be empty, but not both.
U_ASSERT(cond == head || cond->hasContext());
int32_t prefixLength = cond->prefixLength();
UnicodeString prefix(cond->context, 0, prefixLength + 1);
// Collect all contraction suffixes for one prefix.
ConditionalCE32 *firstCond = cond;
ConditionalCE32 *lastCond = cond;
while(cond->next >= 0 &&
(cond = getConditionalCE32(cond->next))->context.startsWith(prefix)) {
lastCond = cond;
}
uint32_t ce32;
int32_t suffixStart = prefixLength + 1; // == prefix.length()
if(lastCond->context.length() == suffixStart) {
// One prefix without contraction suffix.
U_ASSERT(firstCond == lastCond);
ce32 = lastCond->ce32;
cond = lastCond;
} else {
// Build the contractions trie.
contractionBuilder.clear();
// Entry for an empty suffix, to be stored before the trie.
uint32_t emptySuffixCE32 = 0;
uint32_t flags = 0;
if(firstCond->context.length() == suffixStart) {
// There is a mapping for the prefix and the single character c. (p|c)
// If no other suffix matches, then we return this value.
emptySuffixCE32 = firstCond->ce32;
cond = getConditionalCE32(firstCond->next);
} else {
// There is no mapping for the prefix and just the single character.
// (There is no p|c, only p|cd, p|ce etc.)
flags |= Collation::CONTRACT_SINGLE_CP_NO_MATCH;
// When the prefix matches but none of the prefix-specific suffixes,
// then we fall back to the mappings with the next-longest prefix,
// and ultimately to mappings with no prefix.
// Each fallback might be another set of contractions.
// For example, if there are mappings for ch, p|cd, p|ce, but not for p|c,
// then in text "pch" we find the ch contraction.
for(cond = head;; cond = getConditionalCE32(cond->next)) {
int32_t length = cond->prefixLength();
if(length == prefixLength) { break; }
if(cond->defaultCE32 != Collation::NO_CE32 &&
(length==0 || prefix.endsWith(cond->context, 1, length))) {
emptySuffixCE32 = cond->defaultCE32;
}
}
cond = firstCond;
}
// Optimization: Set a flag when
// the first character of every contraction suffix has lccc!=0.
// Short-circuits contraction matching when a normal letter follows.
flags |= Collation::CONTRACT_NEXT_CCC;
// Add all of the non-empty suffixes into the contraction trie.
for(;;) {
UnicodeString suffix(cond->context, suffixStart);
uint16_t fcd16 = nfcImpl.getFCD16(suffix.char32At(0));
if(fcd16 <= 0xff) {
flags &= ~Collation::CONTRACT_NEXT_CCC;
}
fcd16 = nfcImpl.getFCD16(suffix.char32At(suffix.length() - 1));
if(fcd16 > 0xff) {
// The last suffix character has lccc!=0, allowing for discontiguous contractions.
flags |= Collation::CONTRACT_TRAILING_CCC;
}
contractionBuilder.add(suffix, (int32_t)cond->ce32, errorCode);
if(cond == lastCond) { break; }
cond = getConditionalCE32(cond->next);
}
int32_t index = addContextTrie(emptySuffixCE32, contractionBuilder, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
if(index > Collation::MAX_INDEX) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
return 0;
}
ce32 = Collation::makeCE32FromTagAndIndex(Collation::CONTRACTION_TAG, index) | flags;
}
U_ASSERT(cond == lastCond);
firstCond->defaultCE32 = ce32;
if(prefixLength == 0) {
if(cond->next < 0) {
// No non-empty prefixes, only contractions.
return ce32;
}
} else {
prefix.remove(0, 1); // Remove the length unit.
prefix.reverse();
prefixBuilder.add(prefix, (int32_t)ce32, errorCode);
if(cond->next < 0) { break; }
}
}
U_ASSERT(head->defaultCE32 != Collation::NO_CE32);
int32_t index = addContextTrie(head->defaultCE32, prefixBuilder, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
if(index > Collation::MAX_INDEX) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
return 0;
}
return Collation::makeCE32FromTagAndIndex(Collation::PREFIX_TAG, index);
}
int32_t
CollationDataBuilder::addContextTrie(uint32_t defaultCE32, UCharsTrieBuilder &trieBuilder,
UErrorCode &errorCode) {
UnicodeString context;
context.append((UChar)(defaultCE32 >> 16)).append((UChar)defaultCE32);
UnicodeString trieString;
context.append(trieBuilder.buildUnicodeString(USTRINGTRIE_BUILD_SMALL, trieString, errorCode));
if(U_FAILURE(errorCode)) { return -1; }
int32_t index = contexts.indexOf(context);
if(index < 0) {
index = contexts.length();
contexts.append(context);
}
return index;
}
void
CollationDataBuilder::buildFastLatinTable(CollationData &data, UErrorCode &errorCode) {
if(U_FAILURE(errorCode) || !fastLatinEnabled) { return; }
delete fastLatinBuilder;
fastLatinBuilder = new CollationFastLatinBuilder(errorCode);
if(fastLatinBuilder == NULL) {
errorCode = U_MEMORY_ALLOCATION_ERROR;
return;
}
if(fastLatinBuilder->forData(data, errorCode)) {
const uint16_t *table = fastLatinBuilder->getTable();
int32_t length = fastLatinBuilder->lengthOfTable();
if(base != NULL && length == base->fastLatinTableLength &&
uprv_memcmp(table, base->fastLatinTable, length * 2) == 0) {
// Same fast Latin table as in the base, use that one instead.
delete fastLatinBuilder;
fastLatinBuilder = NULL;
table = base->fastLatinTable;
}
data.fastLatinTable = table;
data.fastLatinTableLength = length;
} else {
delete fastLatinBuilder;
fastLatinBuilder = NULL;
}
}
int32_t
CollationDataBuilder::getCEs(const UnicodeString &s, int64_t ces[], int32_t cesLength) {
return getCEs(s, 0, ces, cesLength);
}
int32_t
CollationDataBuilder::getCEs(const UnicodeString &prefix, const UnicodeString &s,
int64_t ces[], int32_t cesLength) {
int32_t prefixLength = prefix.length();
if(prefixLength == 0) {
return getCEs(s, 0, ces, cesLength);
} else {
return getCEs(prefix + s, prefixLength, ces, cesLength);
}
}
int32_t
CollationDataBuilder::getCEs(const UnicodeString &s, int32_t start,
int64_t ces[], int32_t cesLength) {
if(collIter == NULL) {
collIter = new DataBuilderCollationIterator(*this);
if(collIter == NULL) { return 0; }
}
return collIter->fetchCEs(s, start, ces, cesLength);
}
U_NAMESPACE_END
#endif // !UCONFIG_NO_COLLATION