// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ******************************************************************************* * Copyright (C) 2012-2015, International Business Machines * Corporation and others. All Rights Reserved. ******************************************************************************* * collationdatabuilder.cpp * * (replaced the former ucol_elm.cpp) * * created on: 2012apr01 * created by: Markus W. Scherer */ #include "unicode/utypes.h" #if !UCONFIG_NO_COLLATION #include "unicode/localpointer.h" #include "unicode/uchar.h" #include "unicode/ucharstrie.h" #include "unicode/ucharstriebuilder.h" #include "unicode/uniset.h" #include "unicode/unistr.h" #include "unicode/usetiter.h" #include "unicode/utf16.h" #include "cmemory.h" #include "collation.h" #include "collationdata.h" #include "collationdatabuilder.h" #include "collationfastlatinbuilder.h" #include "collationiterator.h" #include "normalizer2impl.h" #include "utrie2.h" #include "uvectr32.h" #include "uvectr64.h" #include "uvector.h" U_NAMESPACE_BEGIN CollationDataBuilder::CEModifier::~CEModifier() {} /** * Build-time context and CE32 for a code point. * If a code point has contextual mappings, then the default (no-context) mapping * and all conditional mappings are stored in a singly-linked list * of ConditionalCE32, sorted by context strings. * * Context strings sort by prefix length, then by prefix, then by contraction suffix. * Context strings must be unique and in ascending order. */ struct ConditionalCE32 : public UMemory { ConditionalCE32() : context(), ce32(0), defaultCE32(Collation::NO_CE32), builtCE32(Collation::NO_CE32), next(-1) {} ConditionalCE32(const UnicodeString &ct, uint32_t ce) : context(ct), ce32(ce), defaultCE32(Collation::NO_CE32), builtCE32(Collation::NO_CE32), next(-1) {} inline UBool hasContext() const { return context.length() > 1; } inline int32_t prefixLength() const { return context.charAt(0); } /** * "\0" for the first entry for any code point, with its default CE32. * * Otherwise one unit with the length of the prefix string, * then the prefix string, then the contraction suffix. */ UnicodeString context; /** * CE32 for the code point and its context. * Can be special (e.g., for an expansion) but not contextual (prefix or contraction tag). */ uint32_t ce32; /** * Default CE32 for all contexts with this same prefix. * Initially NO_CE32. Set only while building runtime data structures, * and only on one of the nodes of a sub-list with the same prefix. */ uint32_t defaultCE32; /** * CE32 for the built contexts. * When fetching CEs from the builder, the contexts are built into their runtime form * so that the normal collation implementation can process them. * The result is cached in the list head. It is reset when the contexts are modified. */ uint32_t builtCE32; /** * Index of the next ConditionalCE32. * Negative for the end of the list. */ int32_t next; }; U_CDECL_BEGIN U_CAPI void U_CALLCONV uprv_deleteConditionalCE32(void *obj) { delete static_cast<ConditionalCE32 *>(obj); } U_CDECL_END /** * Build-time collation element and character iterator. * Uses the runtime CollationIterator for fetching CEs for a string * but reads from the builder's unfinished data structures. * In particular, this class reads from the unfinished trie * and has to avoid CollationIterator::nextCE() and redirect other * calls to data->getCE32() and data->getCE32FromSupplementary(). * * We do this so that we need not implement the collation algorithm * again for the builder and make it behave exactly like the runtime code. * That would be more difficult to test and maintain than this indirection. * * Some CE32 tags (for example, the DIGIT_TAG) do not occur in the builder data, * so the data accesses from those code paths need not be modified. * * This class iterates directly over whole code points * so that the CollationIterator does not need the finished trie * for handling the LEAD_SURROGATE_TAG. */ class DataBuilderCollationIterator : public CollationIterator { public: DataBuilderCollationIterator(CollationDataBuilder &b); virtual ~DataBuilderCollationIterator(); int32_t fetchCEs(const UnicodeString &str, int32_t start, int64_t ces[], int32_t cesLength); virtual void resetToOffset(int32_t newOffset); virtual int32_t getOffset() const; virtual UChar32 nextCodePoint(UErrorCode &errorCode); virtual UChar32 previousCodePoint(UErrorCode &errorCode); protected: virtual void forwardNumCodePoints(int32_t num, UErrorCode &errorCode); virtual void backwardNumCodePoints(int32_t num, UErrorCode &errorCode); virtual uint32_t getDataCE32(UChar32 c) const; virtual uint32_t getCE32FromBuilderData(uint32_t ce32, UErrorCode &errorCode); CollationDataBuilder &builder; CollationData builderData; uint32_t jamoCE32s[CollationData::JAMO_CE32S_LENGTH]; const UnicodeString *s; int32_t pos; }; DataBuilderCollationIterator::DataBuilderCollationIterator(CollationDataBuilder &b) : CollationIterator(&builderData, /*numeric=*/ FALSE), builder(b), builderData(b.nfcImpl), s(NULL), pos(0) { builderData.base = builder.base; // Set all of the jamoCE32s[] to indirection CE32s. for(int32_t j = 0; j < CollationData::JAMO_CE32S_LENGTH; ++j) { // Count across Jamo types. UChar32 jamo = CollationDataBuilder::jamoCpFromIndex(j); jamoCE32s[j] = Collation::makeCE32FromTagAndIndex(Collation::BUILDER_DATA_TAG, jamo) | CollationDataBuilder::IS_BUILDER_JAMO_CE32; } builderData.jamoCE32s = jamoCE32s; } DataBuilderCollationIterator::~DataBuilderCollationIterator() {} int32_t DataBuilderCollationIterator::fetchCEs(const UnicodeString &str, int32_t start, int64_t ces[], int32_t cesLength) { // Set the pointers each time, in case they changed due to reallocation. builderData.ce32s = reinterpret_cast<const uint32_t *>(builder.ce32s.getBuffer()); builderData.ces = builder.ce64s.getBuffer(); builderData.contexts = builder.contexts.getBuffer(); // Modified copy of CollationIterator::nextCE() and CollationIterator::nextCEFromCE32(). reset(); s = &str; pos = start; UErrorCode errorCode = U_ZERO_ERROR; while(U_SUCCESS(errorCode) && pos < s->length()) { // No need to keep all CEs in the iterator buffer. clearCEs(); UChar32 c = s->char32At(pos); pos += U16_LENGTH(c); uint32_t ce32 = utrie2_get32(builder.trie, c); const CollationData *d; if(ce32 == Collation::FALLBACK_CE32) { d = builder.base; ce32 = builder.base->getCE32(c); } else { d = &builderData; } appendCEsFromCE32(d, c, ce32, /*forward=*/ TRUE, errorCode); U_ASSERT(U_SUCCESS(errorCode)); for(int32_t i = 0; i < getCEsLength(); ++i) { int64_t ce = getCE(i); if(ce != 0) { if(cesLength < Collation::MAX_EXPANSION_LENGTH) { ces[cesLength] = ce; } ++cesLength; } } } return cesLength; } void DataBuilderCollationIterator::resetToOffset(int32_t newOffset) { reset(); pos = newOffset; } int32_t DataBuilderCollationIterator::getOffset() const { return pos; } UChar32 DataBuilderCollationIterator::nextCodePoint(UErrorCode & /*errorCode*/) { if(pos == s->length()) { return U_SENTINEL; } UChar32 c = s->char32At(pos); pos += U16_LENGTH(c); return c; } UChar32 DataBuilderCollationIterator::previousCodePoint(UErrorCode & /*errorCode*/) { if(pos == 0) { return U_SENTINEL; } UChar32 c = s->char32At(pos - 1); pos -= U16_LENGTH(c); return c; } void DataBuilderCollationIterator::forwardNumCodePoints(int32_t num, UErrorCode & /*errorCode*/) { pos = s->moveIndex32(pos, num); } void DataBuilderCollationIterator::backwardNumCodePoints(int32_t num, UErrorCode & /*errorCode*/) { pos = s->moveIndex32(pos, -num); } uint32_t DataBuilderCollationIterator::getDataCE32(UChar32 c) const { return utrie2_get32(builder.trie, c); } uint32_t DataBuilderCollationIterator::getCE32FromBuilderData(uint32_t ce32, UErrorCode &errorCode) { U_ASSERT(Collation::hasCE32Tag(ce32, Collation::BUILDER_DATA_TAG)); if((ce32 & CollationDataBuilder::IS_BUILDER_JAMO_CE32) != 0) { UChar32 jamo = Collation::indexFromCE32(ce32); return utrie2_get32(builder.trie, jamo); } else { ConditionalCE32 *cond = builder.getConditionalCE32ForCE32(ce32); if(cond->builtCE32 == Collation::NO_CE32) { // Build the context-sensitive mappings into their runtime form and cache the result. cond->builtCE32 = builder.buildContext(cond, errorCode); if(errorCode == U_BUFFER_OVERFLOW_ERROR) { errorCode = U_ZERO_ERROR; builder.clearContexts(); cond->builtCE32 = builder.buildContext(cond, errorCode); } builderData.contexts = builder.contexts.getBuffer(); } return cond->builtCE32; } } // ------------------------------------------------------------------------- *** CollationDataBuilder::CollationDataBuilder(UErrorCode &errorCode) : nfcImpl(*Normalizer2Factory::getNFCImpl(errorCode)), base(NULL), baseSettings(NULL), trie(NULL), ce32s(errorCode), ce64s(errorCode), conditionalCE32s(errorCode), modified(FALSE), fastLatinEnabled(FALSE), fastLatinBuilder(NULL), collIter(NULL) { // Reserve the first CE32 for U+0000. ce32s.addElement(0, errorCode); conditionalCE32s.setDeleter(uprv_deleteConditionalCE32); } CollationDataBuilder::~CollationDataBuilder() { utrie2_close(trie); delete fastLatinBuilder; delete collIter; } void CollationDataBuilder::initForTailoring(const CollationData *b, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return; } if(trie != NULL) { errorCode = U_INVALID_STATE_ERROR; return; } if(b == NULL) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return; } base = b; // For a tailoring, the default is to fall back to the base. trie = utrie2_open(Collation::FALLBACK_CE32, Collation::FFFD_CE32, &errorCode); // Set the Latin-1 letters block so that it is allocated first in the data array, // to try to improve locality of reference when sorting Latin-1 text. // Do not use utrie2_setRange32() since that will not actually allocate blocks // that are filled with the default value. // ASCII (0..7F) is already preallocated anyway. for(UChar32 c = 0xc0; c <= 0xff; ++c) { utrie2_set32(trie, c, Collation::FALLBACK_CE32, &errorCode); } // Hangul syllables are not tailorable (except via tailoring Jamos). // Always set the Hangul tag to help performance. // Do this here, rather than in buildMappings(), // so that we see the HANGUL_TAG in various assertions. uint32_t hangulCE32 = Collation::makeCE32FromTagAndIndex(Collation::HANGUL_TAG, 0); utrie2_setRange32(trie, Hangul::HANGUL_BASE, Hangul::HANGUL_END, hangulCE32, TRUE, &errorCode); // Copy the set contents but don't copy/clone the set as a whole because // that would copy the isFrozen state too. unsafeBackwardSet.addAll(*b->unsafeBackwardSet); if(U_FAILURE(errorCode)) { return; } } UBool CollationDataBuilder::maybeSetPrimaryRange(UChar32 start, UChar32 end, uint32_t primary, int32_t step, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return FALSE; } U_ASSERT(start <= end); // TODO: Do we need to check what values are currently set for start..end? // An offset range is worth it only if we can achieve an overlap between // adjacent UTrie2 blocks of 32 code points each. // An offset CE is also a little more expensive to look up and compute // than a simple CE. // If the range spans at least three UTrie2 block boundaries (> 64 code points), // then we take it. // If the range spans one or two block boundaries and there are // at least 4 code points on either side, then we take it. // (We could additionally require a minimum range length of, say, 16.) int32_t blockDelta = (end >> 5) - (start >> 5); if(2 <= step && step <= 0x7f && (blockDelta >= 3 || (blockDelta > 0 && (start & 0x1f) <= 0x1c && (end & 0x1f) >= 3))) { int64_t dataCE = ((int64_t)primary << 32) | (start << 8) | step; if(isCompressiblePrimary(primary)) { dataCE |= 0x80; } int32_t index = addCE(dataCE, errorCode); if(U_FAILURE(errorCode)) { return 0; } if(index > Collation::MAX_INDEX) { errorCode = U_BUFFER_OVERFLOW_ERROR; return 0; } uint32_t offsetCE32 = Collation::makeCE32FromTagAndIndex(Collation::OFFSET_TAG, index); utrie2_setRange32(trie, start, end, offsetCE32, TRUE, &errorCode); modified = TRUE; return TRUE; } else { return FALSE; } } uint32_t CollationDataBuilder::setPrimaryRangeAndReturnNext(UChar32 start, UChar32 end, uint32_t primary, int32_t step, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return 0; } UBool isCompressible = isCompressiblePrimary(primary); if(maybeSetPrimaryRange(start, end, primary, step, errorCode)) { return Collation::incThreeBytePrimaryByOffset(primary, isCompressible, (end - start + 1) * step); } else { // Short range: Set individual CE32s. for(;;) { utrie2_set32(trie, start, Collation::makeLongPrimaryCE32(primary), &errorCode); ++start; primary = Collation::incThreeBytePrimaryByOffset(primary, isCompressible, step); if(start > end) { return primary; } } modified = TRUE; } } uint32_t CollationDataBuilder::getCE32FromOffsetCE32(UBool fromBase, UChar32 c, uint32_t ce32) const { int32_t i = Collation::indexFromCE32(ce32); int64_t dataCE = fromBase ? base->ces[i] : ce64s.elementAti(i); uint32_t p = Collation::getThreeBytePrimaryForOffsetData(c, dataCE); return Collation::makeLongPrimaryCE32(p); } UBool CollationDataBuilder::isCompressibleLeadByte(uint32_t b) const { return base->isCompressibleLeadByte(b); } UBool CollationDataBuilder::isAssigned(UChar32 c) const { return Collation::isAssignedCE32(utrie2_get32(trie, c)); } uint32_t CollationDataBuilder::getLongPrimaryIfSingleCE(UChar32 c) const { uint32_t ce32 = utrie2_get32(trie, c); if(Collation::isLongPrimaryCE32(ce32)) { return Collation::primaryFromLongPrimaryCE32(ce32); } else { return 0; } } int64_t CollationDataBuilder::getSingleCE(UChar32 c, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return 0; } // Keep parallel with CollationData::getSingleCE(). UBool fromBase = FALSE; uint32_t ce32 = utrie2_get32(trie, c); if(ce32 == Collation::FALLBACK_CE32) { fromBase = TRUE; ce32 = base->getCE32(c); } while(Collation::isSpecialCE32(ce32)) { switch(Collation::tagFromCE32(ce32)) { case Collation::LATIN_EXPANSION_TAG: case Collation::BUILDER_DATA_TAG: case Collation::PREFIX_TAG: case Collation::CONTRACTION_TAG: case Collation::HANGUL_TAG: case Collation::LEAD_SURROGATE_TAG: errorCode = U_UNSUPPORTED_ERROR; return 0; case Collation::FALLBACK_TAG: case Collation::RESERVED_TAG_3: errorCode = U_INTERNAL_PROGRAM_ERROR; return 0; case Collation::LONG_PRIMARY_TAG: return Collation::ceFromLongPrimaryCE32(ce32); case Collation::LONG_SECONDARY_TAG: return Collation::ceFromLongSecondaryCE32(ce32); case Collation::EXPANSION32_TAG: if(Collation::lengthFromCE32(ce32) == 1) { int32_t i = Collation::indexFromCE32(ce32); ce32 = fromBase ? base->ce32s[i] : ce32s.elementAti(i); break; } else { errorCode = U_UNSUPPORTED_ERROR; return 0; } case Collation::EXPANSION_TAG: { if(Collation::lengthFromCE32(ce32) == 1) { int32_t i = Collation::indexFromCE32(ce32); return fromBase ? base->ces[i] : ce64s.elementAti(i); } else { errorCode = U_UNSUPPORTED_ERROR; return 0; } } case Collation::DIGIT_TAG: // Fetch the non-numeric-collation CE32 and continue. ce32 = ce32s.elementAti(Collation::indexFromCE32(ce32)); break; case Collation::U0000_TAG: U_ASSERT(c == 0); // Fetch the normal ce32 for U+0000 and continue. ce32 = fromBase ? base->ce32s[0] : ce32s.elementAti(0); break; case Collation::OFFSET_TAG: ce32 = getCE32FromOffsetCE32(fromBase, c, ce32); break; case Collation::IMPLICIT_TAG: return Collation::unassignedCEFromCodePoint(c); } } return Collation::ceFromSimpleCE32(ce32); } int32_t CollationDataBuilder::addCE(int64_t ce, UErrorCode &errorCode) { int32_t length = ce64s.size(); for(int32_t i = 0; i < length; ++i) { if(ce == ce64s.elementAti(i)) { return i; } } ce64s.addElement(ce, errorCode); return length; } int32_t CollationDataBuilder::addCE32(uint32_t ce32, UErrorCode &errorCode) { int32_t length = ce32s.size(); for(int32_t i = 0; i < length; ++i) { if(ce32 == (uint32_t)ce32s.elementAti(i)) { return i; } } ce32s.addElement((int32_t)ce32, errorCode); return length; } int32_t CollationDataBuilder::addConditionalCE32(const UnicodeString &context, uint32_t ce32, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return -1; } U_ASSERT(!context.isEmpty()); int32_t index = conditionalCE32s.size(); if(index > Collation::MAX_INDEX) { errorCode = U_BUFFER_OVERFLOW_ERROR; return -1; } ConditionalCE32 *cond = new ConditionalCE32(context, ce32); if(cond == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return -1; } conditionalCE32s.addElement(cond, errorCode); return index; } void CollationDataBuilder::add(const UnicodeString &prefix, const UnicodeString &s, const int64_t ces[], int32_t cesLength, UErrorCode &errorCode) { uint32_t ce32 = encodeCEs(ces, cesLength, errorCode); addCE32(prefix, s, ce32, errorCode); } void CollationDataBuilder::addCE32(const UnicodeString &prefix, const UnicodeString &s, uint32_t ce32, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return; } if(s.isEmpty()) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return; } if(trie == NULL || utrie2_isFrozen(trie)) { errorCode = U_INVALID_STATE_ERROR; return; } UChar32 c = s.char32At(0); int32_t cLength = U16_LENGTH(c); uint32_t oldCE32 = utrie2_get32(trie, c); UBool hasContext = !prefix.isEmpty() || s.length() > cLength; if(oldCE32 == Collation::FALLBACK_CE32) { // First tailoring for c. // If c has contextual base mappings or if we add a contextual mapping, // then copy the base mappings. // Otherwise we just override the base mapping. uint32_t baseCE32 = base->getFinalCE32(base->getCE32(c)); if(hasContext || Collation::ce32HasContext(baseCE32)) { oldCE32 = copyFromBaseCE32(c, baseCE32, TRUE, errorCode); utrie2_set32(trie, c, oldCE32, &errorCode); if(U_FAILURE(errorCode)) { return; } } } if(!hasContext) { // No prefix, no contraction. if(!isBuilderContextCE32(oldCE32)) { utrie2_set32(trie, c, ce32, &errorCode); } else { ConditionalCE32 *cond = getConditionalCE32ForCE32(oldCE32); cond->builtCE32 = Collation::NO_CE32; cond->ce32 = ce32; } } else { ConditionalCE32 *cond; if(!isBuilderContextCE32(oldCE32)) { // Replace the simple oldCE32 with a builder context CE32 // pointing to a new ConditionalCE32 list head. int32_t index = addConditionalCE32(UnicodeString((UChar)0), oldCE32, errorCode); if(U_FAILURE(errorCode)) { return; } uint32_t contextCE32 = makeBuilderContextCE32(index); utrie2_set32(trie, c, contextCE32, &errorCode); contextChars.add(c); cond = getConditionalCE32(index); } else { cond = getConditionalCE32ForCE32(oldCE32); cond->builtCE32 = Collation::NO_CE32; } UnicodeString suffix(s, cLength); UnicodeString context((UChar)prefix.length()); context.append(prefix).append(suffix); unsafeBackwardSet.addAll(suffix); for(;;) { // invariant: context > cond->context int32_t next = cond->next; if(next < 0) { // Append a new ConditionalCE32 after cond. int32_t index = addConditionalCE32(context, ce32, errorCode); if(U_FAILURE(errorCode)) { return; } cond->next = index; break; } ConditionalCE32 *nextCond = getConditionalCE32(next); int8_t cmp = context.compare(nextCond->context); if(cmp < 0) { // Insert a new ConditionalCE32 between cond and nextCond. int32_t index = addConditionalCE32(context, ce32, errorCode); if(U_FAILURE(errorCode)) { return; } cond->next = index; getConditionalCE32(index)->next = next; break; } else if(cmp == 0) { // Same context as before, overwrite its ce32. nextCond->ce32 = ce32; break; } cond = nextCond; } } modified = TRUE; } uint32_t CollationDataBuilder::encodeOneCEAsCE32(int64_t ce) { uint32_t p = (uint32_t)(ce >> 32); uint32_t lower32 = (uint32_t)ce; uint32_t t = (uint32_t)(ce & 0xffff); U_ASSERT((t & 0xc000) != 0xc000); // Impossible case bits 11 mark special CE32s. if((ce & INT64_C(0xffff00ff00ff)) == 0) { // normal form ppppsstt return p | (lower32 >> 16) | (t >> 8); } else if((ce & INT64_C(0xffffffffff)) == Collation::COMMON_SEC_AND_TER_CE) { // long-primary form ppppppC1 return Collation::makeLongPrimaryCE32(p); } else if(p == 0 && (t & 0xff) == 0) { // long-secondary form ssssttC2 return Collation::makeLongSecondaryCE32(lower32); } return Collation::NO_CE32; } uint32_t CollationDataBuilder::encodeOneCE(int64_t ce, UErrorCode &errorCode) { // Try to encode one CE as one CE32. uint32_t ce32 = encodeOneCEAsCE32(ce); if(ce32 != Collation::NO_CE32) { return ce32; } int32_t index = addCE(ce, errorCode); if(U_FAILURE(errorCode)) { return 0; } if(index > Collation::MAX_INDEX) { errorCode = U_BUFFER_OVERFLOW_ERROR; return 0; } return Collation::makeCE32FromTagIndexAndLength(Collation::EXPANSION_TAG, index, 1); } uint32_t CollationDataBuilder::encodeCEs(const int64_t ces[], int32_t cesLength, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return 0; } if(cesLength < 0 || cesLength > Collation::MAX_EXPANSION_LENGTH) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return 0; } if(trie == NULL || utrie2_isFrozen(trie)) { errorCode = U_INVALID_STATE_ERROR; return 0; } if(cesLength == 0) { // Convenience: We cannot map to nothing, but we can map to a completely ignorable CE. // Do this here so that callers need not do it. return encodeOneCEAsCE32(0); } else if(cesLength == 1) { return encodeOneCE(ces[0], errorCode); } else if(cesLength == 2) { // Try to encode two CEs as one CE32. int64_t ce0 = ces[0]; int64_t ce1 = ces[1]; uint32_t p0 = (uint32_t)(ce0 >> 32); if((ce0 & INT64_C(0xffffffffff00ff)) == Collation::COMMON_SECONDARY_CE && (ce1 & INT64_C(0xffffffff00ffffff)) == Collation::COMMON_TERTIARY_CE && p0 != 0) { // Latin mini expansion return p0 | (((uint32_t)ce0 & 0xff00u) << 8) | (uint32_t)(ce1 >> 16) | Collation::SPECIAL_CE32_LOW_BYTE | Collation::LATIN_EXPANSION_TAG; } } // Try to encode two or more CEs as CE32s. int32_t newCE32s[Collation::MAX_EXPANSION_LENGTH]; for(int32_t i = 0;; ++i) { if(i == cesLength) { return encodeExpansion32(newCE32s, cesLength, errorCode); } uint32_t ce32 = encodeOneCEAsCE32(ces[i]); if(ce32 == Collation::NO_CE32) { break; } newCE32s[i] = (int32_t)ce32; } return encodeExpansion(ces, cesLength, errorCode); } uint32_t CollationDataBuilder::encodeExpansion(const int64_t ces[], int32_t length, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return 0; } // See if this sequence of CEs has already been stored. int64_t first = ces[0]; int32_t ce64sMax = ce64s.size() - length; for(int32_t i = 0; i <= ce64sMax; ++i) { if(first == ce64s.elementAti(i)) { if(i > Collation::MAX_INDEX) { errorCode = U_BUFFER_OVERFLOW_ERROR; return 0; } for(int32_t j = 1;; ++j) { if(j == length) { return Collation::makeCE32FromTagIndexAndLength( Collation::EXPANSION_TAG, i, length); } if(ce64s.elementAti(i + j) != ces[j]) { break; } } } } // Store the new sequence. int32_t i = ce64s.size(); if(i > Collation::MAX_INDEX) { errorCode = U_BUFFER_OVERFLOW_ERROR; return 0; } for(int32_t j = 0; j < length; ++j) { ce64s.addElement(ces[j], errorCode); } return Collation::makeCE32FromTagIndexAndLength(Collation::EXPANSION_TAG, i, length); } uint32_t CollationDataBuilder::encodeExpansion32(const int32_t newCE32s[], int32_t length, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return 0; } // See if this sequence of CE32s has already been stored. int32_t first = newCE32s[0]; int32_t ce32sMax = ce32s.size() - length; for(int32_t i = 0; i <= ce32sMax; ++i) { if(first == ce32s.elementAti(i)) { if(i > Collation::MAX_INDEX) { errorCode = U_BUFFER_OVERFLOW_ERROR; return 0; } for(int32_t j = 1;; ++j) { if(j == length) { return Collation::makeCE32FromTagIndexAndLength( Collation::EXPANSION32_TAG, i, length); } if(ce32s.elementAti(i + j) != newCE32s[j]) { break; } } } } // Store the new sequence. int32_t i = ce32s.size(); if(i > Collation::MAX_INDEX) { errorCode = U_BUFFER_OVERFLOW_ERROR; return 0; } for(int32_t j = 0; j < length; ++j) { ce32s.addElement(newCE32s[j], errorCode); } return Collation::makeCE32FromTagIndexAndLength(Collation::EXPANSION32_TAG, i, length); } uint32_t CollationDataBuilder::copyFromBaseCE32(UChar32 c, uint32_t ce32, UBool withContext, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return 0; } if(!Collation::isSpecialCE32(ce32)) { return ce32; } switch(Collation::tagFromCE32(ce32)) { case Collation::LONG_PRIMARY_TAG: case Collation::LONG_SECONDARY_TAG: case Collation::LATIN_EXPANSION_TAG: // copy as is break; case Collation::EXPANSION32_TAG: { const uint32_t *baseCE32s = base->ce32s + Collation::indexFromCE32(ce32); int32_t length = Collation::lengthFromCE32(ce32); ce32 = encodeExpansion32( reinterpret_cast<const int32_t *>(baseCE32s), length, errorCode); break; } case Collation::EXPANSION_TAG: { const int64_t *baseCEs = base->ces + Collation::indexFromCE32(ce32); int32_t length = Collation::lengthFromCE32(ce32); ce32 = encodeExpansion(baseCEs, length, errorCode); break; } case Collation::PREFIX_TAG: { // Flatten prefixes and nested suffixes (contractions) // into a linear list of ConditionalCE32. const UChar *p = base->contexts + Collation::indexFromCE32(ce32); ce32 = CollationData::readCE32(p); // Default if no prefix match. if(!withContext) { return copyFromBaseCE32(c, ce32, FALSE, errorCode); } ConditionalCE32 head; UnicodeString context((UChar)0); int32_t index; if(Collation::isContractionCE32(ce32)) { index = copyContractionsFromBaseCE32(context, c, ce32, &head, errorCode); } else { ce32 = copyFromBaseCE32(c, ce32, TRUE, errorCode); head.next = index = addConditionalCE32(context, ce32, errorCode); } if(U_FAILURE(errorCode)) { return 0; } ConditionalCE32 *cond = getConditionalCE32(index); // the last ConditionalCE32 so far UCharsTrie::Iterator prefixes(p + 2, 0, errorCode); while(prefixes.next(errorCode)) { context = prefixes.getString(); context.reverse(); context.insert(0, (UChar)context.length()); ce32 = (uint32_t)prefixes.getValue(); if(Collation::isContractionCE32(ce32)) { index = copyContractionsFromBaseCE32(context, c, ce32, cond, errorCode); } else { ce32 = copyFromBaseCE32(c, ce32, TRUE, errorCode); cond->next = index = addConditionalCE32(context, ce32, errorCode); } if(U_FAILURE(errorCode)) { return 0; } cond = getConditionalCE32(index); } ce32 = makeBuilderContextCE32(head.next); contextChars.add(c); break; } case Collation::CONTRACTION_TAG: { if(!withContext) { const UChar *p = base->contexts + Collation::indexFromCE32(ce32); ce32 = CollationData::readCE32(p); // Default if no suffix match. return copyFromBaseCE32(c, ce32, FALSE, errorCode); } ConditionalCE32 head; UnicodeString context((UChar)0); copyContractionsFromBaseCE32(context, c, ce32, &head, errorCode); ce32 = makeBuilderContextCE32(head.next); contextChars.add(c); break; } case Collation::HANGUL_TAG: errorCode = U_UNSUPPORTED_ERROR; // We forbid tailoring of Hangul syllables. break; case Collation::OFFSET_TAG: ce32 = getCE32FromOffsetCE32(TRUE, c, ce32); break; case Collation::IMPLICIT_TAG: ce32 = encodeOneCE(Collation::unassignedCEFromCodePoint(c), errorCode); break; default: U_ASSERT(FALSE); // require ce32 == base->getFinalCE32(ce32) break; } return ce32; } int32_t CollationDataBuilder::copyContractionsFromBaseCE32(UnicodeString &context, UChar32 c, uint32_t ce32, ConditionalCE32 *cond, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return 0; } const UChar *p = base->contexts + Collation::indexFromCE32(ce32); int32_t index; if((ce32 & Collation::CONTRACT_SINGLE_CP_NO_MATCH) != 0) { // No match on the single code point. // We are underneath a prefix, and the default mapping is just // a fallback to the mappings for a shorter prefix. U_ASSERT(context.length() > 1); index = -1; } else { ce32 = CollationData::readCE32(p); // Default if no suffix match. U_ASSERT(!Collation::isContractionCE32(ce32)); ce32 = copyFromBaseCE32(c, ce32, TRUE, errorCode); cond->next = index = addConditionalCE32(context, ce32, errorCode); if(U_FAILURE(errorCode)) { return 0; } cond = getConditionalCE32(index); } int32_t suffixStart = context.length(); UCharsTrie::Iterator suffixes(p + 2, 0, errorCode); while(suffixes.next(errorCode)) { context.append(suffixes.getString()); ce32 = copyFromBaseCE32(c, (uint32_t)suffixes.getValue(), TRUE, errorCode); cond->next = index = addConditionalCE32(context, ce32, errorCode); if(U_FAILURE(errorCode)) { return 0; } // No need to update the unsafeBackwardSet because the tailoring set // is already a copy of the base set. cond = getConditionalCE32(index); context.truncate(suffixStart); } U_ASSERT(index >= 0); return index; } class CopyHelper { public: CopyHelper(const CollationDataBuilder &s, CollationDataBuilder &d, const CollationDataBuilder::CEModifier &m, UErrorCode &initialErrorCode) : src(s), dest(d), modifier(m), errorCode(initialErrorCode) {} UBool copyRangeCE32(UChar32 start, UChar32 end, uint32_t ce32) { ce32 = copyCE32(ce32); utrie2_setRange32(dest.trie, start, end, ce32, TRUE, &errorCode); if(CollationDataBuilder::isBuilderContextCE32(ce32)) { dest.contextChars.add(start, end); } return U_SUCCESS(errorCode); } uint32_t copyCE32(uint32_t ce32) { if(!Collation::isSpecialCE32(ce32)) { int64_t ce = modifier.modifyCE32(ce32); if(ce != Collation::NO_CE) { ce32 = dest.encodeOneCE(ce, errorCode); } } else { int32_t tag = Collation::tagFromCE32(ce32); if(tag == Collation::EXPANSION32_TAG) { const uint32_t *srcCE32s = reinterpret_cast<uint32_t *>(src.ce32s.getBuffer()); srcCE32s += Collation::indexFromCE32(ce32); int32_t length = Collation::lengthFromCE32(ce32); // Inspect the source CE32s. Just copy them if none are modified. // Otherwise copy to modifiedCEs, with modifications. UBool isModified = FALSE; for(int32_t i = 0; i < length; ++i) { ce32 = srcCE32s[i]; int64_t ce; if(Collation::isSpecialCE32(ce32) || (ce = modifier.modifyCE32(ce32)) == Collation::NO_CE) { if(isModified) { modifiedCEs[i] = Collation::ceFromCE32(ce32); } } else { if(!isModified) { for(int32_t j = 0; j < i; ++j) { modifiedCEs[j] = Collation::ceFromCE32(srcCE32s[j]); } isModified = TRUE; } modifiedCEs[i] = ce; } } if(isModified) { ce32 = dest.encodeCEs(modifiedCEs, length, errorCode); } else { ce32 = dest.encodeExpansion32( reinterpret_cast<const int32_t *>(srcCE32s), length, errorCode); } } else if(tag == Collation::EXPANSION_TAG) { const int64_t *srcCEs = src.ce64s.getBuffer(); srcCEs += Collation::indexFromCE32(ce32); int32_t length = Collation::lengthFromCE32(ce32); // Inspect the source CEs. Just copy them if none are modified. // Otherwise copy to modifiedCEs, with modifications. UBool isModified = FALSE; for(int32_t i = 0; i < length; ++i) { int64_t srcCE = srcCEs[i]; int64_t ce = modifier.modifyCE(srcCE); if(ce == Collation::NO_CE) { if(isModified) { modifiedCEs[i] = srcCE; } } else { if(!isModified) { for(int32_t j = 0; j < i; ++j) { modifiedCEs[j] = srcCEs[j]; } isModified = TRUE; } modifiedCEs[i] = ce; } } if(isModified) { ce32 = dest.encodeCEs(modifiedCEs, length, errorCode); } else { ce32 = dest.encodeExpansion(srcCEs, length, errorCode); } } else if(tag == Collation::BUILDER_DATA_TAG) { // Copy the list of ConditionalCE32. ConditionalCE32 *cond = src.getConditionalCE32ForCE32(ce32); U_ASSERT(!cond->hasContext()); int32_t destIndex = dest.addConditionalCE32( cond->context, copyCE32(cond->ce32), errorCode); ce32 = CollationDataBuilder::makeBuilderContextCE32(destIndex); while(cond->next >= 0) { cond = src.getConditionalCE32(cond->next); ConditionalCE32 *prevDestCond = dest.getConditionalCE32(destIndex); destIndex = dest.addConditionalCE32( cond->context, copyCE32(cond->ce32), errorCode); int32_t suffixStart = cond->prefixLength() + 1; dest.unsafeBackwardSet.addAll(cond->context.tempSubString(suffixStart)); prevDestCond->next = destIndex; } } else { // Just copy long CEs and Latin mini expansions (and other expected values) as is, // assuming that the modifier would not modify them. U_ASSERT(tag == Collation::LONG_PRIMARY_TAG || tag == Collation::LONG_SECONDARY_TAG || tag == Collation::LATIN_EXPANSION_TAG || tag == Collation::HANGUL_TAG); } } return ce32; } const CollationDataBuilder &src; CollationDataBuilder &dest; const CollationDataBuilder::CEModifier &modifier; int64_t modifiedCEs[Collation::MAX_EXPANSION_LENGTH]; UErrorCode errorCode; }; U_CDECL_BEGIN static UBool U_CALLCONV enumRangeForCopy(const void *context, UChar32 start, UChar32 end, uint32_t value) { return value == Collation::UNASSIGNED_CE32 || value == Collation::FALLBACK_CE32 || ((CopyHelper *)context)->copyRangeCE32(start, end, value); } U_CDECL_END void CollationDataBuilder::copyFrom(const CollationDataBuilder &src, const CEModifier &modifier, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return; } if(trie == NULL || utrie2_isFrozen(trie)) { errorCode = U_INVALID_STATE_ERROR; return; } CopyHelper helper(src, *this, modifier, errorCode); utrie2_enum(src.trie, NULL, enumRangeForCopy, &helper); errorCode = helper.errorCode; // Update the contextChars and the unsafeBackwardSet while copying, // in case a character had conditional mappings in the source builder // and they were removed later. modified |= src.modified; } void CollationDataBuilder::optimize(const UnicodeSet &set, UErrorCode &errorCode) { if(U_FAILURE(errorCode) || set.isEmpty()) { return; } UnicodeSetIterator iter(set); while(iter.next() && !iter.isString()) { UChar32 c = iter.getCodepoint(); uint32_t ce32 = utrie2_get32(trie, c); if(ce32 == Collation::FALLBACK_CE32) { ce32 = base->getFinalCE32(base->getCE32(c)); ce32 = copyFromBaseCE32(c, ce32, TRUE, errorCode); utrie2_set32(trie, c, ce32, &errorCode); } } modified = TRUE; } void CollationDataBuilder::suppressContractions(const UnicodeSet &set, UErrorCode &errorCode) { if(U_FAILURE(errorCode) || set.isEmpty()) { return; } UnicodeSetIterator iter(set); while(iter.next() && !iter.isString()) { UChar32 c = iter.getCodepoint(); uint32_t ce32 = utrie2_get32(trie, c); if(ce32 == Collation::FALLBACK_CE32) { ce32 = base->getFinalCE32(base->getCE32(c)); if(Collation::ce32HasContext(ce32)) { ce32 = copyFromBaseCE32(c, ce32, FALSE /* without context */, errorCode); utrie2_set32(trie, c, ce32, &errorCode); } } else if(isBuilderContextCE32(ce32)) { ce32 = getConditionalCE32ForCE32(ce32)->ce32; // Simply abandon the list of ConditionalCE32. // The caller will copy this builder in the end, // eliminating unreachable data. utrie2_set32(trie, c, ce32, &errorCode); contextChars.remove(c); } } modified = TRUE; } UBool CollationDataBuilder::getJamoCE32s(uint32_t jamoCE32s[], UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return FALSE; } UBool anyJamoAssigned = base == NULL; // always set jamoCE32s in the base data UBool needToCopyFromBase = FALSE; for(int32_t j = 0; j < CollationData::JAMO_CE32S_LENGTH; ++j) { // Count across Jamo types. UChar32 jamo = jamoCpFromIndex(j); UBool fromBase = FALSE; uint32_t ce32 = utrie2_get32(trie, jamo); anyJamoAssigned |= Collation::isAssignedCE32(ce32); // TODO: Try to prevent [optimize [Jamo]] from counting as anyJamoAssigned. // (As of CLDR 24 [2013] the Korean tailoring does not optimize conjoining Jamo.) if(ce32 == Collation::FALLBACK_CE32) { fromBase = TRUE; ce32 = base->getCE32(jamo); } if(Collation::isSpecialCE32(ce32)) { switch(Collation::tagFromCE32(ce32)) { case Collation::LONG_PRIMARY_TAG: case Collation::LONG_SECONDARY_TAG: case Collation::LATIN_EXPANSION_TAG: // Copy the ce32 as-is. break; case Collation::EXPANSION32_TAG: case Collation::EXPANSION_TAG: case Collation::PREFIX_TAG: case Collation::CONTRACTION_TAG: if(fromBase) { // Defer copying until we know if anyJamoAssigned. ce32 = Collation::FALLBACK_CE32; needToCopyFromBase = TRUE; } break; case Collation::IMPLICIT_TAG: // An unassigned Jamo should only occur in tests with incomplete bases. U_ASSERT(fromBase); ce32 = Collation::FALLBACK_CE32; needToCopyFromBase = TRUE; break; case Collation::OFFSET_TAG: ce32 = getCE32FromOffsetCE32(fromBase, jamo, ce32); break; case Collation::FALLBACK_TAG: case Collation::RESERVED_TAG_3: case Collation::BUILDER_DATA_TAG: case Collation::DIGIT_TAG: case Collation::U0000_TAG: case Collation::HANGUL_TAG: case Collation::LEAD_SURROGATE_TAG: errorCode = U_INTERNAL_PROGRAM_ERROR; return FALSE; } } jamoCE32s[j] = ce32; } if(anyJamoAssigned && needToCopyFromBase) { for(int32_t j = 0; j < CollationData::JAMO_CE32S_LENGTH; ++j) { if(jamoCE32s[j] == Collation::FALLBACK_CE32) { UChar32 jamo = jamoCpFromIndex(j); jamoCE32s[j] = copyFromBaseCE32(jamo, base->getCE32(jamo), /*withContext=*/ TRUE, errorCode); } } } return anyJamoAssigned && U_SUCCESS(errorCode); } void CollationDataBuilder::setDigitTags(UErrorCode &errorCode) { UnicodeSet digits(UNICODE_STRING_SIMPLE("[:Nd:]"), errorCode); if(U_FAILURE(errorCode)) { return; } UnicodeSetIterator iter(digits); while(iter.next()) { U_ASSERT(!iter.isString()); UChar32 c = iter.getCodepoint(); uint32_t ce32 = utrie2_get32(trie, c); if(ce32 != Collation::FALLBACK_CE32 && ce32 != Collation::UNASSIGNED_CE32) { int32_t index = addCE32(ce32, errorCode); if(U_FAILURE(errorCode)) { return; } if(index > Collation::MAX_INDEX) { errorCode = U_BUFFER_OVERFLOW_ERROR; return; } ce32 = Collation::makeCE32FromTagIndexAndLength( Collation::DIGIT_TAG, index, u_charDigitValue(c)); utrie2_set32(trie, c, ce32, &errorCode); } } } U_CDECL_BEGIN static UBool U_CALLCONV enumRangeLeadValue(const void *context, UChar32 /*start*/, UChar32 /*end*/, uint32_t value) { int32_t *pValue = (int32_t *)context; if(value == Collation::UNASSIGNED_CE32) { value = Collation::LEAD_ALL_UNASSIGNED; } else if(value == Collation::FALLBACK_CE32) { value = Collation::LEAD_ALL_FALLBACK; } else { *pValue = Collation::LEAD_MIXED; return FALSE; } if(*pValue < 0) { *pValue = (int32_t)value; } else if(*pValue != (int32_t)value) { *pValue = Collation::LEAD_MIXED; return FALSE; } return TRUE; } U_CDECL_END void CollationDataBuilder::setLeadSurrogates(UErrorCode &errorCode) { for(UChar lead = 0xd800; lead < 0xdc00; ++lead) { int32_t value = -1; utrie2_enumForLeadSurrogate(trie, lead, NULL, enumRangeLeadValue, &value); utrie2_set32ForLeadSurrogateCodeUnit( trie, lead, Collation::makeCE32FromTagAndIndex(Collation::LEAD_SURROGATE_TAG, 0) | (uint32_t)value, &errorCode); } } void CollationDataBuilder::build(CollationData &data, UErrorCode &errorCode) { buildMappings(data, errorCode); if(base != NULL) { data.numericPrimary = base->numericPrimary; data.compressibleBytes = base->compressibleBytes; data.numScripts = base->numScripts; data.scriptsIndex = base->scriptsIndex; data.scriptStarts = base->scriptStarts; data.scriptStartsLength = base->scriptStartsLength; } buildFastLatinTable(data, errorCode); } void CollationDataBuilder::buildMappings(CollationData &data, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return; } if(trie == NULL || utrie2_isFrozen(trie)) { errorCode = U_INVALID_STATE_ERROR; return; } buildContexts(errorCode); uint32_t jamoCE32s[CollationData::JAMO_CE32S_LENGTH]; int32_t jamoIndex = -1; if(getJamoCE32s(jamoCE32s, errorCode)) { jamoIndex = ce32s.size(); for(int32_t i = 0; i < CollationData::JAMO_CE32S_LENGTH; ++i) { ce32s.addElement((int32_t)jamoCE32s[i], errorCode); } // Small optimization: Use a bit in the Hangul ce32 // to indicate that none of the Jamo CE32s are isSpecialCE32() // (as it should be in the root collator). // It allows CollationIterator to avoid recursive function calls and per-Jamo tests. // In order to still have good trie compression and keep this code simple, // we only set this flag if a whole block of 588 Hangul syllables starting with // a common leading consonant (Jamo L) has this property. UBool isAnyJamoVTSpecial = FALSE; for(int32_t i = Hangul::JAMO_L_COUNT; i < CollationData::JAMO_CE32S_LENGTH; ++i) { if(Collation::isSpecialCE32(jamoCE32s[i])) { isAnyJamoVTSpecial = TRUE; break; } } uint32_t hangulCE32 = Collation::makeCE32FromTagAndIndex(Collation::HANGUL_TAG, 0); UChar32 c = Hangul::HANGUL_BASE; for(int32_t i = 0; i < Hangul::JAMO_L_COUNT; ++i) { // iterate over the Jamo L uint32_t ce32 = hangulCE32; if(!isAnyJamoVTSpecial && !Collation::isSpecialCE32(jamoCE32s[i])) { ce32 |= Collation::HANGUL_NO_SPECIAL_JAMO; } UChar32 limit = c + Hangul::JAMO_VT_COUNT; utrie2_setRange32(trie, c, limit - 1, ce32, TRUE, &errorCode); c = limit; } } else { // Copy the Hangul CE32s from the base in blocks per Jamo L, // assuming that HANGUL_NO_SPECIAL_JAMO is set or not set for whole blocks. for(UChar32 c = Hangul::HANGUL_BASE; c < Hangul::HANGUL_LIMIT;) { uint32_t ce32 = base->getCE32(c); U_ASSERT(Collation::hasCE32Tag(ce32, Collation::HANGUL_TAG)); UChar32 limit = c + Hangul::JAMO_VT_COUNT; utrie2_setRange32(trie, c, limit - 1, ce32, TRUE, &errorCode); c = limit; } } setDigitTags(errorCode); setLeadSurrogates(errorCode); // For U+0000, move its normal ce32 into CE32s[0] and set U0000_TAG. ce32s.setElementAt((int32_t)utrie2_get32(trie, 0), 0); utrie2_set32(trie, 0, Collation::makeCE32FromTagAndIndex(Collation::U0000_TAG, 0), &errorCode); utrie2_freeze(trie, UTRIE2_32_VALUE_BITS, &errorCode); if(U_FAILURE(errorCode)) { return; } // Mark each lead surrogate as "unsafe" // if any of its 1024 associated supplementary code points is "unsafe". UChar32 c = 0x10000; for(UChar lead = 0xd800; lead < 0xdc00; ++lead, c += 0x400) { if(unsafeBackwardSet.containsSome(c, c + 0x3ff)) { unsafeBackwardSet.add(lead); } } unsafeBackwardSet.freeze(); data.trie = trie; data.ce32s = reinterpret_cast<const uint32_t *>(ce32s.getBuffer()); data.ces = ce64s.getBuffer(); data.contexts = contexts.getBuffer(); data.ce32sLength = ce32s.size(); data.cesLength = ce64s.size(); data.contextsLength = contexts.length(); data.base = base; if(jamoIndex >= 0) { data.jamoCE32s = data.ce32s + jamoIndex; } else { data.jamoCE32s = base->jamoCE32s; } data.unsafeBackwardSet = &unsafeBackwardSet; } void CollationDataBuilder::clearContexts() { contexts.remove(); UnicodeSetIterator iter(contextChars); while(iter.next()) { U_ASSERT(!iter.isString()); uint32_t ce32 = utrie2_get32(trie, iter.getCodepoint()); U_ASSERT(isBuilderContextCE32(ce32)); getConditionalCE32ForCE32(ce32)->builtCE32 = Collation::NO_CE32; } } void CollationDataBuilder::buildContexts(UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return; } // Ignore abandoned lists and the cached builtCE32, // and build all contexts from scratch. contexts.remove(); UnicodeSetIterator iter(contextChars); while(U_SUCCESS(errorCode) && iter.next()) { U_ASSERT(!iter.isString()); UChar32 c = iter.getCodepoint(); uint32_t ce32 = utrie2_get32(trie, c); if(!isBuilderContextCE32(ce32)) { // Impossible: No context data for c in contextChars. errorCode = U_INTERNAL_PROGRAM_ERROR; return; } ConditionalCE32 *cond = getConditionalCE32ForCE32(ce32); ce32 = buildContext(cond, errorCode); utrie2_set32(trie, c, ce32, &errorCode); } } uint32_t CollationDataBuilder::buildContext(ConditionalCE32 *head, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return 0; } // The list head must have no context. U_ASSERT(!head->hasContext()); // The list head must be followed by one or more nodes that all do have context. U_ASSERT(head->next >= 0); UCharsTrieBuilder prefixBuilder(errorCode); UCharsTrieBuilder contractionBuilder(errorCode); for(ConditionalCE32 *cond = head;; cond = getConditionalCE32(cond->next)) { // After the list head, the prefix or suffix can be empty, but not both. U_ASSERT(cond == head || cond->hasContext()); int32_t prefixLength = cond->prefixLength(); UnicodeString prefix(cond->context, 0, prefixLength + 1); // Collect all contraction suffixes for one prefix. ConditionalCE32 *firstCond = cond; ConditionalCE32 *lastCond = cond; while(cond->next >= 0 && (cond = getConditionalCE32(cond->next))->context.startsWith(prefix)) { lastCond = cond; } uint32_t ce32; int32_t suffixStart = prefixLength + 1; // == prefix.length() if(lastCond->context.length() == suffixStart) { // One prefix without contraction suffix. U_ASSERT(firstCond == lastCond); ce32 = lastCond->ce32; cond = lastCond; } else { // Build the contractions trie. contractionBuilder.clear(); // Entry for an empty suffix, to be stored before the trie. uint32_t emptySuffixCE32 = 0; uint32_t flags = 0; if(firstCond->context.length() == suffixStart) { // There is a mapping for the prefix and the single character c. (p|c) // If no other suffix matches, then we return this value. emptySuffixCE32 = firstCond->ce32; cond = getConditionalCE32(firstCond->next); } else { // There is no mapping for the prefix and just the single character. // (There is no p|c, only p|cd, p|ce etc.) flags |= Collation::CONTRACT_SINGLE_CP_NO_MATCH; // When the prefix matches but none of the prefix-specific suffixes, // then we fall back to the mappings with the next-longest prefix, // and ultimately to mappings with no prefix. // Each fallback might be another set of contractions. // For example, if there are mappings for ch, p|cd, p|ce, but not for p|c, // then in text "pch" we find the ch contraction. for(cond = head;; cond = getConditionalCE32(cond->next)) { int32_t length = cond->prefixLength(); if(length == prefixLength) { break; } if(cond->defaultCE32 != Collation::NO_CE32 && (length==0 || prefix.endsWith(cond->context, 1, length))) { emptySuffixCE32 = cond->defaultCE32; } } cond = firstCond; } // Optimization: Set a flag when // the first character of every contraction suffix has lccc!=0. // Short-circuits contraction matching when a normal letter follows. flags |= Collation::CONTRACT_NEXT_CCC; // Add all of the non-empty suffixes into the contraction trie. for(;;) { UnicodeString suffix(cond->context, suffixStart); uint16_t fcd16 = nfcImpl.getFCD16(suffix.char32At(0)); if(fcd16 <= 0xff) { flags &= ~Collation::CONTRACT_NEXT_CCC; } fcd16 = nfcImpl.getFCD16(suffix.char32At(suffix.length() - 1)); if(fcd16 > 0xff) { // The last suffix character has lccc!=0, allowing for discontiguous contractions. flags |= Collation::CONTRACT_TRAILING_CCC; } contractionBuilder.add(suffix, (int32_t)cond->ce32, errorCode); if(cond == lastCond) { break; } cond = getConditionalCE32(cond->next); } int32_t index = addContextTrie(emptySuffixCE32, contractionBuilder, errorCode); if(U_FAILURE(errorCode)) { return 0; } if(index > Collation::MAX_INDEX) { errorCode = U_BUFFER_OVERFLOW_ERROR; return 0; } ce32 = Collation::makeCE32FromTagAndIndex(Collation::CONTRACTION_TAG, index) | flags; } U_ASSERT(cond == lastCond); firstCond->defaultCE32 = ce32; if(prefixLength == 0) { if(cond->next < 0) { // No non-empty prefixes, only contractions. return ce32; } } else { prefix.remove(0, 1); // Remove the length unit. prefix.reverse(); prefixBuilder.add(prefix, (int32_t)ce32, errorCode); if(cond->next < 0) { break; } } } U_ASSERT(head->defaultCE32 != Collation::NO_CE32); int32_t index = addContextTrie(head->defaultCE32, prefixBuilder, errorCode); if(U_FAILURE(errorCode)) { return 0; } if(index > Collation::MAX_INDEX) { errorCode = U_BUFFER_OVERFLOW_ERROR; return 0; } return Collation::makeCE32FromTagAndIndex(Collation::PREFIX_TAG, index); } int32_t CollationDataBuilder::addContextTrie(uint32_t defaultCE32, UCharsTrieBuilder &trieBuilder, UErrorCode &errorCode) { UnicodeString context; context.append((UChar)(defaultCE32 >> 16)).append((UChar)defaultCE32); UnicodeString trieString; context.append(trieBuilder.buildUnicodeString(USTRINGTRIE_BUILD_SMALL, trieString, errorCode)); if(U_FAILURE(errorCode)) { return -1; } int32_t index = contexts.indexOf(context); if(index < 0) { index = contexts.length(); contexts.append(context); } return index; } void CollationDataBuilder::buildFastLatinTable(CollationData &data, UErrorCode &errorCode) { if(U_FAILURE(errorCode) || !fastLatinEnabled) { return; } delete fastLatinBuilder; fastLatinBuilder = new CollationFastLatinBuilder(errorCode); if(fastLatinBuilder == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } if(fastLatinBuilder->forData(data, errorCode)) { const uint16_t *table = fastLatinBuilder->getTable(); int32_t length = fastLatinBuilder->lengthOfTable(); if(base != NULL && length == base->fastLatinTableLength && uprv_memcmp(table, base->fastLatinTable, length * 2) == 0) { // Same fast Latin table as in the base, use that one instead. delete fastLatinBuilder; fastLatinBuilder = NULL; table = base->fastLatinTable; } data.fastLatinTable = table; data.fastLatinTableLength = length; } else { delete fastLatinBuilder; fastLatinBuilder = NULL; } } int32_t CollationDataBuilder::getCEs(const UnicodeString &s, int64_t ces[], int32_t cesLength) { return getCEs(s, 0, ces, cesLength); } int32_t CollationDataBuilder::getCEs(const UnicodeString &prefix, const UnicodeString &s, int64_t ces[], int32_t cesLength) { int32_t prefixLength = prefix.length(); if(prefixLength == 0) { return getCEs(s, 0, ces, cesLength); } else { return getCEs(prefix + s, prefixLength, ces, cesLength); } } int32_t CollationDataBuilder::getCEs(const UnicodeString &s, int32_t start, int64_t ces[], int32_t cesLength) { if(collIter == NULL) { collIter = new DataBuilderCollationIterator(*this); if(collIter == NULL) { return 0; } } return collIter->fetchCEs(s, start, ces, cesLength); } U_NAMESPACE_END #endif // !UCONFIG_NO_COLLATION