/*******************************************************************************
* Copyright 2003-2018 Intel Corporation
* All Rights Reserved.
*
* If this software was obtained under the Intel Simplified Software License,
* the following terms apply:
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*
*
* If this software was obtained under the Apache License, Version 2.0 (the
* "License"), the following terms apply:
*
* You may not use this file except in compliance with the License. You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
//
// Purpose:
// Cryptography Primitive.
// Modular Exponentiation (binary version)
//
// Contents:
// cpMontExpBin_BNU()
*/
#include "owndefs.h"
#include "owncp.h"
#include "pcpbn.h"
#include "pcpmontgomery.h"
//tbcd: temporary excluded: #include <assert.h>
/*F*
// Name: cpMontExpBin_BNU
//
// Purpose: computes the Montgomery exponentiation with exponent
// BNU_CHUNK_T *dataE to the given big number integer of Montgomery form
// BNU_CHUNK_T *dataX with respect to the modulus gsModEngine *pModEngine.
//
// Returns:
// Length of modulus
//
//
// Parameters:
// dataX big number integer of Montgomery form within the
// range [0,m-1]
// dataE big number exponent
// pModEngine Montgomery modulus of IppsMontState.
/ dataY the Montgomery exponentation result.
//
// Notes: IppsBigNumState *r should possess enough memory space as to hold the result
// of the operation. i.e. both pointers r->d and r->buffer should possess
// no less than (m->n->length) number of 32-bit words.
*F*/
cpSize cpMontExpBin_BNU(BNU_CHUNK_T* dataY,
const BNU_CHUNK_T* dataX, cpSize nsX,
const BNU_CHUNK_T* dataE, cpSize nsE,
gsModEngine* pModEngine)
{
cpSize nsM = MOD_LEN( pModEngine );
/*
// test for special cases:
// x^0 = 1
// 0^e = 0
*/
if( cpEqu_BNU_CHUNK(dataE, nsE, 0) ) {
COPY_BNU(dataY, MOD_MNT_R( pModEngine ), nsM);
}
else if( cpEqu_BNU_CHUNK(dataX, nsX, 0) ) {
ZEXPAND_BNU(dataY, 0, nsM);
}
/* general case */
else {
/* Montgomery engine buffers */
const int usedPoolLen = 1;
BNU_CHUNK_T* dataT = gsModPoolAlloc(pModEngine, usedPoolLen);
//tbcd: temporary excluded: assert(NULL!=dataT);
{
/* execute most significant part pE */
BNU_CHUNK_T eValue = dataE[nsE-1];
int n = cpNLZ_BNU(eValue)+1;
/* expand base and init result */
ZEXPAND_COPY_BNU(dataT, nsM, dataX, nsX);
COPY_BNU(dataY, dataT, nsM);
eValue <<= n;
for(; n<BNU_CHUNK_BITS; n++, eValue<<=1) {
/* squaring R = R*R mod Modulus */
MOD_METHOD( pModEngine )->sqr(dataY, dataY, pModEngine);
/* and multiply R = R*X mod Modulus */
if(eValue & ((BNU_CHUNK_T)1<<(BNU_CHUNK_BITS-1)))
MOD_METHOD( pModEngine )->mul(dataY, dataY, dataT, pModEngine);
}
/* execute rest bits of E */
for(--nsE; nsE>0; nsE--) {
eValue = dataE[nsE-1];
for(n=0; n<BNU_CHUNK_BITS; n++, eValue<<=1) {
/* squaring: R = R*R mod Modulus */
MOD_METHOD( pModEngine )->sqr(dataY, dataY, pModEngine);
if(eValue & ((BNU_CHUNK_T)1<<(BNU_CHUNK_BITS-1)))
MOD_METHOD( pModEngine )->mul(dataY, dataY, dataT, pModEngine);
}
}
}
gsModPoolFree(pModEngine, usedPoolLen);
}
return nsM;
}