/******************************************************************************* * Copyright 2003-2018 Intel Corporation * All Rights Reserved. * * If this software was obtained under the Intel Simplified Software License, * the following terms apply: * * The source code, information and material ("Material") contained herein is * owned by Intel Corporation or its suppliers or licensors, and title to such * Material remains with Intel Corporation or its suppliers or licensors. The * Material contains proprietary information of Intel or its suppliers and * licensors. The Material is protected by worldwide copyright laws and treaty * provisions. No part of the Material may be used, copied, reproduced, * modified, published, uploaded, posted, transmitted, distributed or disclosed * in any way without Intel's prior express written permission. No license under * any patent, copyright or other intellectual property rights in the Material * is granted to or conferred upon you, either expressly, by implication, * inducement, estoppel or otherwise. Any license under such intellectual * property rights must be express and approved by Intel in writing. * * Unless otherwise agreed by Intel in writing, you may not remove or alter this * notice or any other notice embedded in Materials by Intel or Intel's * suppliers or licensors in any way. * * * If this software was obtained under the Apache License, Version 2.0 (the * "License"), the following terms apply: * * You may not use this file except in compliance with the License. You may * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ /* // // Purpose: // Cryptography Primitive. // Modular Exponentiation (binary version) // // Contents: // cpMontExpBin_BNU() */ #include "owndefs.h" #include "owncp.h" #include "pcpbn.h" #include "pcpmontgomery.h" //tbcd: temporary excluded: #include <assert.h> /*F* // Name: cpMontExpBin_BNU // // Purpose: computes the Montgomery exponentiation with exponent // BNU_CHUNK_T *dataE to the given big number integer of Montgomery form // BNU_CHUNK_T *dataX with respect to the modulus gsModEngine *pModEngine. // // Returns: // Length of modulus // // // Parameters: // dataX big number integer of Montgomery form within the // range [0,m-1] // dataE big number exponent // pModEngine Montgomery modulus of IppsMontState. / dataY the Montgomery exponentation result. // // Notes: IppsBigNumState *r should possess enough memory space as to hold the result // of the operation. i.e. both pointers r->d and r->buffer should possess // no less than (m->n->length) number of 32-bit words. *F*/ cpSize cpMontExpBin_BNU(BNU_CHUNK_T* dataY, const BNU_CHUNK_T* dataX, cpSize nsX, const BNU_CHUNK_T* dataE, cpSize nsE, gsModEngine* pModEngine) { cpSize nsM = MOD_LEN( pModEngine ); /* // test for special cases: // x^0 = 1 // 0^e = 0 */ if( cpEqu_BNU_CHUNK(dataE, nsE, 0) ) { COPY_BNU(dataY, MOD_MNT_R( pModEngine ), nsM); } else if( cpEqu_BNU_CHUNK(dataX, nsX, 0) ) { ZEXPAND_BNU(dataY, 0, nsM); } /* general case */ else { /* Montgomery engine buffers */ const int usedPoolLen = 1; BNU_CHUNK_T* dataT = gsModPoolAlloc(pModEngine, usedPoolLen); //tbcd: temporary excluded: assert(NULL!=dataT); { /* execute most significant part pE */ BNU_CHUNK_T eValue = dataE[nsE-1]; int n = cpNLZ_BNU(eValue)+1; /* expand base and init result */ ZEXPAND_COPY_BNU(dataT, nsM, dataX, nsX); COPY_BNU(dataY, dataT, nsM); eValue <<= n; for(; n<BNU_CHUNK_BITS; n++, eValue<<=1) { /* squaring R = R*R mod Modulus */ MOD_METHOD( pModEngine )->sqr(dataY, dataY, pModEngine); /* and multiply R = R*X mod Modulus */ if(eValue & ((BNU_CHUNK_T)1<<(BNU_CHUNK_BITS-1))) MOD_METHOD( pModEngine )->mul(dataY, dataY, dataT, pModEngine); } /* execute rest bits of E */ for(--nsE; nsE>0; nsE--) { eValue = dataE[nsE-1]; for(n=0; n<BNU_CHUNK_BITS; n++, eValue<<=1) { /* squaring: R = R*R mod Modulus */ MOD_METHOD( pModEngine )->sqr(dataY, dataY, pModEngine); if(eValue & ((BNU_CHUNK_T)1<<(BNU_CHUNK_BITS-1))) MOD_METHOD( pModEngine )->mul(dataY, dataY, dataT, pModEngine); } } } gsModPoolFree(pModEngine, usedPoolLen); } return nsM; }