/*******************************************************************************
* Copyright 2018 Intel Corporation
* All Rights Reserved.
*
* If this software was obtained under the Intel Simplified Software License,
* the following terms apply:
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*
*
* If this software was obtained under the Apache License, Version 2.0 (the
* "License"), the following terms apply:
*
* You may not use this file except in compliance with the License. You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
// Intel(R) Integrated Performance Primitives. Cryptography Primitives.
// Internal operations over prime GF(p).
//
// Context:
// cpGFpSqrt
//
*/
#include "owncp.h"
#include "pcpbn.h"
#include "pcpgfpstuff.h"
//tbcd: temporary excluded: #include <assert.h>
static int factor2(BNU_CHUNK_T* pA, int nsA)
{
int factor = 0;
int bits;
int i;
for(i=0; i<nsA; i++) {
int ntz = cpNTZ_BNU(pA[i]);
factor += ntz;
if(ntz<BITSIZE(BNU_CHUNK_T))
break;
}
bits = factor;
if(bits >= BITSIZE(BNU_CHUNK_T)) {
int nchunk = bits/BITSIZE(BNU_CHUNK_T);
cpGFpElementCopyPadd(pA, nsA, pA+nchunk, nsA-nchunk);
bits %= BITSIZE(BNU_CHUNK_T);
}
if(bits)
cpLSR_BNU(pA, pA, nsA, bits);
return factor;
}
static BNU_CHUNK_T* cpGFpExp2(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, int e, gsModEngine* pGFE)
{
cpGFpElementCopy(pR, pA, GFP_FELEN(pGFE));
while(e--) {
GFP_METHOD(pGFE)->sqr(pR, pR, pGFE);
}
return pR;
}
/* returns:
0, if a - qnr
1, if sqrt is found
*/
int cpGFpSqrt(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsModEngine* pGFE)
{
int elemLen = GFP_FELEN(pGFE);
int poolelementLen = GFP_PELEN(pGFE);
int resultFlag = 1;
/* case A==0 */
if( GFP_IS_ZERO(pA, elemLen) )
cpGFpElementPadd(pR, elemLen, 0);
/* general case */
else {
BNU_CHUNK_T* q = cpGFpGetPool(4, pGFE);
BNU_CHUNK_T* x = q + poolelementLen;
BNU_CHUNK_T* y = x + poolelementLen;
BNU_CHUNK_T* z = y + poolelementLen;
int s;
//tbcd: temporary excluded: assert(q!=NULL);
/* z=1 */
GFP_ONE(z, elemLen);
/* (modulus-1) = 2^s*q */
cpSub_BNU(q, GFP_MODULUS(pGFE), z, elemLen);
s = factor2(q, elemLen);
/*
// initialization
*/
/* y = qnr^q */
cpGFpExp(y, GFP_QNR(pGFE), q,elemLen, pGFE);
/* x = a^((q-1)/2) */
cpSub_BNU(q, q, z, elemLen);
cpLSR_BNU(q, q, elemLen, 1);
cpGFpExp(x, pA, q, elemLen, pGFE);
/* z = a*x^2 */
GFP_METHOD(pGFE)->mul(z, x, x, pGFE);
GFP_METHOD(pGFE)->mul(z, pA, z, pGFE);
/* R = a*x */
GFP_METHOD(pGFE)->mul(pR, pA, x, pGFE);
while( !GFP_EQ(z, MOD_MNT_R(pGFE), elemLen) ) {
int m = 0;
cpGFpElementCopy(q, z, elemLen);
for(m=1; m<s; m++) {
GFP_METHOD(pGFE)->mul(q, q, q, pGFE);
if( GFP_EQ(q, MOD_MNT_R(pGFE), elemLen) )
break;
}
if(m==s) {
/* A is quadratic non-residue */
resultFlag = 0;
break;
}
else {
/* exponent reduction */
cpGFpExp2(q, y, (s-m-1), pGFE); /* q = y^(2^(s-m-1)) */
GFP_METHOD(pGFE)->mul(y, q, q, pGFE); /* y = q^2 */
GFP_METHOD(pGFE)->mul(pR, q, pR, pGFE); /* R = q*R */
GFP_METHOD(pGFE)->mul(z, y, z, pGFE); /* z = z*y */
s = m;
}
}
/* choose smallest between R and (modulus-R) */
GFP_METHOD(pGFE)->decode(q, pR, pGFE);
if(GFP_GT(q, GFP_HMODULUS(pGFE), elemLen))
GFP_METHOD(pGFE)->neg(pR, pR, pGFE);
cpGFpReleasePool(4, pGFE);
}
return resultFlag;
}