/******************************************************************************* * Copyright 2018 Intel Corporation * All Rights Reserved. * * If this software was obtained under the Intel Simplified Software License, * the following terms apply: * * The source code, information and material ("Material") contained herein is * owned by Intel Corporation or its suppliers or licensors, and title to such * Material remains with Intel Corporation or its suppliers or licensors. The * Material contains proprietary information of Intel or its suppliers and * licensors. The Material is protected by worldwide copyright laws and treaty * provisions. No part of the Material may be used, copied, reproduced, * modified, published, uploaded, posted, transmitted, distributed or disclosed * in any way without Intel's prior express written permission. No license under * any patent, copyright or other intellectual property rights in the Material * is granted to or conferred upon you, either expressly, by implication, * inducement, estoppel or otherwise. Any license under such intellectual * property rights must be express and approved by Intel in writing. * * Unless otherwise agreed by Intel in writing, you may not remove or alter this * notice or any other notice embedded in Materials by Intel or Intel's * suppliers or licensors in any way. * * * If this software was obtained under the Apache License, Version 2.0 (the * "License"), the following terms apply: * * You may not use this file except in compliance with the License. You may * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ /* // Intel(R) Integrated Performance Primitives. Cryptography Primitives. // Internal operations over prime GF(p). // // Context: // cpGFpSqrt // */ #include "owncp.h" #include "pcpbn.h" #include "pcpgfpstuff.h" //tbcd: temporary excluded: #include <assert.h> static int factor2(BNU_CHUNK_T* pA, int nsA) { int factor = 0; int bits; int i; for(i=0; i<nsA; i++) { int ntz = cpNTZ_BNU(pA[i]); factor += ntz; if(ntz<BITSIZE(BNU_CHUNK_T)) break; } bits = factor; if(bits >= BITSIZE(BNU_CHUNK_T)) { int nchunk = bits/BITSIZE(BNU_CHUNK_T); cpGFpElementCopyPadd(pA, nsA, pA+nchunk, nsA-nchunk); bits %= BITSIZE(BNU_CHUNK_T); } if(bits) cpLSR_BNU(pA, pA, nsA, bits); return factor; } static BNU_CHUNK_T* cpGFpExp2(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, int e, gsModEngine* pGFE) { cpGFpElementCopy(pR, pA, GFP_FELEN(pGFE)); while(e--) { GFP_METHOD(pGFE)->sqr(pR, pR, pGFE); } return pR; } /* returns: 0, if a - qnr 1, if sqrt is found */ int cpGFpSqrt(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsModEngine* pGFE) { int elemLen = GFP_FELEN(pGFE); int poolelementLen = GFP_PELEN(pGFE); int resultFlag = 1; /* case A==0 */ if( GFP_IS_ZERO(pA, elemLen) ) cpGFpElementPadd(pR, elemLen, 0); /* general case */ else { BNU_CHUNK_T* q = cpGFpGetPool(4, pGFE); BNU_CHUNK_T* x = q + poolelementLen; BNU_CHUNK_T* y = x + poolelementLen; BNU_CHUNK_T* z = y + poolelementLen; int s; //tbcd: temporary excluded: assert(q!=NULL); /* z=1 */ GFP_ONE(z, elemLen); /* (modulus-1) = 2^s*q */ cpSub_BNU(q, GFP_MODULUS(pGFE), z, elemLen); s = factor2(q, elemLen); /* // initialization */ /* y = qnr^q */ cpGFpExp(y, GFP_QNR(pGFE), q,elemLen, pGFE); /* x = a^((q-1)/2) */ cpSub_BNU(q, q, z, elemLen); cpLSR_BNU(q, q, elemLen, 1); cpGFpExp(x, pA, q, elemLen, pGFE); /* z = a*x^2 */ GFP_METHOD(pGFE)->mul(z, x, x, pGFE); GFP_METHOD(pGFE)->mul(z, pA, z, pGFE); /* R = a*x */ GFP_METHOD(pGFE)->mul(pR, pA, x, pGFE); while( !GFP_EQ(z, MOD_MNT_R(pGFE), elemLen) ) { int m = 0; cpGFpElementCopy(q, z, elemLen); for(m=1; m<s; m++) { GFP_METHOD(pGFE)->mul(q, q, q, pGFE); if( GFP_EQ(q, MOD_MNT_R(pGFE), elemLen) ) break; } if(m==s) { /* A is quadratic non-residue */ resultFlag = 0; break; } else { /* exponent reduction */ cpGFpExp2(q, y, (s-m-1), pGFE); /* q = y^(2^(s-m-1)) */ GFP_METHOD(pGFE)->mul(y, q, q, pGFE); /* y = q^2 */ GFP_METHOD(pGFE)->mul(pR, q, pR, pGFE); /* R = q*R */ GFP_METHOD(pGFE)->mul(z, y, z, pGFE); /* z = z*y */ s = m; } } /* choose smallest between R and (modulus-R) */ GFP_METHOD(pGFE)->decode(q, pR, pGFE); if(GFP_GT(q, GFP_HMODULUS(pGFE), elemLen)) GFP_METHOD(pGFE)->neg(pR, pR, pGFE); cpGFpReleasePool(4, pGFE); } return resultFlag; }