// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H
#define EIGEN_SPARSE_SELFADJOINTVIEW_H
namespace Eigen {
/** \ingroup SparseCore_Module
* \class SparseSelfAdjointView
*
* \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
*
* \param MatrixType the type of the dense matrix storing the coefficients
* \param Mode can be either \c #Lower or \c #Upper
*
* This class is an expression of a sefladjoint matrix from a triangular part of a matrix
* with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
* and most of the time this is the only way that it is used.
*
* \sa SparseMatrixBase::selfadjointView()
*/
namespace internal {
template<typename MatrixType, unsigned int Mode>
struct traits<SparseSelfAdjointView<MatrixType,Mode> > : traits<MatrixType> {
};
template<int SrcMode,int DstMode,typename MatrixType,int DestOrder>
void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
template<int Mode,typename MatrixType,int DestOrder>
void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
}
template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView
: public EigenBase<SparseSelfAdjointView<MatrixType,_Mode> >
{
public:
enum {
Mode = _Mode,
TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0),
RowsAtCompileTime = internal::traits<SparseSelfAdjointView>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<SparseSelfAdjointView>::ColsAtCompileTime
};
typedef EigenBase<SparseSelfAdjointView> Base;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested;
typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
{
eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices");
}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
/** \internal \returns a reference to the nested matrix */
const _MatrixTypeNested& matrix() const { return m_matrix; }
typename internal::remove_reference<MatrixTypeNested>::type& matrix() { return m_matrix; }
/** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs.
*
* Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
* Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
*/
template<typename OtherDerived>
Product<SparseSelfAdjointView, OtherDerived>
operator*(const SparseMatrixBase<OtherDerived>& rhs) const
{
return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived());
}
/** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs.
*
* Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
* Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
*/
template<typename OtherDerived> friend
Product<OtherDerived, SparseSelfAdjointView>
operator*(const SparseMatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
{
return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs);
}
/** Efficient sparse self-adjoint matrix times dense vector/matrix product */
template<typename OtherDerived>
Product<SparseSelfAdjointView,OtherDerived>
operator*(const MatrixBase<OtherDerived>& rhs) const
{
return Product<SparseSelfAdjointView,OtherDerived>(*this, rhs.derived());
}
/** Efficient dense vector/matrix times sparse self-adjoint matrix product */
template<typename OtherDerived> friend
Product<OtherDerived,SparseSelfAdjointView>
operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
{
return Product<OtherDerived,SparseSelfAdjointView>(lhs.derived(), rhs);
}
/** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
* \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
*
* \returns a reference to \c *this
*
* To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
* call this function with u.adjoint().
*/
template<typename DerivedU>
SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
/** \returns an expression of P H P^-1 */
// TODO implement twists in a more evaluator friendly fashion
SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode> twistedBy(const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) const
{
return SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode>(m_matrix, perm);
}
template<typename SrcMatrixType,int SrcMode>
SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcMode>& permutedMatrix)
{
internal::call_assignment_no_alias_no_transpose(*this, permutedMatrix);
return *this;
}
SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src)
{
PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull;
return *this = src.twistedBy(pnull);
}
template<typename SrcMatrixType,unsigned int SrcMode>
SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcMode>& src)
{
PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull;
return *this = src.twistedBy(pnull);
}
void resize(Index rows, Index cols)
{
EIGEN_ONLY_USED_FOR_DEBUG(rows);
EIGEN_ONLY_USED_FOR_DEBUG(cols);
eigen_assert(rows == this->rows() && cols == this->cols()
&& "SparseSelfadjointView::resize() does not actually allow to resize.");
}
protected:
MatrixTypeNested m_matrix;
//mutable VectorI m_countPerRow;
//mutable VectorI m_countPerCol;
private:
template<typename Dest> void evalTo(Dest &) const;
};
/***************************************************************************
* Implementation of SparseMatrixBase methods
***************************************************************************/
template<typename Derived>
template<unsigned int UpLo>
typename SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView() const
{
return SparseSelfAdjointView<const Derived, UpLo>(derived());
}
template<typename Derived>
template<unsigned int UpLo>
typename SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView()
{
return SparseSelfAdjointView<Derived, UpLo>(derived());
}
/***************************************************************************
* Implementation of SparseSelfAdjointView methods
***************************************************************************/
template<typename MatrixType, unsigned int Mode>
template<typename DerivedU>
SparseSelfAdjointView<MatrixType,Mode>&
SparseSelfAdjointView<MatrixType,Mode>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha)
{
SparseMatrix<Scalar,(MatrixType::Flags&RowMajorBit)?RowMajor:ColMajor> tmp = u * u.adjoint();
if(alpha==Scalar(0))
m_matrix = tmp.template triangularView<Mode>();
else
m_matrix += alpha * tmp.template triangularView<Mode>();
return *this;
}
namespace internal {
// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
// in the future selfadjoint-ness should be defined by the expression traits
// such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
template<typename MatrixType, unsigned int Mode>
struct evaluator_traits<SparseSelfAdjointView<MatrixType,Mode> >
{
typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
typedef SparseSelfAdjointShape Shape;
};
struct SparseSelfAdjoint2Sparse {};
template<> struct AssignmentKind<SparseShape,SparseSelfAdjointShape> { typedef SparseSelfAdjoint2Sparse Kind; };
template<> struct AssignmentKind<SparseSelfAdjointShape,SparseShape> { typedef Sparse2Sparse Kind; };
template< typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, SparseSelfAdjoint2Sparse>
{
typedef typename DstXprType::StorageIndex StorageIndex;
typedef internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> AssignOpType;
template<typename DestScalar,int StorageOrder>
static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignOpType&/*func*/)
{
internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), dst);
}
// FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced to:
template<typename DestScalar,int StorageOrder,typename AssignFunc>
static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignFunc& func)
{
SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
run(tmp, src, AssignOpType());
call_assignment_no_alias_no_transpose(dst, tmp, func);
}
template<typename DestScalar,int StorageOrder>
static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */)
{
SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
run(tmp, src, AssignOpType());
dst += tmp;
}
template<typename DestScalar,int StorageOrder>
static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */)
{
SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
run(tmp, src, AssignOpType());
dst -= tmp;
}
template<typename DestScalar>
static void run(DynamicSparseMatrix<DestScalar,ColMajor,StorageIndex>& dst, const SrcXprType &src, const AssignOpType&/*func*/)
{
// TODO directly evaluate into dst;
SparseMatrix<DestScalar,ColMajor,StorageIndex> tmp(dst.rows(),dst.cols());
internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), tmp);
dst = tmp;
}
};
} // end namespace internal
/***************************************************************************
* Implementation of sparse self-adjoint time dense matrix
***************************************************************************/
namespace internal {
template<int Mode, typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType>
inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
{
EIGEN_ONLY_USED_FOR_DEBUG(alpha);
typedef typename internal::nested_eval<SparseLhsType,DenseRhsType::MaxColsAtCompileTime>::type SparseLhsTypeNested;
typedef typename internal::remove_all<SparseLhsTypeNested>::type SparseLhsTypeNestedCleaned;
typedef evaluator<SparseLhsTypeNestedCleaned> LhsEval;
typedef typename LhsEval::InnerIterator LhsIterator;
typedef typename SparseLhsType::Scalar LhsScalar;
enum {
LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit,
ProcessFirstHalf =
((Mode&(Upper|Lower))==(Upper|Lower))
|| ( (Mode&Upper) && !LhsIsRowMajor)
|| ( (Mode&Lower) && LhsIsRowMajor),
ProcessSecondHalf = !ProcessFirstHalf
};
SparseLhsTypeNested lhs_nested(lhs);
LhsEval lhsEval(lhs_nested);
// work on one column at once
for (Index k=0; k<rhs.cols(); ++k)
{
for (Index j=0; j<lhs.outerSize(); ++j)
{
LhsIterator i(lhsEval,j);
// handle diagonal coeff
if (ProcessSecondHalf)
{
while (i && i.index()<j) ++i;
if(i && i.index()==j)
{
res(j,k) += alpha * i.value() * rhs(j,k);
++i;
}
}
// premultiplied rhs for scatters
typename ScalarBinaryOpTraits<AlphaType, typename DenseRhsType::Scalar>::ReturnType rhs_j(alpha*rhs(j,k));
// accumulator for partial scalar product
typename DenseResType::Scalar res_j(0);
for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i)
{
LhsScalar lhs_ij = i.value();
if(!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij);
res_j += lhs_ij * rhs(i.index(),k);
res(i.index(),k) += numext::conj(lhs_ij) * rhs_j;
}
res(j,k) += alpha * res_j;
// handle diagonal coeff
if (ProcessFirstHalf && i && (i.index()==j))
res(j,k) += alpha * i.value() * rhs(j,k);
}
}
}
template<typename LhsView, typename Rhs, int ProductType>
struct generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType>
: generic_product_impl_base<LhsView, Rhs, generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> >
{
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha)
{
typedef typename LhsView::_MatrixTypeNested Lhs;
typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
LhsNested lhsNested(lhsView.matrix());
RhsNested rhsNested(rhs);
internal::sparse_selfadjoint_time_dense_product<LhsView::Mode>(lhsNested, rhsNested, dst, alpha);
}
};
template<typename Lhs, typename RhsView, int ProductType>
struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType>
: generic_product_impl_base<Lhs, RhsView, generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> >
{
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha)
{
typedef typename RhsView::_MatrixTypeNested Rhs;
typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
LhsNested lhsNested(lhs);
RhsNested rhsNested(rhsView.matrix());
// transpose everything
Transpose<Dest> dstT(dst);
internal::sparse_selfadjoint_time_dense_product<RhsView::TransposeMode>(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha);
}
};
// NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix
// TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore
template<typename LhsView, typename Rhs, int ProductTag>
struct product_evaluator<Product<LhsView, Rhs, DefaultProduct>, ProductTag, SparseSelfAdjointShape, SparseShape>
: public evaluator<typename Product<typename Rhs::PlainObject, Rhs, DefaultProduct>::PlainObject>
{
typedef Product<LhsView, Rhs, DefaultProduct> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
product_evaluator(const XprType& xpr)
: m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols())
{
::new (static_cast<Base*>(this)) Base(m_result);
generic_product_impl<typename Rhs::PlainObject, Rhs, SparseShape, SparseShape, ProductTag>::evalTo(m_result, m_lhs, xpr.rhs());
}
protected:
typename Rhs::PlainObject m_lhs;
PlainObject m_result;
};
template<typename Lhs, typename RhsView, int ProductTag>
struct product_evaluator<Product<Lhs, RhsView, DefaultProduct>, ProductTag, SparseShape, SparseSelfAdjointShape>
: public evaluator<typename Product<Lhs, typename Lhs::PlainObject, DefaultProduct>::PlainObject>
{
typedef Product<Lhs, RhsView, DefaultProduct> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
product_evaluator(const XprType& xpr)
: m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols())
{
::new (static_cast<Base*>(this)) Base(m_result);
generic_product_impl<Lhs, typename Lhs::PlainObject, SparseShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), m_rhs);
}
protected:
typename Lhs::PlainObject m_rhs;
PlainObject m_result;
};
} // namespace internal
/***************************************************************************
* Implementation of symmetric copies and permutations
***************************************************************************/
namespace internal {
template<int Mode,typename MatrixType,int DestOrder>
void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
{
typedef typename MatrixType::StorageIndex StorageIndex;
typedef typename MatrixType::Scalar Scalar;
typedef SparseMatrix<Scalar,DestOrder,StorageIndex> Dest;
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
typedef evaluator<MatrixType> MatEval;
typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
MatEval matEval(mat);
Dest& dest(_dest.derived());
enum {
StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor)
};
Index size = mat.rows();
VectorI count;
count.resize(size);
count.setZero();
dest.resize(size,size);
for(Index j = 0; j<size; ++j)
{
Index jp = perm ? perm[j] : j;
for(MatIterator it(matEval,j); it; ++it)
{
Index i = it.index();
Index r = it.row();
Index c = it.col();
Index ip = perm ? perm[i] : i;
if(Mode==(Upper|Lower))
count[StorageOrderMatch ? jp : ip]++;
else if(r==c)
count[ip]++;
else if(( Mode==Lower && r>c) || ( Mode==Upper && r<c))
{
count[ip]++;
count[jp]++;
}
}
}
Index nnz = count.sum();
// reserve space
dest.resizeNonZeros(nnz);
dest.outerIndexPtr()[0] = 0;
for(Index j=0; j<size; ++j)
dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
for(Index j=0; j<size; ++j)
count[j] = dest.outerIndexPtr()[j];
// copy data
for(StorageIndex j = 0; j<size; ++j)
{
for(MatIterator it(matEval,j); it; ++it)
{
StorageIndex i = internal::convert_index<StorageIndex>(it.index());
Index r = it.row();
Index c = it.col();
StorageIndex jp = perm ? perm[j] : j;
StorageIndex ip = perm ? perm[i] : i;
if(Mode==(Upper|Lower))
{
Index k = count[StorageOrderMatch ? jp : ip]++;
dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp;
dest.valuePtr()[k] = it.value();
}
else if(r==c)
{
Index k = count[ip]++;
dest.innerIndexPtr()[k] = ip;
dest.valuePtr()[k] = it.value();
}
else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r<c))
{
if(!StorageOrderMatch)
std::swap(ip,jp);
Index k = count[jp]++;
dest.innerIndexPtr()[k] = ip;
dest.valuePtr()[k] = it.value();
k = count[ip]++;
dest.innerIndexPtr()[k] = jp;
dest.valuePtr()[k] = numext::conj(it.value());
}
}
}
}
template<int _SrcMode,int _DstMode,typename MatrixType,int DstOrder>
void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
{
typedef typename MatrixType::StorageIndex StorageIndex;
typedef typename MatrixType::Scalar Scalar;
SparseMatrix<Scalar,DstOrder,StorageIndex>& dest(_dest.derived());
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
typedef evaluator<MatrixType> MatEval;
typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
enum {
SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor,
StorageOrderMatch = int(SrcOrder) == int(DstOrder),
DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode,
SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode
};
MatEval matEval(mat);
Index size = mat.rows();
VectorI count(size);
count.setZero();
dest.resize(size,size);
for(StorageIndex j = 0; j<size; ++j)
{
StorageIndex jp = perm ? perm[j] : j;
for(MatIterator it(matEval,j); it; ++it)
{
StorageIndex i = it.index();
if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
continue;
StorageIndex ip = perm ? perm[i] : i;
count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
}
}
dest.outerIndexPtr()[0] = 0;
for(Index j=0; j<size; ++j)
dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
dest.resizeNonZeros(dest.outerIndexPtr()[size]);
for(Index j=0; j<size; ++j)
count[j] = dest.outerIndexPtr()[j];
for(StorageIndex j = 0; j<size; ++j)
{
for(MatIterator it(matEval,j); it; ++it)
{
StorageIndex i = it.index();
if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
continue;
StorageIndex jp = perm ? perm[j] : j;
StorageIndex ip = perm? perm[i] : i;
Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp);
if(!StorageOrderMatch) std::swap(ip,jp);
if( ((int(DstMode)==int(Lower) && ip<jp) || (int(DstMode)==int(Upper) && ip>jp)))
dest.valuePtr()[k] = numext::conj(it.value());
else
dest.valuePtr()[k] = it.value();
}
}
}
}
// TODO implement twists in a more evaluator friendly fashion
namespace internal {
template<typename MatrixType, int Mode>
struct traits<SparseSymmetricPermutationProduct<MatrixType,Mode> > : traits<MatrixType> {
};
}
template<typename MatrixType,int Mode>
class SparseSymmetricPermutationProduct
: public EigenBase<SparseSymmetricPermutationProduct<MatrixType,Mode> >
{
public:
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::StorageIndex StorageIndex;
enum {
RowsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::ColsAtCompileTime
};
protected:
typedef PermutationMatrix<Dynamic,Dynamic,StorageIndex> Perm;
public:
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
typedef typename MatrixType::Nested MatrixTypeNested;
typedef typename internal::remove_all<MatrixTypeNested>::type NestedExpression;
SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm)
: m_matrix(mat), m_perm(perm)
{}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
const NestedExpression& matrix() const { return m_matrix; }
const Perm& perm() const { return m_perm; }
protected:
MatrixTypeNested m_matrix;
const Perm& m_perm;
};
namespace internal {
template<typename DstXprType, typename MatrixType, int Mode, typename Scalar>
struct Assignment<DstXprType, SparseSymmetricPermutationProduct<MatrixType,Mode>, internal::assign_op<Scalar,typename MatrixType::Scalar>, Sparse2Sparse>
{
typedef SparseSymmetricPermutationProduct<MatrixType,Mode> SrcXprType;
typedef typename DstXprType::StorageIndex DstIndex;
template<int Options>
static void run(SparseMatrix<Scalar,Options,DstIndex> &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &)
{
// internal::permute_symm_to_fullsymm<Mode>(m_matrix,_dest,m_perm.indices().data());
SparseMatrix<Scalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp;
internal::permute_symm_to_fullsymm<Mode>(src.matrix(),tmp,src.perm().indices().data());
dst = tmp;
}
template<typename DestType,unsigned int DestMode>
static void run(SparseSelfAdjointView<DestType,DestMode>& dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &)
{
internal::permute_symm_to_symm<Mode,DestMode>(src.matrix(),dst.matrix(),src.perm().indices().data());
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H