// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H #define EIGEN_SPARSE_SELFADJOINTVIEW_H namespace Eigen { /** \ingroup SparseCore_Module * \class SparseSelfAdjointView * * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. * * \param MatrixType the type of the dense matrix storing the coefficients * \param Mode can be either \c #Lower or \c #Upper * * This class is an expression of a sefladjoint matrix from a triangular part of a matrix * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() * and most of the time this is the only way that it is used. * * \sa SparseMatrixBase::selfadjointView() */ namespace internal { template<typename MatrixType, unsigned int Mode> struct traits<SparseSelfAdjointView<MatrixType,Mode> > : traits<MatrixType> { }; template<int SrcMode,int DstMode,typename MatrixType,int DestOrder> void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0); template<int Mode,typename MatrixType,int DestOrder> void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0); } template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView : public EigenBase<SparseSelfAdjointView<MatrixType,_Mode> > { public: enum { Mode = _Mode, TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0), RowsAtCompileTime = internal::traits<SparseSelfAdjointView>::RowsAtCompileTime, ColsAtCompileTime = internal::traits<SparseSelfAdjointView>::ColsAtCompileTime }; typedef EigenBase<SparseSelfAdjointView> Base; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::StorageIndex StorageIndex; typedef Matrix<StorageIndex,Dynamic,1> VectorI; typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested; typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested; explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix) { eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices"); } inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } /** \internal \returns a reference to the nested matrix */ const _MatrixTypeNested& matrix() const { return m_matrix; } typename internal::remove_reference<MatrixTypeNested>::type& matrix() { return m_matrix; } /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs. * * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product. */ template<typename OtherDerived> Product<SparseSelfAdjointView, OtherDerived> operator*(const SparseMatrixBase<OtherDerived>& rhs) const { return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived()); } /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs. * * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product. */ template<typename OtherDerived> friend Product<OtherDerived, SparseSelfAdjointView> operator*(const SparseMatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs) { return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs); } /** Efficient sparse self-adjoint matrix times dense vector/matrix product */ template<typename OtherDerived> Product<SparseSelfAdjointView,OtherDerived> operator*(const MatrixBase<OtherDerived>& rhs) const { return Product<SparseSelfAdjointView,OtherDerived>(*this, rhs.derived()); } /** Efficient dense vector/matrix times sparse self-adjoint matrix product */ template<typename OtherDerived> friend Product<OtherDerived,SparseSelfAdjointView> operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs) { return Product<OtherDerived,SparseSelfAdjointView>(lhs.derived(), rhs); } /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. * * \returns a reference to \c *this * * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply * call this function with u.adjoint(). */ template<typename DerivedU> SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1)); /** \returns an expression of P H P^-1 */ // TODO implement twists in a more evaluator friendly fashion SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode> twistedBy(const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) const { return SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode>(m_matrix, perm); } template<typename SrcMatrixType,int SrcMode> SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcMode>& permutedMatrix) { internal::call_assignment_no_alias_no_transpose(*this, permutedMatrix); return *this; } SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src) { PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull; return *this = src.twistedBy(pnull); } template<typename SrcMatrixType,unsigned int SrcMode> SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcMode>& src) { PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull; return *this = src.twistedBy(pnull); } void resize(Index rows, Index cols) { EIGEN_ONLY_USED_FOR_DEBUG(rows); EIGEN_ONLY_USED_FOR_DEBUG(cols); eigen_assert(rows == this->rows() && cols == this->cols() && "SparseSelfadjointView::resize() does not actually allow to resize."); } protected: MatrixTypeNested m_matrix; //mutable VectorI m_countPerRow; //mutable VectorI m_countPerCol; private: template<typename Dest> void evalTo(Dest &) const; }; /*************************************************************************** * Implementation of SparseMatrixBase methods ***************************************************************************/ template<typename Derived> template<unsigned int UpLo> typename SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView() const { return SparseSelfAdjointView<const Derived, UpLo>(derived()); } template<typename Derived> template<unsigned int UpLo> typename SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView() { return SparseSelfAdjointView<Derived, UpLo>(derived()); } /*************************************************************************** * Implementation of SparseSelfAdjointView methods ***************************************************************************/ template<typename MatrixType, unsigned int Mode> template<typename DerivedU> SparseSelfAdjointView<MatrixType,Mode>& SparseSelfAdjointView<MatrixType,Mode>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha) { SparseMatrix<Scalar,(MatrixType::Flags&RowMajorBit)?RowMajor:ColMajor> tmp = u * u.adjoint(); if(alpha==Scalar(0)) m_matrix = tmp.template triangularView<Mode>(); else m_matrix += alpha * tmp.template triangularView<Mode>(); return *this; } namespace internal { // TODO currently a selfadjoint expression has the form SelfAdjointView<.,.> // in the future selfadjoint-ness should be defined by the expression traits // such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work) template<typename MatrixType, unsigned int Mode> struct evaluator_traits<SparseSelfAdjointView<MatrixType,Mode> > { typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind; typedef SparseSelfAdjointShape Shape; }; struct SparseSelfAdjoint2Sparse {}; template<> struct AssignmentKind<SparseShape,SparseSelfAdjointShape> { typedef SparseSelfAdjoint2Sparse Kind; }; template<> struct AssignmentKind<SparseSelfAdjointShape,SparseShape> { typedef Sparse2Sparse Kind; }; template< typename DstXprType, typename SrcXprType, typename Functor> struct Assignment<DstXprType, SrcXprType, Functor, SparseSelfAdjoint2Sparse> { typedef typename DstXprType::StorageIndex StorageIndex; typedef internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> AssignOpType; template<typename DestScalar,int StorageOrder> static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignOpType&/*func*/) { internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), dst); } // FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced to: template<typename DestScalar,int StorageOrder,typename AssignFunc> static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignFunc& func) { SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols()); run(tmp, src, AssignOpType()); call_assignment_no_alias_no_transpose(dst, tmp, func); } template<typename DestScalar,int StorageOrder> static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */) { SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols()); run(tmp, src, AssignOpType()); dst += tmp; } template<typename DestScalar,int StorageOrder> static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */) { SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols()); run(tmp, src, AssignOpType()); dst -= tmp; } template<typename DestScalar> static void run(DynamicSparseMatrix<DestScalar,ColMajor,StorageIndex>& dst, const SrcXprType &src, const AssignOpType&/*func*/) { // TODO directly evaluate into dst; SparseMatrix<DestScalar,ColMajor,StorageIndex> tmp(dst.rows(),dst.cols()); internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), tmp); dst = tmp; } }; } // end namespace internal /*************************************************************************** * Implementation of sparse self-adjoint time dense matrix ***************************************************************************/ namespace internal { template<int Mode, typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType> inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha) { EIGEN_ONLY_USED_FOR_DEBUG(alpha); typedef typename internal::nested_eval<SparseLhsType,DenseRhsType::MaxColsAtCompileTime>::type SparseLhsTypeNested; typedef typename internal::remove_all<SparseLhsTypeNested>::type SparseLhsTypeNestedCleaned; typedef evaluator<SparseLhsTypeNestedCleaned> LhsEval; typedef typename LhsEval::InnerIterator LhsIterator; typedef typename SparseLhsType::Scalar LhsScalar; enum { LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit, ProcessFirstHalf = ((Mode&(Upper|Lower))==(Upper|Lower)) || ( (Mode&Upper) && !LhsIsRowMajor) || ( (Mode&Lower) && LhsIsRowMajor), ProcessSecondHalf = !ProcessFirstHalf }; SparseLhsTypeNested lhs_nested(lhs); LhsEval lhsEval(lhs_nested); // work on one column at once for (Index k=0; k<rhs.cols(); ++k) { for (Index j=0; j<lhs.outerSize(); ++j) { LhsIterator i(lhsEval,j); // handle diagonal coeff if (ProcessSecondHalf) { while (i && i.index()<j) ++i; if(i && i.index()==j) { res(j,k) += alpha * i.value() * rhs(j,k); ++i; } } // premultiplied rhs for scatters typename ScalarBinaryOpTraits<AlphaType, typename DenseRhsType::Scalar>::ReturnType rhs_j(alpha*rhs(j,k)); // accumulator for partial scalar product typename DenseResType::Scalar res_j(0); for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i) { LhsScalar lhs_ij = i.value(); if(!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij); res_j += lhs_ij * rhs(i.index(),k); res(i.index(),k) += numext::conj(lhs_ij) * rhs_j; } res(j,k) += alpha * res_j; // handle diagonal coeff if (ProcessFirstHalf && i && (i.index()==j)) res(j,k) += alpha * i.value() * rhs(j,k); } } } template<typename LhsView, typename Rhs, int ProductType> struct generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> : generic_product_impl_base<LhsView, Rhs, generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> > { template<typename Dest> static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha) { typedef typename LhsView::_MatrixTypeNested Lhs; typedef typename nested_eval<Lhs,Dynamic>::type LhsNested; typedef typename nested_eval<Rhs,Dynamic>::type RhsNested; LhsNested lhsNested(lhsView.matrix()); RhsNested rhsNested(rhs); internal::sparse_selfadjoint_time_dense_product<LhsView::Mode>(lhsNested, rhsNested, dst, alpha); } }; template<typename Lhs, typename RhsView, int ProductType> struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> : generic_product_impl_base<Lhs, RhsView, generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> > { template<typename Dest> static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha) { typedef typename RhsView::_MatrixTypeNested Rhs; typedef typename nested_eval<Lhs,Dynamic>::type LhsNested; typedef typename nested_eval<Rhs,Dynamic>::type RhsNested; LhsNested lhsNested(lhs); RhsNested rhsNested(rhsView.matrix()); // transpose everything Transpose<Dest> dstT(dst); internal::sparse_selfadjoint_time_dense_product<RhsView::TransposeMode>(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha); } }; // NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix // TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore template<typename LhsView, typename Rhs, int ProductTag> struct product_evaluator<Product<LhsView, Rhs, DefaultProduct>, ProductTag, SparseSelfAdjointShape, SparseShape> : public evaluator<typename Product<typename Rhs::PlainObject, Rhs, DefaultProduct>::PlainObject> { typedef Product<LhsView, Rhs, DefaultProduct> XprType; typedef typename XprType::PlainObject PlainObject; typedef evaluator<PlainObject> Base; product_evaluator(const XprType& xpr) : m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols()) { ::new (static_cast<Base*>(this)) Base(m_result); generic_product_impl<typename Rhs::PlainObject, Rhs, SparseShape, SparseShape, ProductTag>::evalTo(m_result, m_lhs, xpr.rhs()); } protected: typename Rhs::PlainObject m_lhs; PlainObject m_result; }; template<typename Lhs, typename RhsView, int ProductTag> struct product_evaluator<Product<Lhs, RhsView, DefaultProduct>, ProductTag, SparseShape, SparseSelfAdjointShape> : public evaluator<typename Product<Lhs, typename Lhs::PlainObject, DefaultProduct>::PlainObject> { typedef Product<Lhs, RhsView, DefaultProduct> XprType; typedef typename XprType::PlainObject PlainObject; typedef evaluator<PlainObject> Base; product_evaluator(const XprType& xpr) : m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols()) { ::new (static_cast<Base*>(this)) Base(m_result); generic_product_impl<Lhs, typename Lhs::PlainObject, SparseShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), m_rhs); } protected: typename Lhs::PlainObject m_rhs; PlainObject m_result; }; } // namespace internal /*************************************************************************** * Implementation of symmetric copies and permutations ***************************************************************************/ namespace internal { template<int Mode,typename MatrixType,int DestOrder> void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm) { typedef typename MatrixType::StorageIndex StorageIndex; typedef typename MatrixType::Scalar Scalar; typedef SparseMatrix<Scalar,DestOrder,StorageIndex> Dest; typedef Matrix<StorageIndex,Dynamic,1> VectorI; typedef evaluator<MatrixType> MatEval; typedef typename evaluator<MatrixType>::InnerIterator MatIterator; MatEval matEval(mat); Dest& dest(_dest.derived()); enum { StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor) }; Index size = mat.rows(); VectorI count; count.resize(size); count.setZero(); dest.resize(size,size); for(Index j = 0; j<size; ++j) { Index jp = perm ? perm[j] : j; for(MatIterator it(matEval,j); it; ++it) { Index i = it.index(); Index r = it.row(); Index c = it.col(); Index ip = perm ? perm[i] : i; if(Mode==(Upper|Lower)) count[StorageOrderMatch ? jp : ip]++; else if(r==c) count[ip]++; else if(( Mode==Lower && r>c) || ( Mode==Upper && r<c)) { count[ip]++; count[jp]++; } } } Index nnz = count.sum(); // reserve space dest.resizeNonZeros(nnz); dest.outerIndexPtr()[0] = 0; for(Index j=0; j<size; ++j) dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j]; for(Index j=0; j<size; ++j) count[j] = dest.outerIndexPtr()[j]; // copy data for(StorageIndex j = 0; j<size; ++j) { for(MatIterator it(matEval,j); it; ++it) { StorageIndex i = internal::convert_index<StorageIndex>(it.index()); Index r = it.row(); Index c = it.col(); StorageIndex jp = perm ? perm[j] : j; StorageIndex ip = perm ? perm[i] : i; if(Mode==(Upper|Lower)) { Index k = count[StorageOrderMatch ? jp : ip]++; dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp; dest.valuePtr()[k] = it.value(); } else if(r==c) { Index k = count[ip]++; dest.innerIndexPtr()[k] = ip; dest.valuePtr()[k] = it.value(); } else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r<c)) { if(!StorageOrderMatch) std::swap(ip,jp); Index k = count[jp]++; dest.innerIndexPtr()[k] = ip; dest.valuePtr()[k] = it.value(); k = count[ip]++; dest.innerIndexPtr()[k] = jp; dest.valuePtr()[k] = numext::conj(it.value()); } } } } template<int _SrcMode,int _DstMode,typename MatrixType,int DstOrder> void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm) { typedef typename MatrixType::StorageIndex StorageIndex; typedef typename MatrixType::Scalar Scalar; SparseMatrix<Scalar,DstOrder,StorageIndex>& dest(_dest.derived()); typedef Matrix<StorageIndex,Dynamic,1> VectorI; typedef evaluator<MatrixType> MatEval; typedef typename evaluator<MatrixType>::InnerIterator MatIterator; enum { SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor, StorageOrderMatch = int(SrcOrder) == int(DstOrder), DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode, SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode }; MatEval matEval(mat); Index size = mat.rows(); VectorI count(size); count.setZero(); dest.resize(size,size); for(StorageIndex j = 0; j<size; ++j) { StorageIndex jp = perm ? perm[j] : j; for(MatIterator it(matEval,j); it; ++it) { StorageIndex i = it.index(); if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j)) continue; StorageIndex ip = perm ? perm[i] : i; count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; } } dest.outerIndexPtr()[0] = 0; for(Index j=0; j<size; ++j) dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j]; dest.resizeNonZeros(dest.outerIndexPtr()[size]); for(Index j=0; j<size; ++j) count[j] = dest.outerIndexPtr()[j]; for(StorageIndex j = 0; j<size; ++j) { for(MatIterator it(matEval,j); it; ++it) { StorageIndex i = it.index(); if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j)) continue; StorageIndex jp = perm ? perm[j] : j; StorageIndex ip = perm? perm[i] : i; Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp); if(!StorageOrderMatch) std::swap(ip,jp); if( ((int(DstMode)==int(Lower) && ip<jp) || (int(DstMode)==int(Upper) && ip>jp))) dest.valuePtr()[k] = numext::conj(it.value()); else dest.valuePtr()[k] = it.value(); } } } } // TODO implement twists in a more evaluator friendly fashion namespace internal { template<typename MatrixType, int Mode> struct traits<SparseSymmetricPermutationProduct<MatrixType,Mode> > : traits<MatrixType> { }; } template<typename MatrixType,int Mode> class SparseSymmetricPermutationProduct : public EigenBase<SparseSymmetricPermutationProduct<MatrixType,Mode> > { public: typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::StorageIndex StorageIndex; enum { RowsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::RowsAtCompileTime, ColsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::ColsAtCompileTime }; protected: typedef PermutationMatrix<Dynamic,Dynamic,StorageIndex> Perm; public: typedef Matrix<StorageIndex,Dynamic,1> VectorI; typedef typename MatrixType::Nested MatrixTypeNested; typedef typename internal::remove_all<MatrixTypeNested>::type NestedExpression; SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm) : m_matrix(mat), m_perm(perm) {} inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } const NestedExpression& matrix() const { return m_matrix; } const Perm& perm() const { return m_perm; } protected: MatrixTypeNested m_matrix; const Perm& m_perm; }; namespace internal { template<typename DstXprType, typename MatrixType, int Mode, typename Scalar> struct Assignment<DstXprType, SparseSymmetricPermutationProduct<MatrixType,Mode>, internal::assign_op<Scalar,typename MatrixType::Scalar>, Sparse2Sparse> { typedef SparseSymmetricPermutationProduct<MatrixType,Mode> SrcXprType; typedef typename DstXprType::StorageIndex DstIndex; template<int Options> static void run(SparseMatrix<Scalar,Options,DstIndex> &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &) { // internal::permute_symm_to_fullsymm<Mode>(m_matrix,_dest,m_perm.indices().data()); SparseMatrix<Scalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp; internal::permute_symm_to_fullsymm<Mode>(src.matrix(),tmp,src.perm().indices().data()); dst = tmp; } template<typename DestType,unsigned int DestMode> static void run(SparseSelfAdjointView<DestType,DestMode>& dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &) { internal::permute_symm_to_symm<Mode,DestMode>(src.matrix(),dst.matrix(),src.perm().indices().data()); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_SPARSE_SELFADJOINTVIEW_H