普通文本  |  547行  |  17.33 KB

#include "strings/numbers.h"

#include <float.h>  // for FLT_DIG
#include <cassert>
#include <memory>

#include "strings/ascii_ctype.h"

namespace dynamic_depth {
namespace strings {
namespace {

// Represents integer values of digits.
// Uses 36 to indicate an invalid character since we support
// bases up to 36.
static const int8 kAsciiToInt[256] = {
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,  // 16 36s.
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0,  1,  2,  3,  4,  5,
    6,  7,  8,  9,  36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17,
    18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
    36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
    24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36};

// Parse the sign and optional hex or oct prefix in text.
inline bool safe_parse_sign_and_base(string* text /*inout*/,
                                     int* base_ptr /*inout*/,
                                     bool* negative_ptr /*output*/) {
  if (text->data() == NULL) {
    return false;
  }

  const char* start = text->data();
  const char* end = start + text->size();
  int base = *base_ptr;

  // Consume whitespace.
  while (start < end && ascii_isspace(start[0])) {
    ++start;
  }
  while (start < end && ascii_isspace(end[-1])) {
    --end;
  }
  if (start >= end) {
    return false;
  }

  // Consume sign.
  *negative_ptr = (start[0] == '-');
  if (*negative_ptr || start[0] == '+') {
    ++start;
    if (start >= end) {
      return false;
    }
  }

  // Consume base-dependent prefix.
  //  base 0: "0x" -> base 16, "0" -> base 8, default -> base 10
  //  base 16: "0x" -> base 16
  // Also validate the base.
  if (base == 0) {
    if (end - start >= 2 && start[0] == '0' &&
        (start[1] == 'x' || start[1] == 'X')) {
      base = 16;
      start += 2;
      if (start >= end) {
        // "0x" with no digits after is invalid.
        return false;
      }
    } else if (end - start >= 1 && start[0] == '0') {
      base = 8;
      start += 1;
    } else {
      base = 10;
    }
  } else if (base == 16) {
    if (end - start >= 2 && start[0] == '0' &&
        (start[1] == 'x' || start[1] == 'X')) {
      start += 2;
      if (start >= end) {
        // "0x" with no digits after is invalid.
        return false;
      }
    }
  } else if (base >= 2 && base <= 36) {
    // okay
  } else {
    return false;
  }
  text->assign(start, end - start);
  *base_ptr = base;
  return true;
}

// Consume digits.
//
// The classic loop:
//
//   for each digit
//     value = value * base + digit
//   value *= sign
//
// The classic loop needs overflow checking.  It also fails on the most
// negative integer, -2147483648 in 32-bit two's complement representation.
//
// My improved loop:
//
//  if (!negative)
//    for each digit
//      value = value * base
//      value = value + digit
//  else
//    for each digit
//      value = value * base
//      value = value - digit
//
// Overflow checking becomes simple.

// Lookup tables per IntType:
// vmax/base and vmin/base are precomputed because division costs at least 8ns.
// TODO(junyer): Doing this per base instead (i.e. an array of structs, not a
// struct of arrays) would probably be better in terms of d-cache for the most
// commonly used bases.
template <typename IntType>
struct LookupTables {
  static const IntType kVmaxOverBase[];
  static const IntType kVminOverBase[];
};

// An array initializer macro for X/base where base in [0, 36].
// However, note that lookups for base in [0, 1] should never happen because
// base has been validated to be in [2, 36] by safe_parse_sign_and_base().
#define X_OVER_BASE_INITIALIZER(X)                                    \
  {                                                                   \
      0,      0,      X / 2,  X / 3,  X / 4,  X / 5,  X / 6,  X / 7,  \
      X / 8,  X / 9,  X / 10, X / 11, X / 12, X / 13, X / 14, X / 15, \
      X / 16, X / 17, X / 18, X / 19, X / 20, X / 21, X / 22, X / 23, \
      X / 24, X / 25, X / 26, X / 27, X / 28, X / 29, X / 30, X / 31, \
      X / 32, X / 33, X / 34, X / 35, X / 36,                         \
  };

template <typename IntType>
const IntType LookupTables<IntType>::kVmaxOverBase[] =
    X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max());

template <typename IntType>
const IntType LookupTables<IntType>::kVminOverBase[] =
    X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min());

#undef X_OVER_BASE_INITIALIZER

template <typename IntType>
inline bool safe_parse_positive_int(const string& text, int base,
                                    IntType* value_p) {
  IntType value = 0;
  const IntType vmax = std::numeric_limits<IntType>::max();
  assert(vmax > 0);
  assert(vmax >= base);
  const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base];
  const char* start = text.data();
  const char* end = start + text.size();
  // loop over digits
  for (; start < end; ++start) {
    unsigned char c = static_cast<unsigned char>(start[0]);
    int digit = kAsciiToInt[c];
    if (digit >= base) {
      *value_p = value;
      return false;
    }
    if (value > vmax_over_base) {
      *value_p = vmax;
      return false;
    }
    value *= base;
    if (value > vmax - digit) {
      *value_p = vmax;
      return false;
    }
    value += digit;
  }
  *value_p = value;
  return true;
}

template <typename IntType>
inline bool safe_parse_negative_int(const string& text, int base,
                                    IntType* value_p) {
  IntType value = 0;
  const IntType vmin = std::numeric_limits<IntType>::min();
  assert(vmin < 0);
  assert(vmin <= 0 - base);
  IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base];
  // 2003 c++ standard [expr.mul]
  // "... the sign of the remainder is implementation-defined."
  // Although (vmin/base)*base + vmin%base is always vmin.
  // 2011 c++ standard tightens the spec but we cannot rely on it.
  // TODO(junyer): Handle this in the lookup table generation.
  if (vmin % base > 0) {
    vmin_over_base += 1;
  }
  const char* start = text.data();
  const char* end = start + text.size();
  // loop over digits
  for (; start < end; ++start) {
    unsigned char c = static_cast<unsigned char>(start[0]);
    int digit = kAsciiToInt[c];
    if (digit >= base) {
      *value_p = value;
      return false;
    }
    if (value < vmin_over_base) {
      *value_p = vmin;
      return false;
    }
    value *= base;
    if (value < vmin + digit) {
      *value_p = vmin;
      return false;
    }
    value -= digit;
  }
  *value_p = value;
  return true;
}

// Input format based on POSIX.1-2008 strtol
// http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html
template <typename IntType>
inline bool safe_int_internal(const string& text, IntType* value_p, int base) {
  *value_p = 0;
  bool negative;
  string text_copy(text);
  if (!safe_parse_sign_and_base(&text_copy, &base, &negative)) {
    return false;
  }
  if (!negative) {
    return safe_parse_positive_int(text_copy, base, value_p);
  } else {
    return safe_parse_negative_int(text_copy, base, value_p);
  }
}

template <typename IntType>
inline bool safe_uint_internal(const string& text, IntType* value_p, int base) {
  *value_p = 0;
  bool negative;
  string text_copy(text);
  if (!safe_parse_sign_and_base(&text_copy, &base, &negative) || negative) {
    return false;
  }
  return safe_parse_positive_int(text_copy, base, value_p);
}

// Writes a two-character representation of 'i' to 'buf'. 'i' must be in the
// range 0 <= i < 100, and buf must have space for two characters. Example:
//   char buf[2];
//   PutTwoDigits(42, buf);
//   // buf[0] == '4'
//   // buf[1] == '2'
inline void PutTwoDigits(size_t i, char* buf) {
  static const char two_ASCII_digits[100][2] = {
      {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'},
      {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'},
      {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'},
      {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'},
      {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
      {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'},
      {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'},
      {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'},
      {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'},
      {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
      {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'},
      {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'},
      {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'},
      {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'},
      {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
      {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'},
      {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};
  assert(i < 100);
  memcpy(buf, two_ASCII_digits[i], 2);
}

}  // anonymous namespace

// ----------------------------------------------------------------------
// FastInt32ToBufferLeft()
// FastUInt32ToBufferLeft()
// FastInt64ToBufferLeft()
// FastUInt64ToBufferLeft()
//
// Like the Fast*ToBuffer() functions above, these are intended for speed.
// Unlike the Fast*ToBuffer() functions, however, these functions write
// their output to the beginning of the buffer (hence the name, as the
// output is left-aligned).  The caller is responsible for ensuring that
// the buffer has enough space to hold the output.
//
// Returns a pointer to the end of the string (i.e. the null character
// terminating the string).
// ----------------------------------------------------------------------

// Used to optimize printing a decimal number's final digit.
const char one_ASCII_final_digits[10][2]{
    {'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0},
    {'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0},
};

char* FastUInt32ToBufferLeft(uint32 u, char* buffer) {
  uint32 digits;
  // The idea of this implementation is to trim the number of divides to as few
  // as possible, and also reducing memory stores and branches, by going in
  // steps of two digits at a time rather than one whenever possible.
  // The huge-number case is first, in the hopes that the compiler will output
  // that case in one branch-free block of code, and only output conditional
  // branches into it from below.
  if (u >= 1000000000) {     // >= 1,000,000,000
    digits = u / 100000000;  // 100,000,000
    u -= digits * 100000000;
    PutTwoDigits(digits, buffer);
    buffer += 2;
  lt100_000_000:
    digits = u / 1000000;  // 1,000,000
    u -= digits * 1000000;
    PutTwoDigits(digits, buffer);
    buffer += 2;
  lt1_000_000:
    digits = u / 10000;  // 10,000
    u -= digits * 10000;
    PutTwoDigits(digits, buffer);
    buffer += 2;
  lt10_000:
    digits = u / 100;
    u -= digits * 100;
    PutTwoDigits(digits, buffer);
    buffer += 2;
  lt100:
    digits = u;
    PutTwoDigits(digits, buffer);
    buffer += 2;
    *buffer = 0;
    return buffer;
  }

  if (u < 100) {
    digits = u;
    if (u >= 10) goto lt100;
    memcpy(buffer, one_ASCII_final_digits[u], 2);
    return buffer + 1;
  }
  if (u < 10000) {  // 10,000
    if (u >= 1000) goto lt10_000;
    digits = u / 100;
    u -= digits * 100;
    *buffer++ = '0' + digits;
    goto lt100;
  }
  if (u < 1000000) {  // 1,000,000
    if (u >= 100000) goto lt1_000_000;
    digits = u / 10000;  //    10,000
    u -= digits * 10000;
    *buffer++ = '0' + digits;
    goto lt10_000;
  }
  if (u < 100000000) {  // 100,000,000
    if (u >= 10000000) goto lt100_000_000;
    digits = u / 1000000;  //   1,000,000
    u -= digits * 1000000;
    *buffer++ = '0' + digits;
    goto lt1_000_000;
  }
  // we already know that u < 1,000,000,000
  digits = u / 100000000;  // 100,000,000
  u -= digits * 100000000;
  *buffer++ = '0' + digits;
  goto lt100_000_000;
}

char* FastInt32ToBufferLeft(int32 i, char* buffer) {
  uint32 u = i;
  if (i < 0) {
    *buffer++ = '-';
    // We need to do the negation in modular (i.e., "unsigned")
    // arithmetic; MSVC++ apprently warns for plain "-u", so
    // we write the equivalent expression "0 - u" instead.
    u = 0 - u;
  }
  return FastUInt32ToBufferLeft(u, buffer);
}

char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) {
  uint32 u32 = static_cast<uint32>(u64);
  if (u32 == u64) return FastUInt32ToBufferLeft(u32, buffer);

  // Here we know u64 has at least 10 decimal digits.
  uint64 top_1to11 = u64 / 1000000000;
  u32 = static_cast<uint32>(u64 - top_1to11 * 1000000000);
  uint32 top_1to11_32 = static_cast<uint32>(top_1to11);

  if (top_1to11_32 == top_1to11) {
    buffer = FastUInt32ToBufferLeft(top_1to11_32, buffer);
  } else {
    // top_1to11 has more than 32 bits too; print it in two steps.
    uint32 top_8to9 = static_cast<uint32>(top_1to11 / 100);
    uint32 mid_2 = static_cast<uint32>(top_1to11 - top_8to9 * 100);
    buffer = FastUInt32ToBufferLeft(top_8to9, buffer);
    PutTwoDigits(mid_2, buffer);
    buffer += 2;
  }

  // We have only 9 digits now, again the maximum uint32 can handle fully.
  uint32 digits = u32 / 10000000;  // 10,000,000
  u32 -= digits * 10000000;
  PutTwoDigits(digits, buffer);
  buffer += 2;
  digits = u32 / 100000;  // 100,000
  u32 -= digits * 100000;
  PutTwoDigits(digits, buffer);
  buffer += 2;
  digits = u32 / 1000;  // 1,000
  u32 -= digits * 1000;
  PutTwoDigits(digits, buffer);
  buffer += 2;
  digits = u32 / 10;
  u32 -= digits * 10;
  PutTwoDigits(digits, buffer);
  buffer += 2;
  memcpy(buffer, one_ASCII_final_digits[u32], 2);
  return buffer + 1;
}

char* FastInt64ToBufferLeft(int64 i, char* buffer) {
  uint64 u = i;
  if (i < 0) {
    *buffer++ = '-';
    u = 0 - u;
  }
  return FastUInt64ToBufferLeft(u, buffer);
}

bool safe_strto32_base(const string& text, int32* value, int base) {
  return safe_int_internal<int32>(text, value, base);
}

bool safe_strto64_base(const string& text, int64* value, int base) {
  return safe_int_internal<int64>(text, value, base);
}

bool safe_strtou32_base(const string& text, uint32* value, int base) {
  return safe_uint_internal<uint32>(text, value, base);
}

bool safe_strtou64_base(const string& text, uint64* value, int base) {
  return safe_uint_internal<uint64>(text, value, base);
}

bool safe_strtof(const string& piece, float* value) {
  *value = 0.0;
  if (piece.empty()) return false;
  char buf[32];
  std::unique_ptr<char[]> bigbuf;
  char* str = buf;
  if (piece.size() > sizeof(buf) - 1) {
    bigbuf.reset(new char[piece.size() + 1]);
    str = bigbuf.get();
  }
  memcpy(str, piece.data(), piece.size());
  str[piece.size()] = '\0';

  char* endptr;
#ifdef COMPILER_MSVC  // has no strtof()
  *value = strtod(str, &endptr);
#else
  *value = strtof(str, &endptr);
#endif
  if (endptr != str) {
    while (ascii_isspace(*endptr)) ++endptr;
  }
  // Ignore range errors from strtod/strtof.
  // The values it returns on underflow and
  // overflow are the right fallback in a
  // robust setting.
  return *str != '\0' && *endptr == '\0';
}

bool safe_strtod(const string& piece, double* value) {
  *value = 0.0;
  if (piece.empty()) return false;
  char buf[32];
  std::unique_ptr<char[]> bigbuf;
  char* str = buf;
  if (piece.size() > sizeof(buf) - 1) {
    bigbuf.reset(new char[piece.size() + 1]);
    str = bigbuf.get();
  }
  memcpy(str, piece.data(), piece.size());
  str[piece.size()] = '\0';

  char* endptr;
  *value = strtod(str, &endptr);
  if (endptr != str) {
    while (ascii_isspace(*endptr)) ++endptr;
  }
  // Ignore range errors from strtod.  The values it
  // returns on underflow and overflow are the right
  // fallback in a robust setting.
  return *str != '\0' && *endptr == '\0';
}

string SimpleFtoa(float value) {
  char buffer[kFastToBufferSize];
  return FloatToBuffer(value, buffer);
}

char* FloatToBuffer(float value, char* buffer) {
  // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
  // platforms these days.  Just in case some system exists where FLT_DIG
  // is significantly larger -- and risks overflowing our buffer -- we have
  // this assert.
  assert(FLT_DIG < 10);

  int snprintf_result =
      snprintf(buffer, kFastToBufferSize, "%.*g", FLT_DIG, value);

  // The snprintf should never overflow because the buffer is significantly
  // larger than the precision we asked for.
  assert(snprintf_result > 0 && snprintf_result < kFastToBufferSize);

  float parsed_value;
  if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
    snprintf_result =
        snprintf(buffer, kFastToBufferSize, "%.*g", FLT_DIG + 2, value);

    // Should never overflow; see above.
    assert(snprintf_result > 0 && snprintf_result < kFastToBufferSize);
  }
  return buffer;
}

}  // namespace strings
}  // namespace dynamic_depth