#include "strings/numbers.h" #include <float.h> // for FLT_DIG #include <cassert> #include <memory> #include "strings/ascii_ctype.h" namespace dynamic_depth { namespace strings { namespace { // Represents integer values of digits. // Uses 36 to indicate an invalid character since we support // bases up to 36. static const int8 kAsciiToInt[256] = { 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 16 36s. 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36}; // Parse the sign and optional hex or oct prefix in text. inline bool safe_parse_sign_and_base(string* text /*inout*/, int* base_ptr /*inout*/, bool* negative_ptr /*output*/) { if (text->data() == NULL) { return false; } const char* start = text->data(); const char* end = start + text->size(); int base = *base_ptr; // Consume whitespace. while (start < end && ascii_isspace(start[0])) { ++start; } while (start < end && ascii_isspace(end[-1])) { --end; } if (start >= end) { return false; } // Consume sign. *negative_ptr = (start[0] == '-'); if (*negative_ptr || start[0] == '+') { ++start; if (start >= end) { return false; } } // Consume base-dependent prefix. // base 0: "0x" -> base 16, "0" -> base 8, default -> base 10 // base 16: "0x" -> base 16 // Also validate the base. if (base == 0) { if (end - start >= 2 && start[0] == '0' && (start[1] == 'x' || start[1] == 'X')) { base = 16; start += 2; if (start >= end) { // "0x" with no digits after is invalid. return false; } } else if (end - start >= 1 && start[0] == '0') { base = 8; start += 1; } else { base = 10; } } else if (base == 16) { if (end - start >= 2 && start[0] == '0' && (start[1] == 'x' || start[1] == 'X')) { start += 2; if (start >= end) { // "0x" with no digits after is invalid. return false; } } } else if (base >= 2 && base <= 36) { // okay } else { return false; } text->assign(start, end - start); *base_ptr = base; return true; } // Consume digits. // // The classic loop: // // for each digit // value = value * base + digit // value *= sign // // The classic loop needs overflow checking. It also fails on the most // negative integer, -2147483648 in 32-bit two's complement representation. // // My improved loop: // // if (!negative) // for each digit // value = value * base // value = value + digit // else // for each digit // value = value * base // value = value - digit // // Overflow checking becomes simple. // Lookup tables per IntType: // vmax/base and vmin/base are precomputed because division costs at least 8ns. // TODO(junyer): Doing this per base instead (i.e. an array of structs, not a // struct of arrays) would probably be better in terms of d-cache for the most // commonly used bases. template <typename IntType> struct LookupTables { static const IntType kVmaxOverBase[]; static const IntType kVminOverBase[]; }; // An array initializer macro for X/base where base in [0, 36]. // However, note that lookups for base in [0, 1] should never happen because // base has been validated to be in [2, 36] by safe_parse_sign_and_base(). #define X_OVER_BASE_INITIALIZER(X) \ { \ 0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, \ X / 8, X / 9, X / 10, X / 11, X / 12, X / 13, X / 14, X / 15, \ X / 16, X / 17, X / 18, X / 19, X / 20, X / 21, X / 22, X / 23, \ X / 24, X / 25, X / 26, X / 27, X / 28, X / 29, X / 30, X / 31, \ X / 32, X / 33, X / 34, X / 35, X / 36, \ }; template <typename IntType> const IntType LookupTables<IntType>::kVmaxOverBase[] = X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max()); template <typename IntType> const IntType LookupTables<IntType>::kVminOverBase[] = X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min()); #undef X_OVER_BASE_INITIALIZER template <typename IntType> inline bool safe_parse_positive_int(const string& text, int base, IntType* value_p) { IntType value = 0; const IntType vmax = std::numeric_limits<IntType>::max(); assert(vmax > 0); assert(vmax >= base); const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base]; const char* start = text.data(); const char* end = start + text.size(); // loop over digits for (; start < end; ++start) { unsigned char c = static_cast<unsigned char>(start[0]); int digit = kAsciiToInt[c]; if (digit >= base) { *value_p = value; return false; } if (value > vmax_over_base) { *value_p = vmax; return false; } value *= base; if (value > vmax - digit) { *value_p = vmax; return false; } value += digit; } *value_p = value; return true; } template <typename IntType> inline bool safe_parse_negative_int(const string& text, int base, IntType* value_p) { IntType value = 0; const IntType vmin = std::numeric_limits<IntType>::min(); assert(vmin < 0); assert(vmin <= 0 - base); IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base]; // 2003 c++ standard [expr.mul] // "... the sign of the remainder is implementation-defined." // Although (vmin/base)*base + vmin%base is always vmin. // 2011 c++ standard tightens the spec but we cannot rely on it. // TODO(junyer): Handle this in the lookup table generation. if (vmin % base > 0) { vmin_over_base += 1; } const char* start = text.data(); const char* end = start + text.size(); // loop over digits for (; start < end; ++start) { unsigned char c = static_cast<unsigned char>(start[0]); int digit = kAsciiToInt[c]; if (digit >= base) { *value_p = value; return false; } if (value < vmin_over_base) { *value_p = vmin; return false; } value *= base; if (value < vmin + digit) { *value_p = vmin; return false; } value -= digit; } *value_p = value; return true; } // Input format based on POSIX.1-2008 strtol // http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html template <typename IntType> inline bool safe_int_internal(const string& text, IntType* value_p, int base) { *value_p = 0; bool negative; string text_copy(text); if (!safe_parse_sign_and_base(&text_copy, &base, &negative)) { return false; } if (!negative) { return safe_parse_positive_int(text_copy, base, value_p); } else { return safe_parse_negative_int(text_copy, base, value_p); } } template <typename IntType> inline bool safe_uint_internal(const string& text, IntType* value_p, int base) { *value_p = 0; bool negative; string text_copy(text); if (!safe_parse_sign_and_base(&text_copy, &base, &negative) || negative) { return false; } return safe_parse_positive_int(text_copy, base, value_p); } // Writes a two-character representation of 'i' to 'buf'. 'i' must be in the // range 0 <= i < 100, and buf must have space for two characters. Example: // char buf[2]; // PutTwoDigits(42, buf); // // buf[0] == '4' // // buf[1] == '2' inline void PutTwoDigits(size_t i, char* buf) { static const char two_ASCII_digits[100][2] = { {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'}, {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'}, {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'}, {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'}, {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'}, {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'}, {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'}, {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'}, {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'}, {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'}, {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'}, {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'}, {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'}, {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}}; assert(i < 100); memcpy(buf, two_ASCII_digits[i], 2); } } // anonymous namespace // ---------------------------------------------------------------------- // FastInt32ToBufferLeft() // FastUInt32ToBufferLeft() // FastInt64ToBufferLeft() // FastUInt64ToBufferLeft() // // Like the Fast*ToBuffer() functions above, these are intended for speed. // Unlike the Fast*ToBuffer() functions, however, these functions write // their output to the beginning of the buffer (hence the name, as the // output is left-aligned). The caller is responsible for ensuring that // the buffer has enough space to hold the output. // // Returns a pointer to the end of the string (i.e. the null character // terminating the string). // ---------------------------------------------------------------------- // Used to optimize printing a decimal number's final digit. const char one_ASCII_final_digits[10][2]{ {'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0}, {'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0}, }; char* FastUInt32ToBufferLeft(uint32 u, char* buffer) { uint32 digits; // The idea of this implementation is to trim the number of divides to as few // as possible, and also reducing memory stores and branches, by going in // steps of two digits at a time rather than one whenever possible. // The huge-number case is first, in the hopes that the compiler will output // that case in one branch-free block of code, and only output conditional // branches into it from below. if (u >= 1000000000) { // >= 1,000,000,000 digits = u / 100000000; // 100,000,000 u -= digits * 100000000; PutTwoDigits(digits, buffer); buffer += 2; lt100_000_000: digits = u / 1000000; // 1,000,000 u -= digits * 1000000; PutTwoDigits(digits, buffer); buffer += 2; lt1_000_000: digits = u / 10000; // 10,000 u -= digits * 10000; PutTwoDigits(digits, buffer); buffer += 2; lt10_000: digits = u / 100; u -= digits * 100; PutTwoDigits(digits, buffer); buffer += 2; lt100: digits = u; PutTwoDigits(digits, buffer); buffer += 2; *buffer = 0; return buffer; } if (u < 100) { digits = u; if (u >= 10) goto lt100; memcpy(buffer, one_ASCII_final_digits[u], 2); return buffer + 1; } if (u < 10000) { // 10,000 if (u >= 1000) goto lt10_000; digits = u / 100; u -= digits * 100; *buffer++ = '0' + digits; goto lt100; } if (u < 1000000) { // 1,000,000 if (u >= 100000) goto lt1_000_000; digits = u / 10000; // 10,000 u -= digits * 10000; *buffer++ = '0' + digits; goto lt10_000; } if (u < 100000000) { // 100,000,000 if (u >= 10000000) goto lt100_000_000; digits = u / 1000000; // 1,000,000 u -= digits * 1000000; *buffer++ = '0' + digits; goto lt1_000_000; } // we already know that u < 1,000,000,000 digits = u / 100000000; // 100,000,000 u -= digits * 100000000; *buffer++ = '0' + digits; goto lt100_000_000; } char* FastInt32ToBufferLeft(int32 i, char* buffer) { uint32 u = i; if (i < 0) { *buffer++ = '-'; // We need to do the negation in modular (i.e., "unsigned") // arithmetic; MSVC++ apprently warns for plain "-u", so // we write the equivalent expression "0 - u" instead. u = 0 - u; } return FastUInt32ToBufferLeft(u, buffer); } char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) { uint32 u32 = static_cast<uint32>(u64); if (u32 == u64) return FastUInt32ToBufferLeft(u32, buffer); // Here we know u64 has at least 10 decimal digits. uint64 top_1to11 = u64 / 1000000000; u32 = static_cast<uint32>(u64 - top_1to11 * 1000000000); uint32 top_1to11_32 = static_cast<uint32>(top_1to11); if (top_1to11_32 == top_1to11) { buffer = FastUInt32ToBufferLeft(top_1to11_32, buffer); } else { // top_1to11 has more than 32 bits too; print it in two steps. uint32 top_8to9 = static_cast<uint32>(top_1to11 / 100); uint32 mid_2 = static_cast<uint32>(top_1to11 - top_8to9 * 100); buffer = FastUInt32ToBufferLeft(top_8to9, buffer); PutTwoDigits(mid_2, buffer); buffer += 2; } // We have only 9 digits now, again the maximum uint32 can handle fully. uint32 digits = u32 / 10000000; // 10,000,000 u32 -= digits * 10000000; PutTwoDigits(digits, buffer); buffer += 2; digits = u32 / 100000; // 100,000 u32 -= digits * 100000; PutTwoDigits(digits, buffer); buffer += 2; digits = u32 / 1000; // 1,000 u32 -= digits * 1000; PutTwoDigits(digits, buffer); buffer += 2; digits = u32 / 10; u32 -= digits * 10; PutTwoDigits(digits, buffer); buffer += 2; memcpy(buffer, one_ASCII_final_digits[u32], 2); return buffer + 1; } char* FastInt64ToBufferLeft(int64 i, char* buffer) { uint64 u = i; if (i < 0) { *buffer++ = '-'; u = 0 - u; } return FastUInt64ToBufferLeft(u, buffer); } bool safe_strto32_base(const string& text, int32* value, int base) { return safe_int_internal<int32>(text, value, base); } bool safe_strto64_base(const string& text, int64* value, int base) { return safe_int_internal<int64>(text, value, base); } bool safe_strtou32_base(const string& text, uint32* value, int base) { return safe_uint_internal<uint32>(text, value, base); } bool safe_strtou64_base(const string& text, uint64* value, int base) { return safe_uint_internal<uint64>(text, value, base); } bool safe_strtof(const string& piece, float* value) { *value = 0.0; if (piece.empty()) return false; char buf[32]; std::unique_ptr<char[]> bigbuf; char* str = buf; if (piece.size() > sizeof(buf) - 1) { bigbuf.reset(new char[piece.size() + 1]); str = bigbuf.get(); } memcpy(str, piece.data(), piece.size()); str[piece.size()] = '\0'; char* endptr; #ifdef COMPILER_MSVC // has no strtof() *value = strtod(str, &endptr); #else *value = strtof(str, &endptr); #endif if (endptr != str) { while (ascii_isspace(*endptr)) ++endptr; } // Ignore range errors from strtod/strtof. // The values it returns on underflow and // overflow are the right fallback in a // robust setting. return *str != '\0' && *endptr == '\0'; } bool safe_strtod(const string& piece, double* value) { *value = 0.0; if (piece.empty()) return false; char buf[32]; std::unique_ptr<char[]> bigbuf; char* str = buf; if (piece.size() > sizeof(buf) - 1) { bigbuf.reset(new char[piece.size() + 1]); str = bigbuf.get(); } memcpy(str, piece.data(), piece.size()); str[piece.size()] = '\0'; char* endptr; *value = strtod(str, &endptr); if (endptr != str) { while (ascii_isspace(*endptr)) ++endptr; } // Ignore range errors from strtod. The values it // returns on underflow and overflow are the right // fallback in a robust setting. return *str != '\0' && *endptr == '\0'; } string SimpleFtoa(float value) { char buffer[kFastToBufferSize]; return FloatToBuffer(value, buffer); } char* FloatToBuffer(float value, char* buffer) { // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all // platforms these days. Just in case some system exists where FLT_DIG // is significantly larger -- and risks overflowing our buffer -- we have // this assert. assert(FLT_DIG < 10); int snprintf_result = snprintf(buffer, kFastToBufferSize, "%.*g", FLT_DIG, value); // The snprintf should never overflow because the buffer is significantly // larger than the precision we asked for. assert(snprintf_result > 0 && snprintf_result < kFastToBufferSize); float parsed_value; if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) { snprintf_result = snprintf(buffer, kFastToBufferSize, "%.*g", FLT_DIG + 2, value); // Should never overflow; see above. assert(snprintf_result > 0 && snprintf_result < kFastToBufferSize); } return buffer; } } // namespace strings } // namespace dynamic_depth