/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <atomic.h>
#include <gpio.h>
#include <nanohubPacket.h>
#include <plat/exti.h>
#include <plat/gpio.h>
#include <platform.h>
#include <plat/syscfg.h>
#include <heap.h>
#include <sensors.h>
#include <seos.h>
#include <slab.h>
#include <i2c.h>
#include <timer.h>
#include <stdlib.h>
#include <string.h>
#include <variant/variant.h>
#define LPS22HB_APP_ID APP_ID_MAKE(NANOHUB_VENDOR_STMICRO, 1)
/* Sensor defs */
#define LPS22HB_INT_CFG_REG_ADDR 0x0B
#define LPS22HB_LIR_BIT 0x04
#define LPS22HB_WAI_REG_ADDR 0x0F
#define LPS22HB_WAI_REG_VAL 0xB1
#define LPS22HB_SOFT_RESET_REG_ADDR 0x11
#define LPS22HB_SOFT_RESET_BIT 0x04
#define LPS22HB_I2C_DIS 0x08
#define LPS22HB_IF_ADD_INC 0x10
#define LPS22HB_ODR_REG_ADDR 0x10
#define LPS22HB_ODR_ONE_SHOT 0x00
#define LPS22HB_ODR_1_HZ 0x10
#define LPS22HB_ODR_10_HZ 0x20
#define LPS22HB_ODR_25_HZ 0x30
#define LPS22HB_ODR_50_HZ 0x40
#define LPS22HB_ODR_75_HZ 0x50
#define LPS22HB_RPDS_L 0x18
#define LPS22HB_RPDS_H 0x19
#define LPS22HB_PRESS_OUTXL_REG_ADDR 0x28
#define LPS22HB_TEMP_OUTL_REG_ADDR 0x2B
#define LPS22HB_HECTO_PASCAL(baro_val) (baro_val/4096)
#define LPS22HB_CENTIGRADES(temp_val) (temp_val/100)
#define INFO_PRINT(fmt, ...) \
do { \
osLog(LOG_INFO, "%s " fmt, "[LPS22HB]", ##__VA_ARGS__); \
} while (0);
#define DEBUG_PRINT(fmt, ...) \
do { \
if (LPS22HB_DBG_ENABLED) { \
osLog(LOG_DEBUG, "%s " fmt, "[LPS22HB]", ##__VA_ARGS__); \
} \
} while (0);
#define ERROR_PRINT(fmt, ...) \
do { \
osLog(LOG_ERROR, "%s " fmt, "[LPS22HB]", ##__VA_ARGS__); \
} while (0);
/* DO NOT MODIFY, just to avoid compiler error if not defined using FLAGS */
#ifndef LPS22HB_DBG_ENABLED
#define LPS22HB_DBG_ENABLED 0
#endif /* LPS22HB_DBG_ENABLED */
enum lps22hbSensorEvents
{
EVT_COMM_DONE = EVT_APP_START + 1,
EVT_SENSOR_BARO_TIMER,
EVT_SENSOR_TEMP_TIMER,
EVT_TEST,
};
enum lps22hbSensorState {
SENSOR_BOOT,
SENSOR_VERIFY_ID,
SENSOR_BARO_POWER_UP,
SENSOR_BARO_POWER_DOWN,
SENSOR_BARO_START_CAL,
SENSOR_BARO_READ_CAL_MEAS,
SENSOR_BARO_CAL_DONE,
SENSOR_BARO_SET_OFFSET,
SENSOR_BARO_CFG_DONE,
SENSOR_TEMP_POWER_UP,
SENSOR_TEMP_POWER_DOWN,
SENSOR_READ_SAMPLES,
};
#ifndef LPS22HB_I2C_BUS_ID
#error "LPS22HB_I2C_BUS_ID is not defined; please define in variant.h"
#endif
#ifndef LPS22HB_I2C_SPEED
#error "LPS22HB_I2C_SPEED is not defined; please define in variant.h"
#endif
#ifndef LPS22HB_I2C_ADDR
#error "LPS22HB_I2C_ADDR is not defined; please define in variant.h"
#endif
enum lps22hbSensorIndex {
BARO = 0,
TEMP,
NUM_OF_SENSOR,
};
//#define NUM_OF_SENSOR 1
struct lps22hbSensor {
uint32_t handle;
};
struct CalibrationData {
struct HostHubRawPacket header;
struct SensorAppEventHeader data_header;
float value;
} __attribute__((packed));
#define LPS22HB_MAX_PENDING_I2C_REQUESTS 4
#define LPS22HB_MAX_I2C_TRANSFER_SIZE 6
#define LPS22HB_MAX_BARO_EVENTS 4
struct I2cTransfer
{
size_t tx;
size_t rx;
int err;
uint8_t txrxBuf[LPS22HB_MAX_I2C_TRANSFER_SIZE];
uint8_t state;
bool inUse;
};
/* Task structure */
struct lps22hbTask {
uint32_t tid;
struct SlabAllocator *baroSlab;
/* timer */
uint32_t baroTimerHandle;
uint32_t tempTimerHandle;
/* sensor flags */
bool baroOn;
bool baroReading;
bool baroWantRead;
bool tempOn;
bool tempReading;
bool tempWantRead;
uint8_t offset_L;
uint8_t offset_H;
//int sensLastRead;
struct I2cTransfer transfers[LPS22HB_MAX_PENDING_I2C_REQUESTS];
/* Communication functions */
bool (*comm_tx)(uint8_t addr, uint8_t data, uint32_t delay, uint8_t state);
bool (*comm_rx)(uint8_t addr, uint16_t len, uint32_t delay, uint8_t state);
/* sensors */
struct lps22hbSensor sensors[NUM_OF_SENSOR];
};
static struct lps22hbTask mTask;
static bool baroAllocateEvt(struct SingleAxisDataEvent **evPtr, float sample, uint64_t time)
{
struct SingleAxisDataEvent *ev;
ev = *evPtr = slabAllocatorAlloc(mTask.baroSlab);
if (!ev) {
ERROR_PRINT("Failed to allocate baro evt memory");
return false;
}
memset(&ev->samples[0].firstSample, 0x00, sizeof(struct SensorFirstSample));
ev->referenceTime = time;
ev->samples[0].firstSample.numSamples = 1;
ev->samples[0].fdata = sample;
return true;
}
static void baroFreeEvt(void *ptr)
{
slabAllocatorFree(mTask.baroSlab, ptr);
}
// Allocate a buffer and mark it as in use with the given state, or return NULL
// if no buffers available. Must *not* be called from interrupt context.
static struct I2cTransfer *allocXfer(uint8_t state)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(mTask.transfers); i++) {
if (!mTask.transfers[i].inUse) {
mTask.transfers[i].inUse = true;
mTask.transfers[i].state = state;
return &mTask.transfers[i];
}
}
ERROR_PRINT("Ran out of i2c buffers!");
return NULL;
}
static inline void releaseXfer(struct I2cTransfer *xfer)
{
xfer->inUse = false;
}
static void i2cCallback(void *cookie, size_t tx, size_t rx, int err)
{
struct I2cTransfer *xfer = cookie;
xfer->tx = tx;
xfer->rx = rx;
xfer->err = err;
osEnqueuePrivateEvt(EVT_COMM_DONE, cookie, NULL, mTask.tid);
if (err != 0)
ERROR_PRINT("i2c error (tx: %d, rx: %d, err: %d)\n", tx, rx, err);
}
static bool i2c_read(uint8_t addr, uint16_t len, uint32_t delay, uint8_t state)
{
struct I2cTransfer *xfer = allocXfer(state);
int ret = -1;
if (xfer != NULL) {
xfer->txrxBuf[0] = 0x80 | addr;
if ((ret = i2cMasterTxRx(LPS22HB_I2C_BUS_ID, LPS22HB_I2C_ADDR, xfer->txrxBuf, 1, xfer->txrxBuf, len, i2cCallback, xfer)) < 0) {
releaseXfer(xfer);
DEBUG_PRINT("i2c_read: i2cMasterTxRx operation failed (ret: %d)\n", ret);
return false;
}
}
return (ret == -1) ? false : true;
}
static bool i2c_write(uint8_t addr, uint8_t data, uint32_t delay, uint8_t state)
{
struct I2cTransfer *xfer = allocXfer(state);
int ret = -1;
if (xfer != NULL) {
xfer->txrxBuf[0] = addr;
xfer->txrxBuf[1] = data;
if ((ret = i2cMasterTx(LPS22HB_I2C_BUS_ID, LPS22HB_I2C_ADDR, xfer->txrxBuf, 2, i2cCallback, xfer)) < 0) {
releaseXfer(xfer);
DEBUG_PRINT("i2c_write: i2cMasterTx operation failed (ret: %d)\n", ret);
return false;
}
}
return (ret == -1) ? false : true;
}
static void sendCalibrationResult(uint8_t status, float value)
{
struct CalibrationData *data = heapAlloc(sizeof(struct CalibrationData));
if (!data) {
ERROR_PRINT("Couldn't alloc cal result pkt\n");
return;
}
data->header.appId = LPS22HB_APP_ID;
data->header.dataLen = (sizeof(struct CalibrationData) - sizeof(struct HostHubRawPacket));
data->data_header.msgId = SENSOR_APP_MSG_ID_CAL_RESULT;
data->data_header.sensorType = SENS_TYPE_BARO;
data->data_header.status = status;
data->value = value;
if (!osEnqueueEvtOrFree(EVT_APP_TO_HOST, data, heapFree))
ERROR_PRINT("Couldn't send cal result evt\n");
}
/* Sensor Info */
static void sensorBaroTimerCallback(uint32_t timerId, void *data)
{
osEnqueuePrivateEvt(EVT_SENSOR_BARO_TIMER, data, NULL, mTask.tid);
}
static void sensorTempTimerCallback(uint32_t timerId, void *data)
{
osEnqueuePrivateEvt(EVT_SENSOR_TEMP_TIMER, data, NULL, mTask.tid);
}
#define DEC_INFO(name, type, axis, inter, samples, rates) \
.sensorName = name, \
.sensorType = type, \
.numAxis = axis, \
.interrupt = inter, \
.minSamples = samples, \
.supportedRates = rates
static uint32_t lps22hbRates[] = {
SENSOR_HZ(1.0f),
SENSOR_HZ(10.0f),
SENSOR_HZ(25.0f),
SENSOR_HZ(50.0f),
SENSOR_HZ(75.0f),
0
};
// should match "supported rates in length" and be the timer length for that rate in nanosecs
static const uint64_t lps22hbRatesRateVals[] =
{
1 * 1000000000ULL,
1000000000ULL / 10,
1000000000ULL / 25,
1000000000ULL / 50,
1000000000ULL / 75,
};
static const struct SensorInfo lps22hbSensorInfo[NUM_OF_SENSOR] =
{
{ DEC_INFO("Pressure", SENS_TYPE_BARO, NUM_AXIS_ONE, NANOHUB_INT_NONWAKEUP,
300, lps22hbRates) },
{ DEC_INFO("Temperature", SENS_TYPE_AMBIENT_TEMP, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP,
20, lps22hbRates) },
};
/* Sensor Operations */
static bool baroPower(bool on, void *cookie)
{
bool oldMode = mTask.baroOn || mTask.tempOn;
bool newMode = on || mTask.tempOn;
uint32_t state = on ? SENSOR_BARO_POWER_UP : SENSOR_BARO_POWER_DOWN;
bool ret = true;
INFO_PRINT("baroPower %s\n", on ? "enable" : "disable");
if (!on && mTask.baroTimerHandle) {
timTimerCancel(mTask.baroTimerHandle);
mTask.baroTimerHandle = 0;
mTask.baroReading = false;
}
if (oldMode != newMode) {
if (on)
ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, state);
else
ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, state);
} else
sensorSignalInternalEvt(mTask.sensors[BARO].handle,
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0);
if (!ret) {
DEBUG_PRINT("baroPower comm_tx failed\n");
return(false);
}
mTask.baroReading = false;
mTask.baroOn = on;
return true;
}
static bool baroFwUpload(void *cookie)
{
return sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
}
static bool baroSetRate(uint32_t rate, uint64_t latency, void *cookie)
{
INFO_PRINT("baroSetRate %lu Hz - %llu ns\n", rate, latency);
if (mTask.baroTimerHandle)
timTimerCancel(mTask.baroTimerHandle);
mTask.baroTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates,
lps22hbRatesRateVals, rate), 0, 50, sensorBaroTimerCallback, NULL, false);
return sensorSignalInternalEvt(mTask.sensors[BARO].handle,
SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
}
static bool baroFlush(void *cookie)
{
return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), SENSOR_DATA_EVENT_FLUSH, NULL);
}
static bool baroCalibrate(void *cookie)
{
INFO_PRINT("baroCalibrate\n");
if (mTask.baroOn) {
ERROR_PRINT("cannot calibrate while baro is active\n");
sendCalibrationResult(SENSOR_APP_EVT_STATUS_BUSY, 0.0f);
return false;
}
mTask.comm_tx(LPS22HB_RPDS_L, 0, 0, SENSOR_BARO_START_CAL);
return true;
}
/*
* Offset data is sent in hPa, and must be transformed in 16th of hPa.
* Since offset is expected to be summed to the out regs but the sensor
* will actually subctract it then we need to invert the sign.
*/
static bool baroCfgData(void *data, void *cookie)
{
float offset_f = *((float *)data) * 16;
int32_t offset;
bool ret;
offset_f = (offset_f > 0) ? offset_f + 0.5f : offset_f - 0.5f;
offset = -(int32_t)offset_f;
INFO_PRINT("baroCfgData %ld\n", offset);
mTask.offset_H = (offset >> 8) & 0xff;
mTask.offset_L = (offset & 0xff);
ret = mTask.comm_tx(LPS22HB_RPDS_L, mTask.offset_L, 0, SENSOR_BARO_SET_OFFSET);
if (!ret)
DEBUG_PRINT("baroCfgData: comm_tx failed\n");
return ret;
}
static bool tempPower(bool on, void *cookie)
{
bool oldMode = mTask.baroOn || mTask.tempOn;
bool newMode = on || mTask.baroOn;
uint32_t state = on ? SENSOR_TEMP_POWER_UP : SENSOR_TEMP_POWER_DOWN;
bool ret = true;
INFO_PRINT("tempPower %s\n", on ? "enable" : "disable");
if (!on && mTask.tempTimerHandle) {
timTimerCancel(mTask.tempTimerHandle);
mTask.tempTimerHandle = 0;
mTask.tempReading = false;
}
if (oldMode != newMode) {
if (on)
ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, state);
else
ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, state);
} else
sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0);
if (!ret) {
DEBUG_PRINT("tempPower comm_tx failed\n");
return(false);
}
mTask.tempReading = false;
mTask.tempOn = on;
return true;
}
static bool tempFwUpload(void *cookie)
{
return sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
}
static bool tempSetRate(uint32_t rate, uint64_t latency, void *cookie)
{
if (mTask.tempTimerHandle)
timTimerCancel(mTask.tempTimerHandle);
INFO_PRINT("tempSetRate %lu Hz - %llu ns\n", rate, latency);
mTask.tempTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates,
lps22hbRatesRateVals, rate), 0, 50, sensorTempTimerCallback, NULL, false);
return sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
}
static bool tempFlush(void *cookie)
{
return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_AMBIENT_TEMP), SENSOR_DATA_EVENT_FLUSH, NULL);
}
#define DEC_OPS(power, firmware, rate, flush, cal, cfg) \
.sensorPower = power, \
.sensorFirmwareUpload = firmware, \
.sensorSetRate = rate, \
.sensorFlush = flush, \
.sensorCalibrate = cal, \
.sensorCfgData = cfg
static const struct SensorOps lps22hbSensorOps[NUM_OF_SENSOR] =
{
{ DEC_OPS(baroPower, baroFwUpload, baroSetRate, baroFlush, baroCalibrate, baroCfgData) },
{ DEC_OPS(tempPower, tempFwUpload, tempSetRate, tempFlush, NULL, NULL) },
};
static int handleCommDoneEvt(const void* evtData)
{
uint8_t i;
int baro_val;
short temp_val;
//uint32_t state = (uint32_t)evtData;
struct SingleAxisDataEvent *baroSample;
union EmbeddedDataPoint sample;
struct I2cTransfer *xfer = (struct I2cTransfer *)evtData;
uint8_t *ptr_samples;
switch (xfer->state) {
case SENSOR_BOOT:
if (!mTask.comm_rx(LPS22HB_WAI_REG_ADDR, 1, 1, SENSOR_VERIFY_ID)) {
DEBUG_PRINT("Not able to read WAI\n");
return -1;
}
break;
case SENSOR_VERIFY_ID:
/* Check the sensor ID */
if (xfer->err != 0 || xfer->txrxBuf[0] != LPS22HB_WAI_REG_VAL) {
DEBUG_PRINT("WAI returned is: %02x\n", xfer->txrxBuf[0]);
break;
}
INFO_PRINT("Device ID is correct! (%02x)\n", xfer->txrxBuf[0]);
for (i = 0; i < NUM_OF_SENSOR; i++)
sensorRegisterInitComplete(mTask.sensors[i].handle);
/* TEST the environment in standalone mode */
//osEnqueuePrivateEvt(EVT_TEST, NULL, NULL, mTask.tid);
break;
case SENSOR_BARO_POWER_UP:
sensorSignalInternalEvt(mTask.sensors[BARO].handle,
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0);
break;
case SENSOR_BARO_POWER_DOWN:
sensorSignalInternalEvt(mTask.sensors[BARO].handle,
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0);
break;
case SENSOR_TEMP_POWER_UP:
sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0);
break;
case SENSOR_TEMP_POWER_DOWN:
sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0);
break;
case SENSOR_BARO_START_CAL:
mTask.comm_tx(LPS22HB_RPDS_H, 0, 0, SENSOR_BARO_READ_CAL_MEAS);
break;
case SENSOR_BARO_READ_CAL_MEAS:
mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 3, 1, SENSOR_BARO_CAL_DONE);
break;
case SENSOR_BARO_CAL_DONE:
ptr_samples = xfer->txrxBuf;
baro_val = ((ptr_samples[2] << 16) & 0xff0000) |
((ptr_samples[1] << 8) & 0xff00) | (ptr_samples[0]);
sendCalibrationResult(SENSOR_APP_EVT_STATUS_SUCCESS, LPS22HB_HECTO_PASCAL((float)baro_val));
break;
case SENSOR_BARO_SET_OFFSET:
mTask.comm_tx(LPS22HB_RPDS_H, mTask.offset_H, 0, SENSOR_BARO_CFG_DONE);
break;
case SENSOR_BARO_CFG_DONE:
break;
case SENSOR_READ_SAMPLES:
if (mTask.baroOn && mTask.baroWantRead) {
float pressure_hPa;
mTask.baroWantRead = false;
ptr_samples = xfer->txrxBuf;
baro_val = ((ptr_samples[2] << 16) & 0xff0000) |
((ptr_samples[1] << 8) & 0xff00) | (ptr_samples[0]);
mTask.baroReading = false;
pressure_hPa = LPS22HB_HECTO_PASCAL((float)baro_val);
//osLog(LOG_INFO, "baro: %p\n", sample.vptr);
if (baroAllocateEvt(&baroSample, pressure_hPa, sensorGetTime())) {
osEnqueueEvtOrFree(sensorGetMyEventType(SENS_TYPE_BARO), baroSample, baroFreeEvt);
}
}
if (mTask.tempOn && mTask.tempWantRead) {
mTask.tempWantRead = false;
ptr_samples = &xfer->txrxBuf[3];
temp_val = ((ptr_samples[1] << 8) & 0xff00) | (ptr_samples[0]);
mTask.tempReading = false;
sample.fdata = LPS22HB_CENTIGRADES((float)temp_val);
//osLog(LOG_INFO, "temp: %p\n", sample.vptr);
osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_AMBIENT_TEMP), sample.vptr, NULL);
}
break;
default:
break;
}
releaseXfer(xfer);
return (0);
}
static void handleEvent(uint32_t evtType, const void* evtData)
{
switch (evtType) {
case EVT_APP_START:
INFO_PRINT("EVT_APP_START\n");
osEventUnsubscribe(mTask.tid, EVT_APP_START);
mTask.comm_tx(LPS22HB_SOFT_RESET_REG_ADDR,
LPS22HB_SOFT_RESET_BIT, 0, SENSOR_BOOT);
break;
case EVT_COMM_DONE:
//INFO_PRINT("EVT_COMM_DONE %d\n", (int)evtData);
handleCommDoneEvt(evtData);
break;
case EVT_SENSOR_BARO_TIMER:
//INFO_PRINT("EVT_SENSOR_BARO_TIMER\n");
mTask.baroWantRead = true;
/* Start sampling for a value */
if (!mTask.baroReading && !mTask.tempReading) {
mTask.baroReading = true;
mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, SENSOR_READ_SAMPLES);
}
break;
case EVT_SENSOR_TEMP_TIMER:
//INFO_PRINT("EVT_SENSOR_TEMP_TIMER\n");
mTask.tempWantRead = true;
/* Start sampling for a value */
if (!mTask.baroReading && !mTask.tempReading) {
mTask.tempReading = true;
mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, SENSOR_READ_SAMPLES);
}
break;
case EVT_TEST:
INFO_PRINT("EVT_TEST\n");
baroPower(true, NULL);
tempPower(true, NULL);
baroSetRate(SENSOR_HZ(1), 0, NULL);
tempSetRate(SENSOR_HZ(1), 0, NULL);
break;
default:
break;
}
}
static bool startTask(uint32_t task_id)
{
uint8_t i;
size_t slabSize;
mTask.tid = task_id;
INFO_PRINT("task started\n");
mTask.baroOn = mTask.tempOn = false;
mTask.baroReading = mTask.tempReading = false;
mTask.offset_H = 0;
mTask.offset_L = 0;
slabSize = sizeof(struct SingleAxisDataEvent) + sizeof(struct SingleAxisDataPoint);
mTask.baroSlab = slabAllocatorNew(slabSize, 4, LPS22HB_MAX_BARO_EVENTS);
if (!mTask.baroSlab) {
ERROR_PRINT("Failed to allocate baroSlab memory\n");
return false;
}
/* Init the communication part */
i2cMasterRequest(LPS22HB_I2C_BUS_ID, LPS22HB_I2C_SPEED);
mTask.comm_tx = i2c_write;
mTask.comm_rx = i2c_read;
for (i = 0; i < NUM_OF_SENSOR; i++) {
mTask.sensors[i].handle =
sensorRegister(&lps22hbSensorInfo[i], &lps22hbSensorOps[i], NULL, false);
}
osEventSubscribe(mTask.tid, EVT_APP_START);
return true;
}
static void endTask(void)
{
INFO_PRINT("task ended\n");
slabAllocatorDestroy(mTask.baroSlab);
}
INTERNAL_APP_INIT(LPS22HB_APP_ID, 0, startTask, endTask, handleEvent);