/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <atomic.h> #include <gpio.h> #include <nanohubPacket.h> #include <plat/exti.h> #include <plat/gpio.h> #include <platform.h> #include <plat/syscfg.h> #include <heap.h> #include <sensors.h> #include <seos.h> #include <slab.h> #include <i2c.h> #include <timer.h> #include <stdlib.h> #include <string.h> #include <variant/variant.h> #define LPS22HB_APP_ID APP_ID_MAKE(NANOHUB_VENDOR_STMICRO, 1) /* Sensor defs */ #define LPS22HB_INT_CFG_REG_ADDR 0x0B #define LPS22HB_LIR_BIT 0x04 #define LPS22HB_WAI_REG_ADDR 0x0F #define LPS22HB_WAI_REG_VAL 0xB1 #define LPS22HB_SOFT_RESET_REG_ADDR 0x11 #define LPS22HB_SOFT_RESET_BIT 0x04 #define LPS22HB_I2C_DIS 0x08 #define LPS22HB_IF_ADD_INC 0x10 #define LPS22HB_ODR_REG_ADDR 0x10 #define LPS22HB_ODR_ONE_SHOT 0x00 #define LPS22HB_ODR_1_HZ 0x10 #define LPS22HB_ODR_10_HZ 0x20 #define LPS22HB_ODR_25_HZ 0x30 #define LPS22HB_ODR_50_HZ 0x40 #define LPS22HB_ODR_75_HZ 0x50 #define LPS22HB_RPDS_L 0x18 #define LPS22HB_RPDS_H 0x19 #define LPS22HB_PRESS_OUTXL_REG_ADDR 0x28 #define LPS22HB_TEMP_OUTL_REG_ADDR 0x2B #define LPS22HB_HECTO_PASCAL(baro_val) (baro_val/4096) #define LPS22HB_CENTIGRADES(temp_val) (temp_val/100) #define INFO_PRINT(fmt, ...) \ do { \ osLog(LOG_INFO, "%s " fmt, "[LPS22HB]", ##__VA_ARGS__); \ } while (0); #define DEBUG_PRINT(fmt, ...) \ do { \ if (LPS22HB_DBG_ENABLED) { \ osLog(LOG_DEBUG, "%s " fmt, "[LPS22HB]", ##__VA_ARGS__); \ } \ } while (0); #define ERROR_PRINT(fmt, ...) \ do { \ osLog(LOG_ERROR, "%s " fmt, "[LPS22HB]", ##__VA_ARGS__); \ } while (0); /* DO NOT MODIFY, just to avoid compiler error if not defined using FLAGS */ #ifndef LPS22HB_DBG_ENABLED #define LPS22HB_DBG_ENABLED 0 #endif /* LPS22HB_DBG_ENABLED */ enum lps22hbSensorEvents { EVT_COMM_DONE = EVT_APP_START + 1, EVT_SENSOR_BARO_TIMER, EVT_SENSOR_TEMP_TIMER, EVT_TEST, }; enum lps22hbSensorState { SENSOR_BOOT, SENSOR_VERIFY_ID, SENSOR_BARO_POWER_UP, SENSOR_BARO_POWER_DOWN, SENSOR_BARO_START_CAL, SENSOR_BARO_READ_CAL_MEAS, SENSOR_BARO_CAL_DONE, SENSOR_BARO_SET_OFFSET, SENSOR_BARO_CFG_DONE, SENSOR_TEMP_POWER_UP, SENSOR_TEMP_POWER_DOWN, SENSOR_READ_SAMPLES, }; #ifndef LPS22HB_I2C_BUS_ID #error "LPS22HB_I2C_BUS_ID is not defined; please define in variant.h" #endif #ifndef LPS22HB_I2C_SPEED #error "LPS22HB_I2C_SPEED is not defined; please define in variant.h" #endif #ifndef LPS22HB_I2C_ADDR #error "LPS22HB_I2C_ADDR is not defined; please define in variant.h" #endif enum lps22hbSensorIndex { BARO = 0, TEMP, NUM_OF_SENSOR, }; //#define NUM_OF_SENSOR 1 struct lps22hbSensor { uint32_t handle; }; struct CalibrationData { struct HostHubRawPacket header; struct SensorAppEventHeader data_header; float value; } __attribute__((packed)); #define LPS22HB_MAX_PENDING_I2C_REQUESTS 4 #define LPS22HB_MAX_I2C_TRANSFER_SIZE 6 #define LPS22HB_MAX_BARO_EVENTS 4 struct I2cTransfer { size_t tx; size_t rx; int err; uint8_t txrxBuf[LPS22HB_MAX_I2C_TRANSFER_SIZE]; uint8_t state; bool inUse; }; /* Task structure */ struct lps22hbTask { uint32_t tid; struct SlabAllocator *baroSlab; /* timer */ uint32_t baroTimerHandle; uint32_t tempTimerHandle; /* sensor flags */ bool baroOn; bool baroReading; bool baroWantRead; bool tempOn; bool tempReading; bool tempWantRead; uint8_t offset_L; uint8_t offset_H; //int sensLastRead; struct I2cTransfer transfers[LPS22HB_MAX_PENDING_I2C_REQUESTS]; /* Communication functions */ bool (*comm_tx)(uint8_t addr, uint8_t data, uint32_t delay, uint8_t state); bool (*comm_rx)(uint8_t addr, uint16_t len, uint32_t delay, uint8_t state); /* sensors */ struct lps22hbSensor sensors[NUM_OF_SENSOR]; }; static struct lps22hbTask mTask; static bool baroAllocateEvt(struct SingleAxisDataEvent **evPtr, float sample, uint64_t time) { struct SingleAxisDataEvent *ev; ev = *evPtr = slabAllocatorAlloc(mTask.baroSlab); if (!ev) { ERROR_PRINT("Failed to allocate baro evt memory"); return false; } memset(&ev->samples[0].firstSample, 0x00, sizeof(struct SensorFirstSample)); ev->referenceTime = time; ev->samples[0].firstSample.numSamples = 1; ev->samples[0].fdata = sample; return true; } static void baroFreeEvt(void *ptr) { slabAllocatorFree(mTask.baroSlab, ptr); } // Allocate a buffer and mark it as in use with the given state, or return NULL // if no buffers available. Must *not* be called from interrupt context. static struct I2cTransfer *allocXfer(uint8_t state) { size_t i; for (i = 0; i < ARRAY_SIZE(mTask.transfers); i++) { if (!mTask.transfers[i].inUse) { mTask.transfers[i].inUse = true; mTask.transfers[i].state = state; return &mTask.transfers[i]; } } ERROR_PRINT("Ran out of i2c buffers!"); return NULL; } static inline void releaseXfer(struct I2cTransfer *xfer) { xfer->inUse = false; } static void i2cCallback(void *cookie, size_t tx, size_t rx, int err) { struct I2cTransfer *xfer = cookie; xfer->tx = tx; xfer->rx = rx; xfer->err = err; osEnqueuePrivateEvt(EVT_COMM_DONE, cookie, NULL, mTask.tid); if (err != 0) ERROR_PRINT("i2c error (tx: %d, rx: %d, err: %d)\n", tx, rx, err); } static bool i2c_read(uint8_t addr, uint16_t len, uint32_t delay, uint8_t state) { struct I2cTransfer *xfer = allocXfer(state); int ret = -1; if (xfer != NULL) { xfer->txrxBuf[0] = 0x80 | addr; if ((ret = i2cMasterTxRx(LPS22HB_I2C_BUS_ID, LPS22HB_I2C_ADDR, xfer->txrxBuf, 1, xfer->txrxBuf, len, i2cCallback, xfer)) < 0) { releaseXfer(xfer); DEBUG_PRINT("i2c_read: i2cMasterTxRx operation failed (ret: %d)\n", ret); return false; } } return (ret == -1) ? false : true; } static bool i2c_write(uint8_t addr, uint8_t data, uint32_t delay, uint8_t state) { struct I2cTransfer *xfer = allocXfer(state); int ret = -1; if (xfer != NULL) { xfer->txrxBuf[0] = addr; xfer->txrxBuf[1] = data; if ((ret = i2cMasterTx(LPS22HB_I2C_BUS_ID, LPS22HB_I2C_ADDR, xfer->txrxBuf, 2, i2cCallback, xfer)) < 0) { releaseXfer(xfer); DEBUG_PRINT("i2c_write: i2cMasterTx operation failed (ret: %d)\n", ret); return false; } } return (ret == -1) ? false : true; } static void sendCalibrationResult(uint8_t status, float value) { struct CalibrationData *data = heapAlloc(sizeof(struct CalibrationData)); if (!data) { ERROR_PRINT("Couldn't alloc cal result pkt\n"); return; } data->header.appId = LPS22HB_APP_ID; data->header.dataLen = (sizeof(struct CalibrationData) - sizeof(struct HostHubRawPacket)); data->data_header.msgId = SENSOR_APP_MSG_ID_CAL_RESULT; data->data_header.sensorType = SENS_TYPE_BARO; data->data_header.status = status; data->value = value; if (!osEnqueueEvtOrFree(EVT_APP_TO_HOST, data, heapFree)) ERROR_PRINT("Couldn't send cal result evt\n"); } /* Sensor Info */ static void sensorBaroTimerCallback(uint32_t timerId, void *data) { osEnqueuePrivateEvt(EVT_SENSOR_BARO_TIMER, data, NULL, mTask.tid); } static void sensorTempTimerCallback(uint32_t timerId, void *data) { osEnqueuePrivateEvt(EVT_SENSOR_TEMP_TIMER, data, NULL, mTask.tid); } #define DEC_INFO(name, type, axis, inter, samples, rates) \ .sensorName = name, \ .sensorType = type, \ .numAxis = axis, \ .interrupt = inter, \ .minSamples = samples, \ .supportedRates = rates static uint32_t lps22hbRates[] = { SENSOR_HZ(1.0f), SENSOR_HZ(10.0f), SENSOR_HZ(25.0f), SENSOR_HZ(50.0f), SENSOR_HZ(75.0f), 0 }; // should match "supported rates in length" and be the timer length for that rate in nanosecs static const uint64_t lps22hbRatesRateVals[] = { 1 * 1000000000ULL, 1000000000ULL / 10, 1000000000ULL / 25, 1000000000ULL / 50, 1000000000ULL / 75, }; static const struct SensorInfo lps22hbSensorInfo[NUM_OF_SENSOR] = { { DEC_INFO("Pressure", SENS_TYPE_BARO, NUM_AXIS_ONE, NANOHUB_INT_NONWAKEUP, 300, lps22hbRates) }, { DEC_INFO("Temperature", SENS_TYPE_AMBIENT_TEMP, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP, 20, lps22hbRates) }, }; /* Sensor Operations */ static bool baroPower(bool on, void *cookie) { bool oldMode = mTask.baroOn || mTask.tempOn; bool newMode = on || mTask.tempOn; uint32_t state = on ? SENSOR_BARO_POWER_UP : SENSOR_BARO_POWER_DOWN; bool ret = true; INFO_PRINT("baroPower %s\n", on ? "enable" : "disable"); if (!on && mTask.baroTimerHandle) { timTimerCancel(mTask.baroTimerHandle); mTask.baroTimerHandle = 0; mTask.baroReading = false; } if (oldMode != newMode) { if (on) ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, state); else ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, state); } else sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0); if (!ret) { DEBUG_PRINT("baroPower comm_tx failed\n"); return(false); } mTask.baroReading = false; mTask.baroOn = on; return true; } static bool baroFwUpload(void *cookie) { return sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0); } static bool baroSetRate(uint32_t rate, uint64_t latency, void *cookie) { INFO_PRINT("baroSetRate %lu Hz - %llu ns\n", rate, latency); if (mTask.baroTimerHandle) timTimerCancel(mTask.baroTimerHandle); mTask.baroTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates, lps22hbRatesRateVals, rate), 0, 50, sensorBaroTimerCallback, NULL, false); return sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency); } static bool baroFlush(void *cookie) { return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), SENSOR_DATA_EVENT_FLUSH, NULL); } static bool baroCalibrate(void *cookie) { INFO_PRINT("baroCalibrate\n"); if (mTask.baroOn) { ERROR_PRINT("cannot calibrate while baro is active\n"); sendCalibrationResult(SENSOR_APP_EVT_STATUS_BUSY, 0.0f); return false; } mTask.comm_tx(LPS22HB_RPDS_L, 0, 0, SENSOR_BARO_START_CAL); return true; } /* * Offset data is sent in hPa, and must be transformed in 16th of hPa. * Since offset is expected to be summed to the out regs but the sensor * will actually subctract it then we need to invert the sign. */ static bool baroCfgData(void *data, void *cookie) { float offset_f = *((float *)data) * 16; int32_t offset; bool ret; offset_f = (offset_f > 0) ? offset_f + 0.5f : offset_f - 0.5f; offset = -(int32_t)offset_f; INFO_PRINT("baroCfgData %ld\n", offset); mTask.offset_H = (offset >> 8) & 0xff; mTask.offset_L = (offset & 0xff); ret = mTask.comm_tx(LPS22HB_RPDS_L, mTask.offset_L, 0, SENSOR_BARO_SET_OFFSET); if (!ret) DEBUG_PRINT("baroCfgData: comm_tx failed\n"); return ret; } static bool tempPower(bool on, void *cookie) { bool oldMode = mTask.baroOn || mTask.tempOn; bool newMode = on || mTask.baroOn; uint32_t state = on ? SENSOR_TEMP_POWER_UP : SENSOR_TEMP_POWER_DOWN; bool ret = true; INFO_PRINT("tempPower %s\n", on ? "enable" : "disable"); if (!on && mTask.tempTimerHandle) { timTimerCancel(mTask.tempTimerHandle); mTask.tempTimerHandle = 0; mTask.tempReading = false; } if (oldMode != newMode) { if (on) ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, state); else ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, state); } else sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0); if (!ret) { DEBUG_PRINT("tempPower comm_tx failed\n"); return(false); } mTask.tempReading = false; mTask.tempOn = on; return true; } static bool tempFwUpload(void *cookie) { return sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0); } static bool tempSetRate(uint32_t rate, uint64_t latency, void *cookie) { if (mTask.tempTimerHandle) timTimerCancel(mTask.tempTimerHandle); INFO_PRINT("tempSetRate %lu Hz - %llu ns\n", rate, latency); mTask.tempTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates, lps22hbRatesRateVals, rate), 0, 50, sensorTempTimerCallback, NULL, false); return sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency); } static bool tempFlush(void *cookie) { return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_AMBIENT_TEMP), SENSOR_DATA_EVENT_FLUSH, NULL); } #define DEC_OPS(power, firmware, rate, flush, cal, cfg) \ .sensorPower = power, \ .sensorFirmwareUpload = firmware, \ .sensorSetRate = rate, \ .sensorFlush = flush, \ .sensorCalibrate = cal, \ .sensorCfgData = cfg static const struct SensorOps lps22hbSensorOps[NUM_OF_SENSOR] = { { DEC_OPS(baroPower, baroFwUpload, baroSetRate, baroFlush, baroCalibrate, baroCfgData) }, { DEC_OPS(tempPower, tempFwUpload, tempSetRate, tempFlush, NULL, NULL) }, }; static int handleCommDoneEvt(const void* evtData) { uint8_t i; int baro_val; short temp_val; //uint32_t state = (uint32_t)evtData; struct SingleAxisDataEvent *baroSample; union EmbeddedDataPoint sample; struct I2cTransfer *xfer = (struct I2cTransfer *)evtData; uint8_t *ptr_samples; switch (xfer->state) { case SENSOR_BOOT: if (!mTask.comm_rx(LPS22HB_WAI_REG_ADDR, 1, 1, SENSOR_VERIFY_ID)) { DEBUG_PRINT("Not able to read WAI\n"); return -1; } break; case SENSOR_VERIFY_ID: /* Check the sensor ID */ if (xfer->err != 0 || xfer->txrxBuf[0] != LPS22HB_WAI_REG_VAL) { DEBUG_PRINT("WAI returned is: %02x\n", xfer->txrxBuf[0]); break; } INFO_PRINT("Device ID is correct! (%02x)\n", xfer->txrxBuf[0]); for (i = 0; i < NUM_OF_SENSOR; i++) sensorRegisterInitComplete(mTask.sensors[i].handle); /* TEST the environment in standalone mode */ //osEnqueuePrivateEvt(EVT_TEST, NULL, NULL, mTask.tid); break; case SENSOR_BARO_POWER_UP: sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0); break; case SENSOR_BARO_POWER_DOWN: sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0); break; case SENSOR_TEMP_POWER_UP: sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0); break; case SENSOR_TEMP_POWER_DOWN: sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0); break; case SENSOR_BARO_START_CAL: mTask.comm_tx(LPS22HB_RPDS_H, 0, 0, SENSOR_BARO_READ_CAL_MEAS); break; case SENSOR_BARO_READ_CAL_MEAS: mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 3, 1, SENSOR_BARO_CAL_DONE); break; case SENSOR_BARO_CAL_DONE: ptr_samples = xfer->txrxBuf; baro_val = ((ptr_samples[2] << 16) & 0xff0000) | ((ptr_samples[1] << 8) & 0xff00) | (ptr_samples[0]); sendCalibrationResult(SENSOR_APP_EVT_STATUS_SUCCESS, LPS22HB_HECTO_PASCAL((float)baro_val)); break; case SENSOR_BARO_SET_OFFSET: mTask.comm_tx(LPS22HB_RPDS_H, mTask.offset_H, 0, SENSOR_BARO_CFG_DONE); break; case SENSOR_BARO_CFG_DONE: break; case SENSOR_READ_SAMPLES: if (mTask.baroOn && mTask.baroWantRead) { float pressure_hPa; mTask.baroWantRead = false; ptr_samples = xfer->txrxBuf; baro_val = ((ptr_samples[2] << 16) & 0xff0000) | ((ptr_samples[1] << 8) & 0xff00) | (ptr_samples[0]); mTask.baroReading = false; pressure_hPa = LPS22HB_HECTO_PASCAL((float)baro_val); //osLog(LOG_INFO, "baro: %p\n", sample.vptr); if (baroAllocateEvt(&baroSample, pressure_hPa, sensorGetTime())) { osEnqueueEvtOrFree(sensorGetMyEventType(SENS_TYPE_BARO), baroSample, baroFreeEvt); } } if (mTask.tempOn && mTask.tempWantRead) { mTask.tempWantRead = false; ptr_samples = &xfer->txrxBuf[3]; temp_val = ((ptr_samples[1] << 8) & 0xff00) | (ptr_samples[0]); mTask.tempReading = false; sample.fdata = LPS22HB_CENTIGRADES((float)temp_val); //osLog(LOG_INFO, "temp: %p\n", sample.vptr); osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_AMBIENT_TEMP), sample.vptr, NULL); } break; default: break; } releaseXfer(xfer); return (0); } static void handleEvent(uint32_t evtType, const void* evtData) { switch (evtType) { case EVT_APP_START: INFO_PRINT("EVT_APP_START\n"); osEventUnsubscribe(mTask.tid, EVT_APP_START); mTask.comm_tx(LPS22HB_SOFT_RESET_REG_ADDR, LPS22HB_SOFT_RESET_BIT, 0, SENSOR_BOOT); break; case EVT_COMM_DONE: //INFO_PRINT("EVT_COMM_DONE %d\n", (int)evtData); handleCommDoneEvt(evtData); break; case EVT_SENSOR_BARO_TIMER: //INFO_PRINT("EVT_SENSOR_BARO_TIMER\n"); mTask.baroWantRead = true; /* Start sampling for a value */ if (!mTask.baroReading && !mTask.tempReading) { mTask.baroReading = true; mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, SENSOR_READ_SAMPLES); } break; case EVT_SENSOR_TEMP_TIMER: //INFO_PRINT("EVT_SENSOR_TEMP_TIMER\n"); mTask.tempWantRead = true; /* Start sampling for a value */ if (!mTask.baroReading && !mTask.tempReading) { mTask.tempReading = true; mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, SENSOR_READ_SAMPLES); } break; case EVT_TEST: INFO_PRINT("EVT_TEST\n"); baroPower(true, NULL); tempPower(true, NULL); baroSetRate(SENSOR_HZ(1), 0, NULL); tempSetRate(SENSOR_HZ(1), 0, NULL); break; default: break; } } static bool startTask(uint32_t task_id) { uint8_t i; size_t slabSize; mTask.tid = task_id; INFO_PRINT("task started\n"); mTask.baroOn = mTask.tempOn = false; mTask.baroReading = mTask.tempReading = false; mTask.offset_H = 0; mTask.offset_L = 0; slabSize = sizeof(struct SingleAxisDataEvent) + sizeof(struct SingleAxisDataPoint); mTask.baroSlab = slabAllocatorNew(slabSize, 4, LPS22HB_MAX_BARO_EVENTS); if (!mTask.baroSlab) { ERROR_PRINT("Failed to allocate baroSlab memory\n"); return false; } /* Init the communication part */ i2cMasterRequest(LPS22HB_I2C_BUS_ID, LPS22HB_I2C_SPEED); mTask.comm_tx = i2c_write; mTask.comm_rx = i2c_read; for (i = 0; i < NUM_OF_SENSOR; i++) { mTask.sensors[i].handle = sensorRegister(&lps22hbSensorInfo[i], &lps22hbSensorOps[i], NULL, false); } osEventSubscribe(mTask.tid, EVT_APP_START); return true; } static void endTask(void) { INFO_PRINT("task ended\n"); slabAllocatorDestroy(mTask.baroSlab); } INTERNAL_APP_INIT(LPS22HB_APP_ID, 0, startTask, endTask, handleEvent);